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To Supervise or Not To Supervise: How to
Effectively Learn Wireless Interference

Management Models?
Bingqing Song, Haoran Sun, Wenqiang Pu, Sijia Liu, and Mingyi Hong

Abstract—Machine learning has become successful in solving
wireless interference management problems. Different kinds of
deep neural networks (DNNs) have been trained to accomplish
key tasks such as power control, beamforming and admission
control. There are two state-of-the-art approaches to train
such DNNs based interference management models: supervised
learning (i.e., fits labels generated by an optimization algorithm)
and unsupervised learning (i.e., directly optimizes some system
performance measure). However, it is by no means clear which
approach is more effective in practice. In this paper, we conduct
some theory- and experiment- guided study about these two
training approaches. First, we show a somewhat surprising result,
that for some special power control problem, the unsupervised
learning can perform much worse than its counterpart, because
it is more likely to stuck at some low-quality local solutions. We
then provide a series of theoretical results to further understand
the properties of the two approaches. To our knowledge, these are
the first set of theoretical results trying to understand different
training approaches in learning-based wireless communication
system design.

Index Terms—Deep learning, wireless communication, semi-
supervised learning, power control

I. INTRODUCTION

Motivation. Recently, machine learning techniques have be-
come very successful in solving wireless interference manage-
ment problems. Different kinds of deep neural network (DNN),
such as fully connected network (FCN) [2], recurrent neural
network (RNN) [3], graph neural network (GNN) [4] have
been designed to accomplish key tasks such as power control
[5], beamforming [2], , MIMO detection [6], among others.
These DNN based models are capable of achieving compet-
itive and sometimes even superior performance compared to
the state-of-the-art optimization based algorithms [5].

However, despite its success, there is still a fundamental
lack of understanding about why DNN based approaches work
so well for this class of wireless communication problems –
after all, the majority of interference management problems
(e.g., beamforming) are arguably more complex than a typical
machine learning problem such as image classification. It
is widely believed that, exploiting task-specific properties in
designing network architectures, as well as training objectives
can help reduce the network complexity and input feature
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dimension [5], boost the training efficiency [5], and improve
the expressiveness [2].

The overarching goal of this research is to understand how
problem-specific properties can be effectively utilized in the
DNN design. More concretely, we attempt to provide an in-
depth understanding about how to utilize problem structures
in designing efficient training procedures. Throughout the
paper, we will utilize the classical weighted sum rate (WSR)
maximization problem in single-input single output (SISO)
interference channel as a working example, but we believe
that our approaches and the phenomenon we observed can be
extended to many other related problems.
Problem Statement and Contributions. Consider training
DNNs for power control, or more generally for beamforming.
There are two state-of-the-art approaches for training:
1) supervised learning (SL), in which “labels” of optimal
power allocations are generated by an optimization algorithm,
then the training step minimizes the mean square error (MSE)
between the DNN outputs and the labels [2];
2) unsupervised learning (UL), which optimizes some system
performance measure such as WSR [5].

It is clear that the above unsupervised approach is unique
to the interference management problem, because the specific
task of WSR maximization offers a natural training objec-
tive to work with. Further, it does not require any existing
algorithms to help generate high-quality labels (which could
be fairly expensive). On the other hand, such an objective
is difficult to optimize since the WSR is a highly non-linear
function with respect to (w.r.t.) the transmit power, which is
again a highly non-linear function of the DNN parameters.

Which training method shall we use in practice? Can we
rigorously characterize the behavior of these methods? Is it
possible to properly integrate these two approaches to yield
a more efficient training procedure? Towards addressing these
questions, this work makes the following key contributions:
¶ We focus on the SISO power control problem in interference
channel (IC), and identify a simple 2-user setting, in which
UL approach has non-zero probability of getting stuck at
low-quality solutions (i.e., the local minima), while the SL
approach always finds the global optimal solution;
· We provide rigorously analysis to understand properties
of UL and SL for DNN-based SISO-IC problem. Roughly
speaking, we show that when high-quality labels are provided,
SL should outperform UL in terms of solution quality. Further,
the SL approach converges faster when the labels have better
solution quality;
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¸ In an effort to leverage the advantage of both approaches, we
develop a semi-supervised training objective, which regularizes
the unsupervised objective by using a few labeled data points.
Surprisingly, by only using a small fraction (≈ 1%) of samples
of the supervised approach, the proposed method is able to
avoid bad local solutions and attain similar performance as
supervised learning.

To the best of our knowledge, this work provides the first
in-depth understanding about the two popular approaches for
training DNNs for wireless communication.

II. PRELIMINARIES

Consider a wireless network consisting of K pairs of
transmitters and receivers. Suppose each pair equips with a
single antenna, denote hkj ∈ C as the channel between the kth
transmitter and the jth receiver, pk as the power allocated to
the kth transmitter, Pmax as the budget of transmitted power,
and σ2 as the variance of zero-mean Gaussian noise in the
background. Further, we use wk to represent the prior impor-
tance of the kth receiver, then the classical WSR maximization
problem can be formulated as

max
p1,...,pK

K∑
k=1

wk log

(
1 +

|hkk|2 pk∑
j 6=k |hkj |

2
pj + σ2

k

)
:= R(p; |h|)

s.t. 0 ≤ pk ≤ Pmax,∀k = 1, 2, . . . ,K (1)

where h := {hkj} collects all the channels; | · | is the compo-
nentwise absolute value operation; and p := (p1, p2, . . . , pK)
denotes the transmitted power of K transmitters. The above
problem is well-known in wireless communication, and it is
known to be NP-hard [7] in general. For problem (1) and its
generalizations such as the beamforming problems in MIMO
channels, many iterative optimization based algorithms have
been proposed, such as waterfilling algorithm [8], interference
pricing [9] , WMMSE [10], and SCALE [11].

Recently, there has been a surge of works that apply DNN
based approach to identify good solutions for problem (1)
and its extensions [2], [5]. Although these works differ from
their problem settings and/or DNN architectures, they all use
either the SL, UL, or some combination of the two to train
the respective networks. Below let us take problem (1) as an
example and briefly compare the SL and UL approaches.
• Data Samples: Both approaches require a collection of the
channel information over N different snapshots, denoted as
h(n), n = 1, 2, . . . , N . SL requires an additional N labels
p̄ := {p̄(n)}n∈[N ] (where [N ] := {1, · · · , N}), which are
usually obtained by solving N independent problems (1) using
some optimization algorithm, such as the WMMSE [10].
Notice that the quality of such labels may depend on the
accuracy of the optimization algorithm being selected.
• DNN Structure: We will assume that the power allocation
p is parameterized by some DNN. More precisely, the inputs
of the DNN are absolute values of channel samples h(n), and
let Θ be the parameters of the DNN (of appropriate size), then
the output of DNN can be expressed as p(Θ; |h(n)|) ∈ RK .

Figure 1. Comparison between SL, UL and WMMSE in testing time,
when SL, UL are trained using data where the interference channel
power is equal to direct channel power (weak interference), or 10
times of the direct channel power (strong interference) when there
are 10 users. In strong interference case, SL can achieve 92% of the
WMMSE sum-rate, while UL achieves relatively lower sum-rate.

To simplify notation, we write the output of the DNN and its
kth component as:

p(n) = p
(
Θ;
∣∣∣h(n)

∣∣∣) , p
(n)
k := pk

(
Θ;
∣∣∣h(n)

∣∣∣) . (2)

Unless otherwise noted, we will assume that different training
approaches will use the same DNN architecture, so we can
better focus on the training approaches itself.

For the SL approach, it is common to minimize the MSE
loss, and the resulting training problem is given by:

min
Θ

N∑
n=1

‖p(Θ; |h(n)|)− p̄(n)‖2 := fsup(Θ)

s.t. 0 ≤ p(Θ; |h(n)|) ≤ Pmax,∀ n. (3)

On the other hand, UL does not need the labels p̄(n), and it
directly optimizes the sum of the samples’ WSR as follows:

min
Θ

N∑
n=1

−R
(
p(Θ; |h(n)|), |h(n)|

)
:= funsup(Θ)

s.t. 0 ≤ p(Θ; |h(n)|) ≤ Pmax,∀ n. (4)

Remark 1. Problem (4) provides a reasonable formulation as
it directly stems from the WSR maximization (1). However, this
problem can be much harder to optimize compared with (1)
because of the following: i) Each R

(
p(Θ; |h(n)|), |h(n)|

)
is

a composition of two non-trivial nonlinear functions, R(·; |h|)
and p(·; |h|); ii) It finds a single parameter Θ that maximizes
the sum of the WSR across all snapshots, so it couples N
difficult problems. �

III. A STUDY OF SL AND UL APPROACHES

Are there any fundamental differences between these two
popular training approaches? This section provides a number
of different ways to address this question. Please note that due
to space limitation, all proofs in this section will be relegated
to the online version [12].
Comparing SL and UL Approaches. Before we start, we
use a simple example to illustrate the potential performance
difference of the two training approaches. Specifically, Fig.
1 shows that for a 2-user network with different interference
situation, the DNN generated by SL and UL can have signif-
icantly different test-time performance.
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Figure 2. For two-user IC with 2 snapshots, the true labels p̄(1) =
(0, 1), p̄(2) = (1, 0). For both users, keep the sum of label of each
snapshot to be 1 (since we know that the global optimal solution has
this structure), that is p(1) = (p1, 1− p1), p(2) = (p2, 1− p2). We
plot the sum-rate of the two snapshots. The upper right and lower left
corners are local maxima while the upper left is the global maximum.

To understand such a phenomenon, let us examine the
two optimization problems (3) and (4). From Remark 1,
we know that problem (4) can be challenging because the
complicated relationship between R and Θ, and because there
are multiple components in the objective. For now, let us focus
on cases where one factor is dominating. Suppose K = 2
(two user), wk = 1,∀ k (equal weights), and use a linear
network to parameterize p: p = Θ|h|, where Θ ∈ RK×K2

,
and Θ := [Θ1; · · · ; ΘK ], with Θk := {Θk,(uv)}(uv)∈W ∈
R1×K2

, where W := {(i, j) : i, j ∈ {1, · · · ,K} is a set
of index tuples. In this case, from the classical results for
2-user IC [13], [14], we know that for each sample n, the
sum rate maximization problem (3) is easy to solve, and the
solution will be binary. Further, the linear network significantly
simplifies the relation between p and Θ. Under this setting,
we have the following observation.

Claim 1. Consider the simple SISO-IC case with two users
and two samples (i.e., K = 2, N = 2); let Pmax = 1, σ = 1,
and suppose a linear network is used: p(Θ; |h|) = Θ|h|. If we
use the UL loss (4), then there exist some channel realizations
h(1) ∈ C2×2 and h(2) ∈ C2×2 whose true labels are p̄(1) =
(0, 1), p̄(2) = (1, 0), for which problem (4) has at least two
stationary solutions Θglobal and Θlocal. However, these two
solutions generate different predictions:

p(Θglobal, |h(1)|) = (0, 1), p(Θglobal, |h(2)|) = (1, 0), (5)

p(Θlocal, |h(1)|) = p(Θlocal, |h(2)|) = (1, 0). (6)

On the other hand, if the SL loss (3) is used, then fsup(Θ)
is a convex function w.r.t. Θ, and the problem has an optimal
solution satisfying (5).

This result illustrates that when multiple channel realiza-
tions are directly and jointly optimized using UL, it is more
likely to possess bad local minima; see Fig 2.

Next, we analyze more general cases. Towards this end, we
first investigate the relationship between stationary solutions
of the SL problem (3) and the UL problem (4).

Claim 2. Consider an SISO-IC training problem with K users
and N training samples. Suppose the following hold:
i). For each data sample n ∈ {1, · · · , N}, we can generate a
stationary solution p̄(n) of (1) as the training label.
ii). Let Θ∗(p̄) denote the optimal solution for the SL problem

(3) with label p̄, and it achieves zero loss: fsup(Θ∗(p̄)) = 0.
iii) The solution Θ∗(p̄) can be computed for all p̄.
Let B denote the set of stationary points of (4). Then the
following holds:

{Θ∗(p̄) | p̄(n) is a stationary solution of (1), ∀ n} ⊆ B. (7)

Intuitively, this result shows that if we impose some ad-
ditional assumptions to the SL approach (i.e., good labels,
zero training loss, and good training algorithm), then it is less
likely for SL to be trapped by local minima. Additionally,
if each label p̄(n) exactly maximizes (1), then SL can find
a neural network that simultaneously optimizes all training
instances. On the other hand, it is difficult to impose favorable
assumptions for the UL approach to induce better solution
quality. This result is a generalization of Claim 1.

It certainly appears that assumptions ii) and iii) are stringent.
However, recent advances in deep learning suggest that they
can be both achieved for certain special neural networks. In
particular, the assumption that fsup(Θ∗) = 0 has been verified
when the neural network is “overparameterized”; see. e.g.,
[15]. Further, it has been shown in [16], [17] that, gradient
descent (GD) can indeed find such a global optimal solution.
However, these works cannot be applied to analyze our training
problem because they require that the inputs are normalized,
and that the outputs are scalars instead of vectors.

In the following, we show that it is possible to construct
a special neural network and a training algorithm, such that
condition ii) and iii) in Claim 2 can be satisfied, so that (29)
holds true. Our result extends the recent work [18].

To proceed, consider an L-layer fully connected network
with activation function denoted by f : R → R. The weights
of each layer are (Wl)

L
l=1. Let ‖·‖F denote the Frobenius norm

and ‖ · ‖2 denote the L2 norm. The input and output of the
network (across all samples) are h ∈ RN×K2

and p ∈ RN×K ,
respectively. Let ⊗ denote the Kronecker product. Let the
output of the l-th layer (across all samples) be Fl ∈ RN×nl ,
which can be expressed as:

Fl =

 h l = 0
σ (Fl−1Wl) l ∈ [1 : L− 1]
FL−1WL l = L

(8)

where σ is some activation function. In our problem setting,
the output of the neural network is the power allocation vector,
therefore nL = K. Let us vectorize the output of each layer
by concatenating each of its column, and denote it as fl =
vec (Fl) ∈ RNnl . Similarly, denote the vectorized label as
y = vec(p) ∈ RNK . At m-th iteration of training, we use
Θm = (Wm

l )
L
l=1 to denote all the parameters. Also, denote

Σl = diag [vec (σ′ (Fl−1Wl))] ∈ RNnl×Nnl as the derivative
of activation function at each layer.

Let us define the following quantities, which are related to
the singular values of weight matrices at initialization:

λ̄l =

{
2
3

(
1 +

∥∥W 0
l

∥∥
2

)
, for l ∈ {1, 2},∥∥W 0

l

∥∥
2
, for l ∈ {3, . . . , L}, (9)

and λl = σmin

(
W 0
l

)
, λi→j =

∏j
l=i λl, λ̄i→j =

∏j
l=i λ̄l and

λF = σmin

(
σ
(
XW 0

1

))
, where σmin(A) and ‖A‖2 are the

smallest and largest singular value of matrix A.
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Let us make the following assumptions about the neural
network structure as well as the activation function.

Assumption 1. (Pyramidal Network Structure) Let n1 ≥
N and n2 ≥ n3 ≥ . . . ≥ nL.

Assumption 2. There exist constants γ ∈ (0, 1) and β > 0,
such that the activation function σ(·) satisfies:

σ′(x) ∈ [γ, 1], |σ(x)| ≤ |x|, ∀ x ∈ R, σ′ is β-Lipschitz.

The first assumption defines the so-called Pyramidal Net-
work structure [18], which consists of at least one wide layer
(i.e., the number of neurons is at least the sample size). The
second assumption is shown to hold true for certain activation
functions [18] .

Next we discuss how to train such a network using the SL
and UL approaches. Towards this end, we need to fix a training
algorithm. Different than the conventional neural network
training, problems (3) – (4) have n constraints (one for each
sample), and it is difficult for conventional gradient-based
algorithms to enforce them. To overcome such a difficulty,
we adopt the following approaches.

For the SL training, we will directly consider the uncon-
strained version of (3) (by removing all power constraints).
This is acceptable because, if zero training loss can be
achieved, and if all the labels are feasible, then the output
for each sample will also be feasible. However, for the UL
training, we cannot simply drop the constraints, so a sigmoid
function should be added to the last layer of the output to
enforce feasibility. Specifically, the modified network has the
following output:

FL = sig(FL−1ΘL) =
1× Pmax

1 + e−FL−1ΘL
. (10)

And the output FL is the allocated power p. So the UL loss
(4) can be converted into unconstrained version:

min
Θ

N∑
n=1

−R
(
p(Θ; |h(n)|), |h(n)|

)
:= fUL(Θ)

Note that in the above expression there is some abuse of
notation, since we still use p(Θ; |h(n)|) to denote the output
of the neural network, despite the fact that the neural network
structure is slightly different than before.

Now that both training problems become unconstrained, we
can use the conventional gradient-based algorithms. We have
the following convergence results.

Claim 3. Consider an SISO-IC training problem with K
users and N training samples. Let Pmax = 1. Construct a
fully connected neural network satisfying Assumption 1 - 2.
Initialize Θ0 so that it satisfies [18, Assumption 3.1]. Then
the following holds:
(a) When the initialization condition satisfies Assumption 3,
consider optimizing the unconstrained version of (3) using
the gradient descent algorithm

Θm+1 = Θm − η∇fsup (Θm) .

There exists constant stepsize η such that the training loss
converges to zero at a geometric rate, that is:

fsup (Θm) ≤ (1− ηα0)
m
fsup (Θ0) (11)

where α0 is a constant.
(b) Consider minimizing the unconstrained version of (4)
using the last layer as (10) and use the gradient descent
algorithm (with step size η). Suppose all the weights are
bounded during training, then Θ will converge to a stationary
point of the training objective.

Claim 3-(a) indicates that when the neural network satisfied
Assumptions 1 – 2, and with some special initialization, then
conditions (ii) – (iii) in Claim 2 can be satisfied, so the con-
clusion in Claim 2 holds. On the other hand, for UL problem,
even under very strong condition such as bounded training
weights, the best one can prove is that a stationary solution
for the training problem is obtained. No global optimality can
be claimed, nor any convergence rate analysis can be done.
Intuitively, this result again says one can identify sufficient
conditions that SL can perform well, while the UL approach is
much more challenging to analyze. We note that the analysis of
Claim 3-(a) follows similar approaches as [18, Theorem 3.2].
However, Claim 3-(b) is different since we need to analyze
the special network with the sigmoid activation function and
sum-rate objective function.
Impact of Label Quality. The above results show different
objective functions can have different performance in maxi-
mizing the sum-rate. Next, we show an additional property
about the SL approach – that the quality of labels can affect
training efficiency. Intuitively, it is reasonable to believe that
neural networks trained using high-quality labeled data can
achieve higher sum-rate compared with those trained with
with low-quality labels. To see this, we conduct two simple
experiments. We generate two training sets, one with low-
quality labels and the other with high-quality labels. The low-
quality labels are the power allocations that achieve an average
of 1.65 bits/sec (resp. 1.88 bits/sec) for 10 users (resp. for 20
users) case. The high-quality labels are the power allocations
that achieve an average of 1.87 bits/sec (resp. 2.00 bits/sec)
for 10 users (resp. for 20 users) case. We use different number
of samples to train the network, derive the sum-rate using test
samples and compare the result to the corresponding sum rate
achieved by the given labels; the results are shown in Table I.
We see that for a particular setting, using high-quality labels
not only achieves higher absolute sum-rate, but also higher
relative sum-rate comparing with what can be achieved by the
labels.

Below, we argue the benefit of high-quality label from a
slightly different perspective – the label quality can influence
the convergence speed of training algorithm.

Claim 4. Suppose (h,p) and (h
′
,p
′
) are two sets of data,

and they are constructed below:

• Each dataset consists of N samples;
• The features of two data samples are identical: h

′
= h;

• In the first dataset, for any n ∈ [N ], the labels p(n) is
the unique globally optimal power allocation for problem
(1), given channel realization h(n); Further, two samples
in h are identical, say, h(1) = h(2), and all the other
samples are linearly independent.

• For the second dataset, the labels are constructed as
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Quality
# samples 30,000 40,000 50,000

Low 1.38 (83.6%) 1.38 (83.6%) 1.39 (84.2%)
High 1.72 (92.0%) 1.76 (94.1%) 1.78 (95.2%)

Quality
# samples 50,000 100,000 200,000

Low 1.11 (59.0%) 1.32 (70.2%) 1.39 (73.9%)
High 1.31 (65.6%) 1.55 (77.5%) 1.74 (87.0%)

Table I
Comparison between using high-quality labels and low-quality

labels in SL. The top (resp. bottom) table shows the K = 10 (resp.
K = 20) case. The number in each entry shows the testing

performance (in bits/sec), where the model is trained using a fixed
number of training sample (shown at the first row), with either low
or high quality labels. The percentages mean the relative sum-rate
achieved at testing time v.s. what is achieved by the given labels.

follows:

p
′,(2) 6= p(2), p

′,(n) = p(n),∀ n, 6= 2. (12)

Further, since h(1) = h(2) and h = h′, we also have
h
′,(1) = h

′,(2).
Suppose that Assumption 1 and Assumption 2 hold true, and
use the same training algorithm as Claim 3-(a) to optimize
the unconstrained version of (3) using (h,p) and (h

′
,p
′
)

respectively. Let Θm and Θ
′m denote the sequences of weights

generated by the algorithm for the two data sets respectively.
Suppose that the initial solutions of the two algorithms are the
same: Θ

′,0 = Θ0. Define

A(Θ) :=
(
In2
⊗ FT1

) L∏
q=3

Σq−1 (Wq ⊗ IN ) ,

A0 := A(Θ0).

(13)

Suppose all the eigenvalues of AT0 A0 are within the interval
[0, 1] . Then if we choose the stepsize η small enough, there
exist β > 0 and β

′
> 0 such that the following holds true

fsup

(
Θ1
)
≤ βfsup

(
Θ0
)
, fsup

(
Θ
′,1
)
≤ β

′
fsup

(
Θ
′,0
)
.

Further, we have β < β
′
, that is, the objective function with

the correct label decreases faster.

In our analysis, we combined the pyramidal network anal-
ysis with the decomposition technique from [19]. This re-
sult uses a simple construction to reveal the importance of
consistency of labels among “similar” samples. Intuitively, it
somewhat explains why in Table I, the models trained by high-
quality labels can achieve higher percentage of the rates. The
reason may be that when the quality of the label is better, the
training speed is also faster.

To empirically understand how the quality of labels affect
convergence speed, we conduct the following experiments.
Consider 10- and 20-user case under the strong interference
setting as illustrated in Fig. 1. We generate two sets of
labels for each case, the low-quality one directly obtained
by WMMSE while the high-quality one first passes a given
sample through a pretrained GNN model in [4] and then is
fine-tuned by WMMSE. We use a fully connected network
with 3 hidden layers, with the number of neurons being
200, 80, 80 for 10-user case and 600, 200, 200 for 20-user

(a) Strong interference with K=10 (b) Strong Interference with K=20

Figure 3. Comparison between SL using different labels. ‘Low’ and
‘High’ in the legend means the quality of labels are low or high. We
also draw the sum rate of the generated data and labels as baseline,
as well as the 80% of the sum rate in 10-user case and 75% of the
sum rate in 20-user case.

case. From Fig. 4, we see that SL with higher-quality labels
achieves 80% of the baseline sum rate faster than with lower-
quality labels for 10-user case. Similar result can be derived
in matching 75% of the baseline for 20-user case.

IV. A SEMI-SUPERVISED LEARNING REMEDY FOR POWER
ALLOCATION

From the previous section, we know that under a few
assumptions, especially when high-quality labels are available,
SL could perform better than the UL. However, one drawback
of the SL approach is that finding high-quality labels can be
costly. Is there a way to design a proper learning strategy that
only requires a few labels, while still achieving the state-of-
the-art training and testing performance? In this section, we
address this by proposing a semi-supervised learning (SSL)
strategy which combines both the SL and UL approaches in
(3) – (4).

As indicated by Claim 1, UL may get stuck at some
local solutions once parameters enter some “bad” regions.
To alleviate such an issue, we propose to add some (label-
dependent) regularization in the training objective to change
the landscape of loss function. Specifically, suppose we collect
the unlabeled samples {|h(n)|} in a set N , and the labelled
samples {|h(m)|, p̄(m)} in a set M. Then, we propose to
combine the formulations (3) – (4) and construct the following
training objective:

max
Θ

∑
n∈N

R
(
p(Θ; |h(n)|), |h(n)|

)
−

λ
∑
m∈M

∥∥∥p(Θ; |h(m)|)− p̄(m)
∥∥∥2

,
(14)

where λ > 0 is a constant which controls the trade-off be-
tween two different loss functions. Intuitively, the regularizer
enforces the classical cluster assumption [20], which says
samples with the same label should belong to the same class.
In the numerical results (to be shown shortly), we will observe
that the above SSL approach can outperform the UL approach
by only using a few samples.
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V. SIMULATION RESULTS

Data Generation. The Rayleigh fading channel model [21] is
considered in the simulation and the number of users is 5, 10
or 20. Direct channels hkk and interfering channels hkj , k 6= j
are generated from zero-mean complex Gaussian distribution
CN (0, σ2), where σ denotes the standard deviation. To eval-
uate the stability of different learning approaches, two repre-
sentative cases are considered. In the first case (referred as
“weak interference”), both direct and interfering channels are
generated from the same complex Gaussian distribution with
σ = 1. For the second case (referred as “strong interference”),
direct channels are generated using the same method as in
the first case, while the interfering channel has larger standard
deviation (i.e., σ = 10).
Neural Network Structure. A fully connected neural net-
work with 3 hidden layers is used. The number of neurons
in each hidden layers are 200, 80, 80 for 5- and 10-user case
and 600, 200, 200 for 20-user case, respectively. The activation
function of the hidden layers is ReLu function, and the Sigmoid
function is used at output layer. To stabilize the training
process, the Batch Normalization [22] is used after each hidden
layer.
Benchmarks and Label Generation. In our results, we com-
pare the following algorithms: 1) The UL approach (4); 2) A
standard SSL approach, where problem (4) is trained based
on an initialization generated by the training over labeled data
(subsequently referred to as pre-trained SSL). 4) The proposed
approached based on optimizing (14), with λ = 1 (subse-
quently referred to as regularized SSL) 4) The WMMSE [10]
algorithm.

We adopt the following approach to generate high-quality
labels. Instead of directly using WMMSE, we first pass a given
sample h(n) through a pretrained GNN model (trained using
the method proposed in [4]), and then fine tune the result
using WMMSE. To generate the low-quality labels, we simply
perform WMMSE to obtain the labels.
Training Procedure. In the strong interference case, the total
number of unlabeled and labeled samples are 50, 000 and 400
for the 10-user case, while 10, 000 and 100 for the 5-user case,
respectively. In the weak interference case, the total number of
unlabeled and labeled training samples are 20, 000 and 100,
respectively. The number of data used here is smaller than
the strong interference case because in this setting, the UL
approach can already work well with fewer samples. In both
cases, the RMSprop [23] algorithm is used as the optimizer,
where each mini-batch consists of 200 (randomly sampled)
unlabeled data, and all the available labeled data.

To evaluate the performance, 1, 000 additional unlabeled
samples are generated and their averaged sum rate is used
as the performance metric.
Results and Analysis. The performance of the UL and the
two SSL approaches in the strong interference case are shown
in Fig. 4. Compared with the UL, the proposed regularized
SSL significantly improves the sum rate in the 10-user case.
However, the pre-trained SSL does not bring significant im-
provement. One possible reason is that only a few labeled
samples are not enough to pre-train a good initialization.

Using our proposed regularized SSL approach, we gradually
increase the number of labeled data to train the network, and
the result is shown in Fig. 5. From the result, the increasing
labeled data can improve the performance of our proposed
regularized SSL in high interference scenario. Furthermore,
higher-quality labels can produce better performance than
lower-quality labels.

In the weak interference scenario, we also perform our
proposed regularized SSL approach in 5- and 10-user case. The
result is shown in Table II, which indiates that in this setting
the performance of UL and our proposed regularized SSL are
similar. So in this case, regularization seems not required.
A future work is to address that, in the scenario where UL
can already work, whether and how the labeled data can still
improve the performance?

(a) Strong interference with K=5 (b) Strong Interference with K=10

Figure 4. Comparison between proposed semi-supervised learning, pre-
training, unsupervised learning and WMMSE uner strong interference case
in sum-rate maximization. ’Low’ and ’High’ in the legend means the quality
of labels are low or high.

(a) Strong interference case K = 10. (b) Strong interference case K = 20.

Figure 5. Comparison between using different number of (high-quality)
labeled data in proposed semi-supervised learning. Pre-Trained SSL represents
is based on an initialization generated by the training over labeled data and
Regularized SSL means our proposed approach.

Method
User Number K=5 K=10

Semi-supervised 2.09 (bits/sec) 2.60 (bits/sec)
Unsupervised 2.09 (bits/sec) 2.64 (bits/sec)
WMMSE 2.06 (bits/sec) 2.74 (bits/sec)

Table II
For weak interference scenario, compare the performance of

unsupervised learning and proposed semi-supervised learning both
using 20, 000 samples, and semi-supervised learning with 100

additional labeled data.
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VI. CONCLUSION

This work analyzes the SL and UL approaches for learn-
ing communication systems. It is shown that under certain
conditions (such as having access to high-quality labels), SL
can exhibit better convergence properties than UL. To our
knowledge, this is the first work that rigorously analyzes the
relation between these two approaches. Of course, finding
high-quality labels is challenging. Is there a way to design a
proper learning strategy that only requires a few high-quality
labels, while still achieving the state-of-the-art performance?
In our full paper [12], we developed some semi-supervised
learning approach to address this question. Due to space
limitation, we do not include them here.
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VII. APPENDIX

A. Proof for Claim 1

Claim 1. Consider the simple SISO-IC case with two users and two samples (i.e., K = 2, N = 2); let Pmax = 1, σ = 1, and
suppose a linear network is used: p(Θ; |h|) = Θ|h|. If we use the UL loss (4), then there exist some channel realizations
h(1) ∈ C2×2 and h(2) ∈ C2×2 whose true labels are p̄(1) = (0, 1), p̄(2) = (1, 0), for which problem (4) has at least two
stationary solutions Θglobal and Θlocal. However, these two solutions generate different predictions:

p(Θglobal, |h(1)|) = (0, 1), p(Θglobal, |h(2)|) = (1, 0), (15)

p(Θlocal, |h(1)|) = p(Θlocal, |h(2)|) = (1, 0). (16)

On the other hand, if the SL loss (3) is used, then fsup(Θ) is a convex function w.r.t. Θ, and the problem has an optimal
solution satisfying (15).

Proof. Unsupervised learning problem (4). Our plan is to construct the channels of two snapshots, in such a way that the
true labels are p̄(1) = (0, 1), p̄(2) = (1, 0). We will verify that for this problem, there is a global optimal solution Θglobal which
produces the true labels as (5); we will also show that there exists a local solution Θlocal which produces p(Θlocal, |h(1)|) =
p(Θlocal, |h(2)|) = (1, 0), and such a solution achieves the smallest training objective around a neighborhood. However, at
this local solution, the allocated power is different from the optimal solution, and it is easy to check that the UL loss (4) is
larger than the value achieved by the global optimal solution.

For notation simplicity, let us define the following short-handed notations:

p (Θlocal , |h|) :=
[
p
(
Θlocal ,

∣∣∣h(1)
∣∣∣) ; p

(
Θlocal ,

∣∣∣h(2)
∣∣∣)] , (17)

p∗ := p (Θlocal , |h|) =
[
p

(1),∗
1 ; p

(1),∗
2 ; p

(2),∗
1 ; p

(2),∗
2

]
= [1; 0; 1; 0], (18)

p := p (Θ, |h|) = [p
(1)
1 ; p

(1)
2 ; p

(2)
1 ; p

(2)
2 ]. (19)

More specifically, we will show that there exists a neighborhood Nδ(Θlocal) := {Θ : ‖Θlocal − Θ‖ ≤ δ}, such that the
following holds true:

funsup(Θ)− funsup(Θlocal) ≥ 0, for all Θ ∈ Nδ(Θlocal) and p(Θ, |h(1)|) and p(Θ, |h(2)|) feasible. (20)

To show that the above holds, we will follow two steps:
Step 1. Show that there exists a region Nε(p∗) := {p : ‖p− p∗‖ ≤ ε} around p∗ such that the following holds:

funsup(p∗)− funsup(p) ≤ 0, for all p ∈ Nε(p∗) and p feasible. (21)

Step 2. Show that for every Θ̃ such that p
(
Θ̃, |h|

)
= p∗, by letting Θlocal = Θ̃, there exists a region Nδ(Θlocal) such that

(20) holds true.
To begin our proof, let us construct |h(1)| and |h(2)| in such a way that the following holds:

|h(1)
12 | = |h

(1)
21 | � |h

(1)
22 | > |h

(1)
11 |, |h

(2)
12 | = |h

(2)
21 | � |h

(2)
11 | > |h

(2)
22 |. (22)

It is easy to show that the true label for snapshot h(1) is p̄(1) = (0, 1) and h(2) is p̄(2) = (1, 0). Further, we assume that the
cross channels are strong enough such that the following inequality holds

2(2 + h
(n)
11 )|h(n)

22 |2

|h(n)
11 |2|h

(n)
12 |2

< 1. (23)

Proof of Step 1. Let us first show that (21) holds true by using contradiction. Suppose p∗ = [p
(1),∗
1 ; p

(1),∗
2 ; p

(2),∗
1 ; p

(2),∗
2 ] =

[1; 0; 1; 0] is not a local minimum, then for all neighborhood around p∗, there exists a different feasible p which satisfies

funsup(p) < funsup(p∗).

Then by the Mean Value Theorem, there exists a feasible p̂ between p and p∗ which satisfies

funsup (p∗)− funsup (p) = 〈∇pfunsup (p̂),p∗ − p〉>0. (24)

Since we have assumed Pmax = 1, then p(1),∗
1 and p(2),∗

1 both reach the maximal power. It follows that any feasible p(1)
1 , p

(2)
1

must satisfy p(1)
1 < p

(1),∗
1 , p

(2)
1 < p

(2),∗
1 . Similarly, p(1),∗

2 and p(2),∗
2 reach the minimal power, so any feasible p(1),∗

2 and p(2),∗
2

must satisfy p(1)
2 > p

(1),∗
2 , p

(2)
2 > p

(2),∗
2 . Further, the gradient of the unsupervised objective w.r.t. p is given by:

∇pfunsup (p) =

(
∂funsup

∂p
(1)
1

,
∂funsup

∂p
(1)
2

;
∂funsup

∂p
(2)
1

,
∂funsup

∂p
(2)
2

)
.
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If we can show that there exists a neighborhood around p∗ such that ∂funsup

∂p
(n)
1

< 0 and ∂funsup

∂p
(n)
2

> 0 for n = 1, 2, then within this

region, there is always 〈∇pfunsup (p̂),p∗ − p〉 < 0, which contradicts to (24). Next, we show the existence of such a region.
Given our channel construction, the corresponding objective function (4) becomes:

funsup(p) = − log

(
1 +

|h(1)
11 |2p

(1)
1

|h(1)
12 |2p

(1)
2 + 1

)
− log

(
1 +

|h(1)
22 |2p

(1)
2

|h(1)
21 |2p

(1)
1 + 1

)

− log

(
1 +

|h(2)
11 |2p

(2)
1

|h(2)
12 |

2
p

(2)
2 + 1

)
− log

(
1 +

|h(2)
22 |2p

(2)
2

|h(2)
21 |2p

(2)
1 + 1

)
. (25)

Based on the objective function expression (25), we can obtain that
∂funsup

∂p
(n)
1

= − |h(n)
11 |

2

|h(n)
11 |2p

(n)
1 +|h(n)

12 |2p
(n)
2 +1

+
|h(n)

21 |
2|h(n)

22 |
2p

(n)
2(

|h(n)
21 |2p

(n)
1 +|h(n)

22 |2p
(n)
2 +1

)(
|h(n)

21 |2p
(n)
1 +1

)
∂funsup

∂p
(n)
2

= − |h(n)
22 |

2

|h(n)
21 |2p

(n)
1 +|h(n)

22 |2p
(n)
2 +1

+
|h(n)

11 |
2|h(n)

12 |
2p

(n)
1(

|h(n)
12 |2p

(n)
2 +|h(n)

11 |2p
(n)
1 +1

)(
|h(n)

12 |2p
(n)
2 +1

) . (26)

Note that it is always possible to find a feasible p(n)
1 , p(n)

2 such that the following holds

2(2 + h
(n)
11 )|h(n)

22 |2

|h(n)
11 |2|h

(n)
12 |2

< p
(n)
1 < 1, 0 < p

(n)
2 < min

{
|h(n)

11 |2

(|h(n)
11 |2 + |h(n)

12 |2 + 1)|h(n)
21 |2|h

(n)
22 |2

,
1

|h(n)
12 |2

}
, ∀ n ∈ {1, 2}, (27)

where the first relation holds because of (23), and the second relations holds trivially. Using these two relations, we can show
that the gradient expression (26) satisfies the following:

∂funsup

∂p
(n)
1

≤ − |h(n)
11 |2

|h(n)
11 |2 + |h(n)

12 |2 + 1
+ |h(n)

21 |2|h
(n)
22 |2p

(n)
2

< − |h(n)
11 |2

|h(n)
11 |2 + |h(n)

12 |2 + 1
+ |h(n)

21 |2|h
(n)
22 |2 ·

|h(n)
11 |2

(|h(n)
11 |2 + |h(n)

12 |2 + 1)|h(n)
21 |2|h

(n)
22 |2

< 0

∂funsup

∂p
(n)
2

≥ − |h(n)
22 |2

|h(n)
21 |2p

(n)
1 + 1

+
|h(n)

11 |2|h
(n)
12 |2p

(n)
1(

|h(n)
12 |2p

(n)
2 + |h(n)

11 |2 + 1
)(
|h(n)

12 |2p
(n)
2 + 1

)
> −|h(n)

22 |2 +
|h(n)

11 |2|h
(n)
12 |2p

(n)
1

2
(
|h(n)

11 |2 + 2
)

> 0.

That is, there exists a region Nε∗(p
∗) of power allocation around p∗ = [1; 0; 1; 0], where ∂funsup

∂p
(n)
1

< 0 and ∂funsup

∂p
(n)
2

> 0 hold
true for n = 1, 2. Then as discussed before, we have a contradiction to (24), and the proof of step 1 is completed.
Proof of Step 2. Next we show that for every Θ̃ such that p

(
Θ̃, |h|

)
= p∗, there exists a region Nδ(Θ̃), such that for all

Θ ∈ Nδ(Θ̃) and Θ is feasible, p(Θ, |h|) is feasible and falls in Nε∗ (p∗) identified in the previous step. That is, (20) holds
true.

Notice that the output of the linear neural network is p = Θ|h|, which is a continuous function of Θ. Let us fix a Θ̃
satisfying p∗ = Θ̃|h|. Then by using the property of a continuous function, for the constant ε∗ > 0 identified in the previous
step, there always exists δ, such that when ‖Θ− Θ̃‖ ≤ δ, and when 0 ≤ Θ|h| ≤ 1, the following holds

‖p(Θ, |h|)− p(Θ̃, |h|)‖ ≤ ε∗.

In Step 1, we have shown that when a feasible p = p(Θ, |h|) falls in Nε∗(p∗), then funsup(p∗)− funsup(p) ≤ 0.
In conclusion, we showed that there exist channel realizations, for which Θlocal satisfying Θlocal|h| = [1; 0; 1; 0], for which

the following holds true:

funsup(Θ)− f(Θlocal) ≥ 0, for all Θ ∈ Nδ(Θ,local) and p(Θ, |h(1)|) and p(Θ, |h(2)|) are feasible. (28)

By definition, such a Θlocal is a local optimal solution of (4).
Supervised learning problem (3) We will check that fsup(Θ) is a convex function w.r.t. Θ. For convenience, let us explicitly

write down the expression for the output of the neural network as follows

fsup(Θ) =

2∑
n=1

2∑
k=1

(
Θk · |h̃(n)| − p̄(n)

k

)2

.
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It is clear that the objective is a convex quadratic function of Θ.
Meanwhile, we know that Θ contains 8 scalar parameters and there are four linear equations to be solved, which are given

below:
Θ|h(1)| = [0; 1], Θ|h(2)| = [1; 0].

It follows that as long as the channel realizations are randomly generated so that they are linearly independent, there always
exists Θ which can predict the true labels. That is, at the global optimal solution of the unsupervised learning, the objective
value will be zero.

B. Proof of Claim 2

Claim 2. Consider an SISO-IC training problem with K users and N training samples. Suppose the following hold:
i). For each data sample n ∈ {1, · · · , N}, we can generate a stationary solution p̄(n) of (1) as the training label.
ii). Let Θ∗(p̄) denote the optimal solution for the SL problem (3) with label p̄, and it achieves zero loss: fsup(Θ∗(p̄)) = 0.
iii) The solution Θ∗(p̄) can be computed for all p̄.
Let B denote the set of stationary points of (4) which satisfy the KKT condition. Then the following holds:

{Θ∗(p̄) | p̄(n) is a stationary solution of (1), ∀ n} ⊆ B. (29)

Proof. The main idea of the proof is as follows. First, we characterize the set of optimal solutions of SL problem (3), under
the zero training loss conditions. Second, we show that each one of such optimal solution is also a stationary point of UL
loss (4), which is a point that satisfies the KKT condition. Finally, we show that there exists a solution in B which does not
optimize the supervised problem (3).

To begin with, let us denote [K] := {1, 2, · · · ,K} and [N ] := {1, 2, · · · , N}. With our assumption that zero loss can be
achieved at Θ∗(p̄), the following holds true:

pk(Θ∗(p̄); |h(n)|) = p̄
(n)
k , ∀ n ∈ [N ], ∀ k ∈ [K]. (30)

Next, we verify that Θ∗(p̄) is a subset of stationary points of UL (4). Recall that the stationary solutions are those satisfy
the KKT condition, so we aim to check this by showing that Θ∗(p̄) satisfies the KKT condition for the UL problem (4).
Towards this end, let us write down the Lagrangian for the UL problem (4) as:

LUL(p(Θ; |h(n)|),λ,µ) =

N∑
n=1

−R(p(Θ; |h(n)|), |h(n)|)−
N∑
n=1

K∑
k=1

λ
(n)
k pk(Θ; |h(n)|)

+

N∑
n=1

K∑
k=1

µ
(n)
k (pk(Θ; |h(n)|)− Pmax). (31)

The KKT condition for problem (4) is that, there is a tuple (Θ̃, λ̃, µ̃) such that the following set of relations holds (for all
k ∈ [K], n ∈ [N ], (u, v) ∈W :

∂LUL(p(Θ̃;|h(n)|),λ̃,µ̃)
∂Θk,(u,v)

= −
∑N

n=1 R(p(Θ̃;|h(n)|);|h(n)|)
∂p

(n)
k

· ∂pk(Θ̃;|h(n)|)
Θk,(u,v)

−
∑N
n=1

∑K
k=1 λ̃

(n)
k · ∂pk(Θ̃;|h(n)|)

∂Θk,(u,v)
+
∑N
n=1

∑K
k=1 µ̃

(n)
k · ∂pk(Θ̃;|h(n)|)

∂Θk,(u,v)
= 0

0 ≤ p(Θ̃; h) ≤ Pmax

λ̃
(n)
k ≥ 0

µ̃
(n)
k ≥ 0

λ̃
(n)
k · pk(Θ̃; |h(n)|) = 0

µ̃
(n)
k ·

(
pk(Θ̃; |h(n)|)− Pmax

)
= 0

. (32)

To show that Θ∗(p̄) (together with some multipliers) will satisfy (32), we will utilize the zero-loss property (30) and the
fact that p̄(n) is a stationary solution for problem (1) evaluated at each data points h(n).

Define the Lagrangian function for problem (1) as:

L
(n)
WSR(p(n),λ,µ) = −R(p(n), |h(n)|)−

K∑
k=1

λ
(n)
k p

(n)
k +

K∑
k=1

µ
(n)
k (p

(n)
k − Pmax). (33)
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Since by assumption p̄(n) is a stationary solution for n ∈ [N ], so there exists a tuple (p̄(n), λ̄
(n)
, µ̄(n)) such that the following

holds true for all k ∈ [K]

∂L
(n)
WSR(p̄(n),λ̄,µ̄)

∂p
(n)
k

= −∂R(p̄(n),|h(n)|)
∂p

(n)
k

−
∑K
k=1 λ̄

(n)
k +

∑K
k=1 µ̄

(n)
k = 0

0 ≤ p̄(n)
k ≤ Pmax

λ̄
(n)
k ≥ 0

µ̄
(n)
k ≥ 0

λ̄
(n)
k p̄

(n)
k = 0

µ̄
(n)
k (p̄

(n)
k − Pmax) = 0

(34)

Now we argue that tuple (Θ∗(p̄), λ̄, µ̄) satisfies the KKT condition in (32). Since we have p̄
(n)
k = pk(Θ∗(p̄); |h(n)|) for

k ∈ [K], n ∈ [N ], it is obvious that the second to the last relation holds in (32). To verify that the first relation in (32) holds,
we have:

∂LUL

(
p (Θ∗; |h|) , λ̄, µ̄

)
∂Θk,(u,v)

=

N∑
n=1

(
−
∂R
(
p(Θ∗(p̄); |h(n)|), |h(n)|

)
∂p

(n)
k

−
K∑
k=1

λ̄
(n)
k +

K∑
k=1

µ̄
(n)
k

)
∂pk

(
Θ∗(p̄); |h(n)|

)
∂Θk,(u,v)

=

N∑
n=1

∂L
(n)
WSR

(
p̄(n), λ̄, µ̄

)
∂p

(n)
k

∂pk
(
Θ∗(p̄); |h(n)|

)
∂Θk,(u,v)

= 0

where the second equality comes from the zero-loss property; the last equation comes from the stationary condition in (34).
Thus, we have found a feasible tuple (Θ∗(p̄), λ̄, µ̄) that satisfies the KKT condition in (32). Hence, Θ∗(p̄) is a stationary
solution of UL (4) and Θ∗(p̄) ⊆ B.

Finally, it is easy to show that there exists a solution in B that is not an optimal solution for (3). Consider the example we
construct in Claim 1, which has a global optimal solution at [0; 1; 1; 0], and a local solution p∗ = p (Θlocal , |h|) = [1; 0; 1; 0].
In this example, Θlocal is local minimum, which is also the stationary point. However, it does not produce the optimal label, so
funsup(Θ) does not achieve minimum at Θlocal. And it is easy to check that Θlocal does not optimize the supervised problem
(3) because the zero loss condition is not satisfied. So Θlocal ∈ B but not a sationary solution of (3).

C. Proof of Claim 3

Before we show the proof for Claim 3, let us re-state our objective function and introduce some notations. Recall that in
Section III we have defined fl = vec(Fl), l ∈ [L] and y = vec(p̄), which are the vectorized output of the l-th layer and the
vectorized label, respectively. Notice that

fsup(Θ) =

N∑
n=1

∥∥∥p(Θ;
∣∣∣h(n)

∣∣∣)− p̄(n)
∥∥∥2

= (FL(Θ)− y)T (FL(Θ)− y) (35)

Later we will use (35) as the expression of the unconstrained SL objective function.
In the UL training problem, recall that we still use the fully connected network with the structure define in (8). However,

in order to cast the training problem into an unconstrained problem, a sigmoid function should be added to the last layer of
the output to enforce feasibility. The modified network has the following output:

FL = sig(FL−1ΘL) =
1× Pmax

1 + e−FL−1ΘL
, (36)

where FL and ΘL is defined in Section III. The output FL is the allocated power. Now our objective function is converted to
the unconstrained version of (4):

fUL(Θ) :=

N∑
n=1

−R
(
p̃(Θ; |h(n)|), |h(n)|

)
(37)

where p̃ is the our output of the neural network of unconstrained UL problem, which is also the allocated power.
Next, let us further define some notations. Let ⊗ denote the Kronecker product. Recall that Θ = (Wl)l=1 denotes all the

parameters in (37), and Θm = (Wm
l )

L
l=1 L,Wl, l = 1, 2, · · · , L denote all the parameters in the m-th iteration and parameters

in the l-th layer in the m-th iteration respectively; given N samples, let us define

Σl := diag [vec (σ′ (Fl−1Wl))] ∈ RNnl×Nnl , Σml := Σl (Θ
m) ,
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where Σl represents the derivative of activation at each layer l; Σml means the derivative of activation of each layer at iteration
m. Further, define Fml := Fl (Θ

m) ∈ RN×nL as the output of the l-th layer at iteration m for all samples. Note that this
notation vectorizes the output of all the samples.Denote JFL as the Jacobian of the network, that is

JfL =

[
∂fL

∂ vec (W1)
, . . . ,

∂fL
∂ vec (WL)

]
, where

∂fL
∂ vec (Wl)

∈ R(NnL)×(nl−1nl) for l ∈ [L]. (38)

We first write down the assumptions and lemmas needed in the proof.
Assumption 1 (Pyramidal network topology, [18, Assumption 2.1]) Let n1 ≥ N and n2 ≥ n3 ≥ . . . ≥ nL.
Assumption 2 (Activation function, [18, Assumption 2.2]) Fix γ ∈ (0, 1) and β > 0. Let σ satisfy that: (i) σ′(x) ∈
[γ, 1], (ii)|σ(x)| ≤ |x| for every x ∈ R, and (iii)σ′ is β - Lipschitz.
Assumption 3 (Initial conditions, [18, Assumption 3.1]) Assume that the following holds:

λ2
F ≥

γ4

3

(
6
γ2

)L
‖h‖F

√
fsup

(
Θ0
)
λ̄3→L

λ2
3→L

max
(

2λ̄1λ̄2

minl∈{3,...,L} λlλ̄l
, λ̄1, λ̄2

)
,

λ3
F ≥

2γ4

3

(
6
γ2

)L
‖h‖2‖h‖F

√
fsup

(
Θ0
)
λ̄3→L

λ2
3→L

λ̄2.

where λ̄l, λl, l = 1, 2, · · · , L and λF are defined in (9). This assumption provides an initialization condition that the parameters
are not far away from the global optimum since fsup(Θ0) could not be very large. Furthermore, the assumption regularizes
the feature matrix h, which means that channel samples should not be highly linearly dependent, because otherwise λF will
be small.

Lemma 1. ( [18, Lemma 4.1] ) Let Assumption 1 hold. Then, for the unsupervised loss function fUL the following results
hold:

vec (∇Wl
fUL) =

(
Inl
⊗ FTl−1

) L∏
q=l+1

Σq−1 (Wq ⊗ IN ) ΣL
∂fUL

∂p̃
,

∂fL
∂ vec (Wl)

= ΣL

L−l−1∏
q=0

(
WT
L−q ⊗ IN

)
ΣL−q−1 (Inl

⊗ Fl−1) .

The above lemma provides expressions of the gradient of objective function fUL.

Lemma 2. ( [18, Lemma 4.2]) Let Assumption 2 hold. For every Θ = (Wq)
L
l=1 in fUL the following holds

‖Fl‖F ≤ ‖h‖F
l∏

q=1

‖Wq‖2 , ∀ l ∈ [L− 1], and ‖FL‖F ≤
√
NnL (39)

‖∇Wl
fUL‖F ≤ ‖h‖F

L∏
q=1
q 6=l

‖Wq‖2

∥∥∥∥fUL

∂p̃

∥∥∥∥
2

, ∀ l ∈ [L] (40)

Furthermore, let Θa := (W a
l )
L
l=1 ,Θ

b :=
(
W b
l

)L
l=1

, and λ̄l ≥ max
(
‖W a

l ‖2 ,
∥∥W b

l

∥∥
2

)
for some scalars λ̄l. Let R :=∏L

q=1 max
(
1, λ̄q

)
, β
′

be the Lipschitz constant of the gradient of sigmoid function, i.e, ∀x, z,‖sigmoid′(x)−sigmoid′(z)‖2 ≤
β
′‖x− z‖2. Then, for l ∈ [L],

∥∥F aL − F bL∥∥F ≤ 1

4

√
LNnL‖h‖F

∏L
l=1 λ̄l

minl∈[L] λ̄l

∥∥∥Θa −Θb
∥∥∥

2
(41)∥∥∥∥∥ ∂fL (Θa)

∂ vec (W a
l )
− ∂fL(Θb)

∂ vec
(
W b
l

)∥∥∥∥∥
2

≤
√
L‖h‖FR

(
1 + Lβ‖h‖FR+ β

′
‖h‖FR

)∥∥∥Θa −Θb
∥∥∥

2
. (42)

First, the above lemma provides an upper bound for the output of each layer and the gradient for weight in each layer.
Second, it shows how ‘smooth’ is the network and the gradient. This lemma is slightly different from [18, Lemma 4.2] since
we need to adapt to the last layer with additional sigmoid activation.

Lemma 3. Let f : Rn → R be a C2 function. For any x, y ∈ Rn be given, and assume that ‖∇f(y)−∇f(x)‖2 ≤ C‖y−x‖2.
Then,

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
C

2
‖x− y‖2. (43)

We are now ready to prove Claim 3.
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Claim 3 Consider an SISO-IC training problem with K users and N training samples. Let Pmax = 1, σ = 1. Construct a
fully connected neural network satisfying Assumption 1 - 2. Then the following holds:
(a) When the initialization condition satisfies Assumption 3, consider optimizing the unconstrained version of (3) using the
gradient descent algorithm

Θm+1 = Θm − η∇fsup (Θm) .

There exists a stepsize η > 0 such that the training loss converges to zero at a geometric rate, that is:

fsup (Θm) ≤ (1− ηα0)
m
fsup (Θ0), (44)

where α0 = 4
γ4

(
γ2

4

)L
λ2
Fλ

2
3→L.

(b) Consider minimizing the unconstrained version of (4), which is (37) using the last layer as (10) and use the gradient
descent algorithm:

Θm+1 = Θm − η∇fUL(Θm).

Suppose all the weights are bounded during training, then Θ will converge to a stationary point of the training objective.

Proof. Claim 3-(a) is a direct application of [18, Theorem 3.2], so we do not include the proof here.
For Claim 3-(b), we first state our sketch of the proof. The idea is similar to [18, Theorem 3.2]. However, the objective

function is not the squared loss but the sum-rate (37). This function has a more complex structure and is no longer strictly
convex over the output of the neural network p. Therefore it has more complicated optimization landscape. Moreover, the
linear convergence of the form (44) is not possible, since with the sum-rate as the objective, even the global min can be found,
the training objective will not shrink to zero. Finally, with the last layer using sigmoid function (10), vanishing gradient may
occur and showing fast decrease is more difficult. Overall, it is intuitive that this is a much harder problem than the first one.

Our proof step is as follows. First we will verify that the Lipschitz condition (43) holds at every iteration, and this will
consist the main part of the proof. Second, we will show that the objective decreases until converting to a stationary solution.
Step 1: At each iteration m, we will show that, there exists a constant C such that the following holds:

‖∇fUL

(
Θm+1

)
−∇fUL (Θm) ‖

2
≤ C · ‖Θm+1 −Θm‖2. (45)

Denote g(Θm) := vec
(
∂fUL(Θm)

∂p̃

)
. Rewrite (45) and by triangle inequality,∥∥∇fUL

(
Θm+1

)
−∇fUL (Θm)

∥∥
2

=
∥∥∥JfL (Θm+1

)T
g
(
Θm+1

)
− JfL (Θm)

T
g (Θm)

∥∥∥
2

≤ ||g
(
Θm+1

)
− g (Θm) ‖2

∥∥JfL (Θm+1
)∥∥

2
+
∥∥JfL (Θm+1

)
− JfL (Θm)

∥∥
2
‖g (Θm)‖2 .

(46)

In the rest of the proof, we aim to bound each term in (46).
(Step 1.1) First, show that the following holds ||JfL(Θm+1)||2 ≤ C1, for some constant C1 > 0.

∥∥JfL (Θm+1
)∥∥

2

(i)

≤
L∑
l=1

∥∥∥∥∥∂fL
(
Θm+1

)
∂ vec (Wl)

∥∥∥∥∥
2

(ii)
=

L∑
l=1

L−l−1∏
q=0

||ΣL
(
WT
L−q(Θ

m+1)⊗ IN
)

ΣL−q−1

(
Inl
⊗ Fl−1(Θm+1)

)
||

2

(iii)

≤
L∑
l=1

L∏
q=l+1

∥∥Wq

(
Θm+1

)∥∥
2

∥∥Fl−1

(
Θm+1

)∥∥
2

(iv)

≤
L∑
l=1

L∏
q=l+1

∥∥Wm+1
q

∥∥
2
‖Fm+1

l−1 ‖F

(v)

≤ ‖h‖F
L∑
l=1

L∏
q=l+1

∥∥Wm+1
q

∥∥
2

l∏
q=1

‖Wq‖2

= ‖h‖F
L∑
l=1

L∏
q=1
q 6=l

∥∥Wm+1
q

∥∥
2

where (i) is because of Cauchy-Schwards inequality; (ii) comes from Lemma 1; (iii) follows Assumption 2 that activation
function at each layer satisfies 0 < σ′ < 1 (including the last layer with sigmoid activation); (iv) is because Frobenius norm
is always no less than l2 norm; (v) comes from Lemma 2.

With the assumption in Claim 3 that all the weights are bounded during training, it is obvious that for any q ∈ [L], ‖Wm+1
q ‖2

is bounded. With this assumption, it is easy to see that the Jacobian JfL
(
Θm+1

)
is bounded given fixed N samples. Thus
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we can find C1 such that ||JfL(Θm
t )|| ≤ C1.

(Step 1.2) Next, show that
∥∥JfL (Θm+1

)
− JfL (Θm)

∥∥
2
≤ C2

∥∥Θm+1 −Θm
∥∥

2
. By Lemma 2, we have

∥∥JfL (Θm+1
)
− JfL (Θm)

∥∥
2
≤

L∑
l=1

∥∥∥∥∥∂fL
(
Θm+1

)
∂ vec (Wl)

− ∂fL (Θm)

∂ vec(Wl)

∥∥∥∥∥
2

≤
√
L‖h‖FR

(
1 + Lβ‖h‖FR+ β

′
‖h‖FR

)∥∥Θm+1 −Θm
∥∥

2

(47)

where R =
∏L
p=1 max

(
1, λ̄p

)
. The first in equality is because of Cauchy-Schwards inequality; the second inequality comes

from Lemma 2. Notice that when all the weights are bounded, R is bounded. So we can find C2 such that

‖JfL (Θm
t )− JfL (Θm)‖2 ≤ C2 ‖Θm

t −Θm‖2 (48)

(Step 1.3) Then we show ‖g (Θm) ‖ ≤ C3. Denote the sum rate of n-th sample as R(n)
Θ := R

(
p
(
Θ;
∣∣h(1)

∣∣) , ∣∣h(n)
∣∣). The

vectorized gradient g(Θm) can be written as

g(Θm) =

(
−
∂R

(1)
Θm

∂p̃
(1)
1

, · · · ,−
∂R

(N)
Θm

∂p
(N)
1

, · · · ,−
∂R

(1)
Θm

∂p̃
(1)
nNL

, · · · ,−
∂R

(N)
Θm

∂p̃
(N)
nNL

)

Note that for i = 1, 2, · · · , nNL, n = 1, 2, · · · , N , it is easy to show ∂R
(n)
Θm

∂p̃
(n)
i

is bounded (by using simple calculation and the
assumption that all weights are bounded), so there exists constant C3 such that

‖g (Θm)‖2 ≤ C3

(Step 1.4) Finally, show
∥∥g(Θm+1)− g(Θm)

∥∥
2
≤ C3‖Θm+1 −Θm‖. Denote g′(Θ) = vec(∂g(Θ)

∂p̃ ), which can be written as

g′(Θ) =

(
−
∂2R

(1)
Θ

(∂p̃
(1)
1 )2

, · · · ,−
∂2R

(N)
Θ

(∂p̃
(N)
1 )2

, · · · ,−
∂2R

(1)
Θ

(∂p̃
(1)
nNL

)2
, · · · ,−

∂2R
(N)
Θ

(∂p̃
(N)
nNL

)2

)
(49)

Notice that g′(Θ) denotes the continuous derivative of g(Θ) over p̃. For every feasible Θ, it is easy to show that for

i = 1, 2, · · · , nNL, n = 1, 2, · · · , N , ∂2R
(n)
Θ

(∂p̃
(n)
i )2

is bounded. Then we aim to argue that there exists C
′

4 such that ‖g
(
Θm+1

)
−

g (Θm) ‖2 ≤ C
′

4‖p̃(Θm+1); |h| − p̃(Θm; |h|)‖2 . By Mean Value Theorem, we can show that there exists p̃(Θ̂; |h|) between
p̃(Θm+1; |h|) and p̃(Θm; |h|), such that∥∥g (Θm+1

)
− g (Θm)

∥∥
2

=
∥∥∥〈g′(Θ̂), vec

(
p̃(Θm+1; |h|)

)
− vec (p̃(Θm; |h|))

〉∥∥∥
2

(50)

≤
∥∥∥g′(Θ̂)

∥∥∥
2

∥∥vec
(
p̃(Θm+1; |h|)

)
− vec (p̃(Θm; |h|))

∥∥
2

(51)

≤ C
′

4

∥∥vec
(
p̃(Θm+1; |h|)

)
− vec (p̃(Θm; |h|))

∥∥
2
, (52)

where the first inequality comes from Cauchy-Schwards inequality; the second inequality is because each component of
‖g′(Θ̂)‖2 is bounded. By Lemma 2, we know that the following holds:∥∥vec

(
p̃(Θm+1; |h|)

)
− vec (p̃(Θm; |h|))

∥∥
2
≤
∥∥p̃ (Θm+1; |h|

)
− p̃ (Θm; |h|)

∥∥
F

≤ 1

4

√
LNK‖h‖F

∏L
l=1 λ̄l

minl∈[L] λ̄l

∥∥Θm+1 −Θm
∥∥

2
.

From the assumption in Claim 3 that all the weights are bounded, for l ∈ [L], λ̄l is bounded. So there exists constant C
′

4 and
C4 such that

‖g (Θm
t )− g (Θm)‖2 ≤

C
′

4

√
LNK

4
‖h‖F

∏L
l=1 λ̄l

minl∈[L] λ̄l
‖Θm

t −Θm‖2 = C4 ‖Θm
t −Θm‖2 . (53)

Now we have shown that

‖∇fUL (Θm
t )−∇fUL (Θm)‖2 ≤ C1C4 ‖Θm

t −Θm‖2 + C2C3 ‖Θm
t −Θm‖2 = (C1C4 + C2C3) ‖Θm

t −Θm‖2

Step 2: The above already shows the Lipschitz gradient of fUL under certain assumptions. Now it applies the condition in
Lemma 3. By Lemma 3, let η < 1

C1C4+C2C3
. There is
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fUL

(
Θm+1

)
≤ fUL (Θm) + 〈∇fUL (Θm) ,Θm+1 −Θm〉+

1

2
(C1C4 + C2C3)

∥∥Θm+1 −Θm
∥∥2

2

≤ fUL (Θm)− 1

2
η ‖∇fUL (Θm)‖22 .

Sum up from m = 1, 2, · · · ,M and divide it by M so we can get

fUL

(
ΘM

)
− fUL

(
Θ0
)
≤ − η

2M

M∑
m=1

‖∇fUL (Θm)‖22 .

Thus, for UL loss (4), Θ will converge to a stationary point.

D. Proof of Claim 4

Lemma 4. Let Assumption 1 hold. Then, for unconstrained version of SL problem (3), the gradient of loss fsup over parameters
in layer 2 satisfies:

vec (∇W2fsup) =
(
In2 ⊗ FT1

) L∏
q=3

Σq−1 (Wq ⊗ IN )
∂fsup

∂vec(p)
(54)

:= A(Θ) · ∂fsup

∂ vec(p)
(55)

where we have defined the matrix A(Θ) := vec(∇W2
fsup) =

(
In2
⊗ FT1

)∏L
q=3 Σq−1 (Wq ⊗ IN ), which is a function of the

network weights Θ. Denote each column of A as ai, i ∈ [NnL]. Given a dataset (h,p), suppose features of the first two
samples are the same, i.e h(1) = h(2), then we have a(k−1)N+1 = a(k−1)N+2, k ∈ [nL].

Claim 4. Suppose (h,p) and (h
′
,p
′
) are two sets of data, and they are constructed below:

• Each dataset consists of N samples;
• The features of two data samples are identical: h

′
= h;

• In the first dataset, for any n ∈ [N ], the labels p(n) is the unique globally optimal power allocation for problem (1),
given channel realization h(n); Further, two samples in h are identical, say, h(1) = h(2), and all the other samples are
linearly independent.

• For the second dataset, the labels are constructed as follows:

p
′,(2) 6= p(2), p

′,(n) = p(n),∀ n, 6= 2. (56)

Further, since h(1) = h(2) and h = h′, we also have h
′,(1) = h

′,(2).
Suppose that Assumption 1 and Assumption 2 hold true, and use the same training algorithm as Claim 3-(a) to optimize
the unconstrained version of (3) using (h,p) and (h

′
,p
′
) respectively. Let Θm and Θ

′m denote the sequences of weights
generated by the algorithm for the two data sets respectively. Suppose that the initial solutions of the two algorithms are the
same: Θ

′,0 = Θ0. Define

A(Θ) :=
(
In2
⊗ FT1

) L∏
q=3

Σq−1 (Wq ⊗ IN ) , A0 := A(Θ0). (57)

Suppose all the eigenvalues of AT0 A0 are within the interval [0, 1] . Then if we choose the stepsize η small enough, there exist
β > 0 and β

′
> 0 such that the following holds true

fsup

(
Θ1
)
≤ βfsup

(
Θ0
)
, fsup

(
Θ
′,1
)
≤ β

′
fsup

(
Θ
′,0
)
.

Further, we have β < β
′
, that is, the objective function with the correct label decreases faster.

Proof. The idea of the proof is following: 1) We first argue that fsup(Θ) satisfies the Lipschitz condition in Lemma 3; 2) use
Lemma 3 and the spectral decomposition to derive an upper bound of fsup(Θ1); 3) analyze the difference in the upper bound
and training speed using two different training samples.
Step 1: First, we claim that fsup(Θ) satisfies the condition in Lemma 3, which means fsup has Lipschitz gradient. The proof
is almost the same as Step 1 in the proof of Claim 3, so we do not include the proof here. It can be concluded that, there
exists constant Q0, such that

‖∇fsup(Θ1)−∇fsup(Θ0)‖2 ≤ Q0 · ‖Θ1 −Θ0‖2. (58)
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Step 2: With the condition for Lemma 3 being satisfied, then we can apply Lemma 3 and derive the upper bound of fsup(Θ1).
Recall that fml = vec(Fml ) and y = vec(p). There exists stepsize η < 1

Q0
such that

fsup

(
Θ1
) (i)

≤ fsup

(
Θ0
)

+
〈
∇fsup

(
Θ0
)
,Θ1 −Θ0

〉
+
Q0

2

∥∥Θ1 −Θ0
∥∥2

2

= fsup

(
Θ0
)
− η

∥∥∇fsup

(
Θ0
)∥∥2

2
+
Q0

2
η2
∥∥∇fsup

(
Θ0
)∥∥2

2

(ii)

≤ fsup

(
Θ0
)
− 1

2
η
∥∥∇fsup

(
Θ0
)∥∥2

2

(iii)

≤ fsup

(
Θ0
)
− 1

2
η
∥∥vec

(
∇W2

fsup

(
Θ0
))∥∥2

2

(iv)
= fsup

(
Θ0
)
− 1

2
η
(
f0
L − y

)>
A>0 A0

(
f0
L − y

)
(v)
=
(
f0
L − y

)>(
I − 1

2
ηA>0 A0

)(
f0
L − y

)
(vi)
: =

(
f0
L − y

)>
ST0 S0

(
f0
L − y

)

(59)

where in (vi) we have defined:

S0 :=

(
I − 1

2
ηA>0 A0

) 1
2

(i) applies Lemma 3; (ii) is because stepsize η < 1
Q0

; (iii) comes from the property of l2 norm; (iv) uses the definition of
A0 in (57); (v) comes from the expression of fsup using vectorized variables.

Now we utilize the spectral decomposition method to decompose the upper bound. The idea is to express the vector f0
L as

a linear combination of the eigenvectors of S0. The eigendecomposition of AT0 A0 is given by

AT0 A0 = PΛPT (60)

where Λ = diag(λ1, λ2, · · · , λNnL) and λi, i ∈ [NnL] are the eigenvalues, and P = [v1, · · · , vNnL
] is the eigenvector matrix.

Then it is easy to see that the following holds:

S0 =

(
I − 1

2
ηA>0 A0

) 1
2

=

(
PPT − 1

2
ηPΛPT

) 1
2

=

NnL∑
i=1

(1− 1

2
ηλi)

1
2 viv

T
i . (61)

Now we can express the vector f0
L − y as a linear combination of the vi, i ∈ [NnL]. We have

f0
L − y =

NnL∑
i=1

(
vTi
(
f0
L − y

))
vi.

So now we can rewrite the upper bound derived in (59) as following:

fsup
(
Θ1
)
≤
(
f0
L − y

)>(
I − 1

2
ηA>0 A0

)(
f0
L − y

)
=

1

2

[
S0(f0

L − y)
]T [

S0(f0
L − y)

]
=

1

2

[
NnL∑
i=1

(1− 1

2
ηλi)

1
2

viv
T
i

NnL∑
i=1

(
v>i
(
f0
L − y

))
vi

]T [NnL∑
i=1

(1− 1

2
ηλi)

1
2

viv
>
i

NnL∑
i=1

(
v>i
(
f0
L − y

))
vi

]

=
1

2

[
NnL∑
i=1

(1− 1

2
ηλi)

1
2 (
v>i
(
f0
L − y

))
vi

]T [NnL∑
i=1

(1− 1

2
ηλi)

1
2 (
v>i
(
f0
L − y

))
vi

]

=
1

2

NnL∑
i=1

(
v>i
(
f0
L − y

))2
(1− 1

2
ηλi).

(62)

Step 3: With the decomposed upper bound of fsup(Θ), we will next find its special structures under our constructed data.
Recall that we have h = h

′
and within each dataset h(1) = h(2),h

′,(1) = h
′,(2). Recall that {ai}i∈[nL] represents all the

columns in A0. From Lemma 4, we know that if two input data points are identical, then we have a(k−1)N+1 = a(k−1)N+2, k ∈
[nL]. Thus, we have rank(A0) ≤ (N−1)nL. Since other samples are linear independent and parameters are generated randomly,
it follows that rank(A0) = NnL − nL. Notice that rank(AT0 A0) = rank(A0), so there are nL eigenvalues equal to 0. Without
loss of generality, we assume λi = 0, i ∈ [nL]. And for i = nL + 1, nL + 2, · · · , NnL, we have λi > 0. Now let us find the
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eigenvectors corresponding to these zero eigenvalues. Denote ei ∈ RNnL as unit vector such that the i-th component is 1, and
the others are 0 Assume vi =

√
2

2 e(i−1)N+1 −
√

2
2 e(i−1)N+2 for i ∈ [nL], so vi is the eigenvector corresponds to λi.

Next, we use the above construction to show that with dataset (h,p), the convergence at first iteration can be faster than
using dataset (h

′
,p
′
). Notice in the two datasets, the labels for the second sample are not the same, p

′,(2) 6= p(2). That is, there
exists at least one index i such that y(i−1)N+1 = y(i−1)N+2 but y

′

(i−1)N+1 = y
′

(i−1)N+2, where y = vec(p) and y′ = vec(p′).
This is because we concatenate each column of p and p

′
to get y and y

′
. Without loss of generality, assuming that i = 1

only. Since we have two identical samples h(1) = h(2), the outputs of these two samples are identical. In f0
L, we must have

f0
L,(i−1)N+1 = f0

L,(i−1)N+2 for i ∈ [nL]. Recall that we have vi =
√

2
2 e(i−1)N+1 −

√
2

2 e(i−1)N+2. Then for the first dataset,
the following holds:

(
v>i
(
f0
L − y

))2
=

(√
2

2
(f0
L,(i−1)N+1 − y1)−

√
2

2
(f0
L,(i−1)N+2 − y2)

)2

= 0, i ∈ [nL]. (63)

However, for the second dataset, we have:

ε :=
(
v>1
(
f0
L − y′

))2
=

(√
2

2
(f0
L,1 − y

′

1)−
√

2

2
(f0
L,2 − y

′

2)

)2

> 0,

(
v>i
(
f0
L − y′

))2
=

(√
2

2
(f0
L,(i−1)N+1 − y

′

1)−
√

2

2
(f0
L,(i−1)N+2 − y

′

2)

)2

= 0, i = 2, 3, · · · , NnL.

(64)

Now let us denote the SL loss using labels p as fsup(Θ; y) and using labels p
′

as fsup(Θ; y′). At initialization, let us define
ε1 := fsup

(
Θ0; y

)
, ε2 := fsup

(
Θ0; y

′
)

, then after the first iteration, we have the following series of relations:

fsup

(
Θ1; y

) (i)

≤
NnL∑
i=1

(
v>i
(
f0
L − y

))2
(1− 1

2
ηλi)

(ii)
=

NnL∑
i=nL+1

(
v>i
(
f0
L − y

))2
(1− 1

2
ηλi)

(iii)

≤ (1− 1

2
η min
i≥NnL+1

λi) · ε1
(iv)
: = βfsup(Θ0; y)

(65)

where (i) is from (62); (ii) is because of (63); (iii) uses the property of orthogonal matrix; in (iv) we have defined β :=
1− 1

2ηmini≥NnL
λi < 1.

Similarly, the following series of relations hold for the second dataset:

fsup

(
Θ
′,1; y′

) (i)

≤
NnL∑
i=1

(
v>i
(
f0
L − y′

))2
(1− 1

2
ηλi)

(ii)
= ε+

NnL∑
i=NnL+1

(
v>i
(
f0
L − y′

))2
(1− 1

2
ηλi)

(iii)

≤ ε+ (1− 1

2
η min
i≥NnL+1

λi)(ε2 − ε)

(iv)
= (1− 1

2
η min
i≥NnL+1

λi)

(
1− ε

ε2
+

ε

ε2(1− 1
2ηmini≥NnL+1 λi)

)
ε2

(v)
: = β

′
fsup(Θ0)

(66)

where (i) is from (62); (ii) uses (64); (iii) uses the property of orthogonal matrix; (iv) is a simple algebraic transformation; in
(v) we have defined β

′
:= (1−mini≥NnL+1 λi)

(
1− ε

ε2
+ ε

ε2(1− 1
2ηmini≥NnL+1 λi)

)
. Since 1− ε

ε2
+ ε
ε2(1− 1

2ηmini≥NnL+1 λi)
> 1,

there is β < β
′
. The claim is proved.


