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Min-max problems and motivation

Mini-max problems

This talk mainly focuses on the following optimization problem

min
x∈X

max
y∈Y

f(x; y)

f is some (possibly complicated) function over x, y

x is the usual opt variable, power, precoder design, etc;

minx f(x, ·) is the usual cost minimization, i.e.,

cost = −throughput, or delay, etc.

y is used to model provisioning of fairness, robustness, resilience, etc.
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Min-max problems and motivation

Mini-Max Problems

Figure: Left convex/concave min-max problem; Right: Non-convex/Concave
min-max problem
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Min-max problems and motivation

Motivation from SP/Comm. perspective

Question: Why Mini-Max problems?

The “min” optimizes system level performance; while the “max”
provides support such as fairness, robustness, resilience

“min-max” together helps understand the scenario where some
“adversary” (jammer) exists

Lots of recent interests in this problem, applications in wireless
transceiver design, adversarial (GAN)/robust learning, etc.
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Min-max problems and motivation

Example 1: Max-min Fair Beamformer Design

Setting: MIMO interference channel with K users

Goal: Design beamformers to maximize the min-rate utility under
power and outage constraints

h11 h22 h33

h13

T1 T2 T3

R1 R2 R3

x1 x2 x3

Figure: A set of transmitter-receiver pairs over an interference channel.
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Min-max problems and motivation

Example 1: Max-min Fair Beamformer Design

The problem is given by (xi is user i’s transmitter/receiver)

max
x

min
i∈[K]

Ri(x1, · · · ,xK)

Ri(x) can be highly non-convex: Xi: the transmit covariance matrix

Ri(X) = log det

HiiXiH
H
ii

INr
+
∑
l 6=i

HliXlH
H
li

−1 + INr



Connection to mini-max problem we just need to:
Flip the sign: minx maxi∈[K](−Ri(x))
Add a variable y lives in a simplex, and equivalent formulation

min
x

max
y

−
N∑
i=1

Ri(x)yi := −yTR(x)

s.t.
∑
i

yi = 1, yi ≥ 0, ∀ i
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Min-max problems and motivation

Example 1: Max-min Fair Beamformer Design

Problems with known global optimality
Max-Min SNR optimization [Zander, 1992] [Foschini and Gans, 1998]

MISO BF [Wiesel et al., 2005][Bengtsson and Ottersten, 1999]

Joint downlink BS association and power control [Sun-Hong-Luo 14]

Many more

More recent works involving non-convexity (so, no global min)
MISO coordinated beamforming with outrage constraints
[Li et al., 2015]

MIMO coordinate transceiver design [Liu et al., 2011] (single stream)
[Razaviyayn et al., 2011] (multi-stream)

MIMO constant envelop transceiver design [Shao et al 19]

Many more...
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Min-max problems and motivation

Example 1: Max-min Fair Beamformer Design

For problems that are global solvable, the standard approach: solve (a
sequence of) convex problems like SDP/SOCP

For non-convex problems, two popular ways in literature
1 Approximate the mini-max objective

2 Translate to an “envelop form”
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Min-max problems and motivation

Popular Approximation for Non-Convex Min-Max

One way to simplify is to use the log-sum approximation

max
i
−Ri ≈

1

γ
log2

(
K∑
i=1

2−γRi

)

A smooth approximation, large γ, good approximation

Performance degradation
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Min-max problems and motivation

Popular Approximation for Non-Convex Min-Max

The other way is to introduce an equivalent “envelop form”
[Razaviyayn et al., 2011]

min
λ,x

λ, s.t. −Ri(x) ≤ λ, ∀ i, x ∈ X (1)

Reduces to a minimization form

But still challenging, involving multiple non-convex constraints
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Min-max problems and motivation

Example 2: Communication in the Presence of Adversary

How to understand system performance/dynamics of communication
systems with adversary?

Regular user: minimize the cost; Jammer: maximize the cost

An example [Gohary et al., 2009]: Interfering channel, N parallel
tones, K users, optimization variables xnk ’s (power allocation of users
over the tones), 1 jammer, optimizes yn

min
x∈X

max
y∈Y

∑
(k,n)

− log

(
1 +

hnkkx
n
k

σ2 +
∑K

j=1,j 6=k h
n
jkx

n
j + hn0ky

n

)
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Min-max problems and motivation

Example 3: Robust Learning (over multiple domains)

Empirical (non-convex) risk minimization (for training ML models)

min
x

1

N

N∑
i=1

fi(x)

Treating all data equally/similarly

In practice, the same model x is used for multiple domains

A model for digits recognition can be used in
1 identify the handwritten digits

2 recognize the printed digits (e.g., house number)

A “robust” model has to deal with both of domains [Qian et al., 2018]
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Min-max problems and motivation

Example 3: Robust Learning (over multiple domains)

Let the data draw from qth domain has lost function {f qi (x)}Ni=1

When there are Q sets of data drawn from different domain (to
describe the same phenomenon) [Qian et al., 2018]

min
x

max
y

Q∑
q=1

(
N∑
i=1

f qi (x)

)
yq,

Q∑
q=1

yq = 1, yi ≥ 0

Here y can be interpreted as an adversarial distribution

Identifying the “importance” of different data sets
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Min-max problems and motivation

Example 4: Distributed Learning

Again the training problem, but with K distributed agents

min
x

1

K

K∑
i=1

fi(xi), s.t. xi = xj , if (i, j) neighbors

Stacking all variables x := [xi, · · · ,xK ], re-write the above problem

min
x

f(x), s.t. Ax = 0

where A is the network incidence matrix (neighboring relations)

Introducing the dual variable y, we have

min
x

max
y

f(x) + yTAx
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Min-max problems and motivation

Challenges

Compared with the min-only problem, mini-max problem is challenging:

1 Competing objectives, how to measure the progress of algorithm?

2 How to characterize the solution quality (when involving
non-convexity)?

3 In communication/signal processing applications, we also want
computationally efficient algorithms

4 Can we extend the existing algorithms for minimization (like gradient
descent) problem to this setting?
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Min-max problems and motivation

Challenges

1 To illustrate some of the challenges, consider the simple setting

min
x

max
y

yTR(x), s.t. x ∈ X, y ∈ ∆

2 Suppose that a good algorithm for the min-problem available (e.g.,
WMMSE [Shi et al., 2011], FP [Shen-Yu 18], Pricing [Shi et al 08])

min
x

yTR(x), s.t. x ∈ X

3 A natural approach: Alternatingly perform

xr+1 = Algorithm-Step(xr,yr), yr+1 = max
y∈∆

yTR(xr+1)
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Min-max problems and motivation

Challenges

Unfortunately, does not work

The max step only selects a single user, sets everyone else to zeros

How about making y step less greedy (perform one gradient ascent)?

xr+1 = Algorithm-Step(xr,yr), yr+1 =
[
yr + γR(xr+1)

]+

Still does not work; even for bi-linear obj [Daskalakis et al., 2017]
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Alter. Grad Descent-Ascent

Figure: Gradient Descent/Ascent dynamics exhibit oscillations (for any stepsize)
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Min-max problems and motivation

Challenges

The classical literature in optimization has been concentrated in the case
where f is convex/concave

Extragradient method for finding saddle points in control
[P. Vasilyev et al., 2010]

Subgradient method for saddle-point problems
[Nedić and Ozdaglar, 2009]

Prox-method for smooth convex/concave problems [Nemirovski, 2005]

Optimistic Gradient Descent Ascent [Daskalakis et al., 2017]

f bilinear, i.e f(x, y) = xTAy,
Gradient descent/ascent-type alg.
xr+1 = xr − 2α∇xf(xr, yr) + α∇xf(xr−1, yr−1)
yr+1 = xr + 2α∇yf(xr, yr)− α∇yf(xr−1, yr−1)

A few recent related works on non-convex/concave setting
[Nouiehed et al., 2019], [Rafique et al., 2018], [Sanjabi et al., 2018a],
[Sanjabi et al., 2018b]
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Min-max problems and motivation
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The proposed solutions

Our approaches: Main Idea

Intuitively, the “min” and “max” problems are not created equal

Min outside, Max inside, we should allow the Max be solve relatively
well before performing Min

The alternating GD fails because the two sides are “equally powerful”

The “exact-max” fails because one side that is “too powerful”
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The proposed solutions

Our approaches: Main Idea

A good algorithm should carefully balance between the two problems

The min problem has to be slower than the max problem

The max problem cannot be too aggressive

Gradually adding regularizers to the min and max problems to control
the speed of the two steps?
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The proposed solutions

Our approaches: Main Idea

Solution concept? First-Order optimality

∇xf(x∗,y∗) = 0, ∇yf(x∗,y∗) = 0

or similar concepts to deal with constraints/non-smooth regularizers

Call ε-stationary solution if

‖∇xf(x∗,y∗)‖ ≤ ε, ‖∇yf(x∗,y∗)‖ ≤ ε

Second-Order optimality: x∗ a“local min” and y∗ a “local max”
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The proposed solutions

Min-max optimization problems

We consider a slightly more general min-max problem that involves

1 multiple blocks for the min problem

2 better modeling scenarios e.g., precoder design for K users; each
problem has simpler structure

min
{xi∈Xi}

max
y∈Y

f(x1, x2, · · · , xK ; y)

assume that f smooth; non-convex w.r.t. x - concave w.r.t. y
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The proposed solutions

Hybrid Block Successive Approximation Alg. (HiBSA)

A Hybrid block successive approximation algorithm

Each time pick one block variable to perform descent/ascent

Balance two regularization terms with coefficients βr and γr

A simplified version to illustrate ideas

1 Perform K proximal gradient steps (Descent steps)

arg min
xi∈Xi

〈∇xif(xri , w
r+1
i , yr), xi − xri 〉+

1

βr
‖xi − xri ‖2

or equivalently

xr+1
i = projXi

[
xri − βr∇xif(xri , w

r+1
i , yr)

]
2 Perform regularized ascent step (Ascent step)
yr+1 = arg max

y∈Y
f(xr+1, y)− γr‖y‖2 − 1

2ρ‖y − y
r‖2
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The proposed solutions

Hybrid Block Successive Approximation Alg. (HiBSA)

Parameter choices βr and γr are both diminishing sequences

Intuition, the min steps slows down, allowing max problem to
performs more steps per min update

The max problem has some large regularization at the beginning,
avoiding being too greedy at the beginning
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The proposed solutions

Hybrid Block Successive Approximation Alg. (HiBSA)

Now if we apply to the previous problem min maxxTy
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Figure: Gradient Descent/Ascent dynamics exhibit oscillations (for any stepsize)
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The proposed solutions

HiBSA - Extensions

Can perform multiple ascent type steps in the maximization problem

Do not need to perform gradient steps, but can solve some
approximated minimization/maximization problems

These extensions allows for flexible algorithm design, can plug and
play existing minimization algorithms for the min-step

For example, for min fair rate optimization algorithms, allow
interlacing between WMMSE [Shi et al., 2011], or FP [Shen-Yu-18]
steps, with ascent steps
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The proposed solutions
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Theoretical guarantees

Convergence Guarantees of HiBSA

Assumptions

(1) For {γr} a diminishing sequence:

γr → 0,

∞∑
r=1

(γr)2 =∞

(2) For {βr} also a diminishing sequence, but diminishes faster then γ:

βr = O
(
(γr)2

)
A typical choice: γr = 1

r1/4
, βr = 1/

√
r
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Theoretical guarantees

Convergence Guarantees of HiBSA

Theorem (Convergence of HiBSA - Concave case)

For a given ε > 0 let T (ε) be the minimum number of iterations needed to
reach an ε-stationary solution. Then we have

ε = O

(
log(T (ε))√

T (ε)

)
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Numerical Results

Section 4

Numerical Results
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Numerical Results

Max-min fairness coordinated beamforming design

Setting : MISO interference channel [Li et al., 2015]

Goal : Design beamformers in order to maximize the min-rate utility
under power and outage constraints

h11 h22 h33

h13

T1 T2 T3

R1 R2 R3

x1 x2 x3

Figure: A set of transmitter-receiver pairs over an interference channel.
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Numerical Results

Max-min fairness coordinated beamforming design

Formulation :

max
xi∈CNt ,∀i

min
i
Ri({xk}) s.t. ‖xi‖2 ≤ p̄i, ∀i + outage prob. constr.

xi ∈ CNt beamforming vectors, Nt no of transmitter antennas
p̄i power constraints

Solution [Li et al., 2015] :

Adopt a suitable surrogate function for the utility function
Substitute the inner min problem with the log-sum-exp approximation,

i.e min
i
Ri ≈ − 1

γ log2

(
K∑
i=1

2−γRi

)
Solve the resulting problem exactly using CVX.
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Numerical Results

Max-min fairness coordinated beamforming design

1 Approximate problem; solve exactly with CVX [Li et al., 2015]
2 HiBSA [Proposed method]
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Figure: Min-rate utility and runtime w.r.t noise level

Proposed method achieves higher min-rate utility and is significantly faster.
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Numerical Results

Max-min fairness linear transceiver design

Setting : MIMO interfering broadcast channel in a multicell cellular
network [Razaviyayn et al., 2011]

Goal : Design beamformers in order to maximize the min-rate utility
under power constraints

Figure: The interfering broadcast channel model
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Numerical Results

Max-min fairness linear transceiver design

Formulation (envelop formulation) :

min
U,V,W,λ

λ

s.t. Tr[WikEik ]− log det(Wik)− dik ≤ −λ, ∀ik ∈ K∑
i∈Ik

Tr[VikV
H
ik

] ≤ Pk, ∀k ∈ K

ik : ith user in cell k; K : set of all cells; Ik : set of users in cell k
Eik : MSE for user ik; dik : no of data streams to ik; Pk : power
const.
V,U : transmit/receive beamformers; W,λ : auxillary variables
Rate of user ik = maxUik

,Wik
log det(Wik)− Tr[WikEik ] + dik

Solution [Razaviyayn et al., 2011] :

Solve the U,W subproblems exactly utilizing closed-form solutions
Solve the V subproblem exactly using CVX.

Note that previously we resorted to an approximation, whereas here we
exploit the problem’s structure.Mingyi Hong (University of Minnesota) Minimization-Maximization Problems: Applications (in Communication), Challenges and AlgorithmsMay 31, 2019 33 / 39



Numerical Results

Max-min fairness linear transceiver design - Results

1 Envelop based solution [Razaviyayn et al., 2011]

2 HiBSA [Proposed method]
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Figure: Min-rate and runtime w.r.t number of cells/base stations

Proposed method achieves comparable utility and is clearly faster.
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Numerical Results

Power Control in the Presence of Jammer

Setting : Parallel interference channel model [Gohary et al., 2009]

Goal :

Users : Maximize their individual rates
Jammer : Reduce the total sum-rate of the other users

Methods :

Interference pricing method (setting w/o jammer)
WMMSE algorithm (setting w/o jammer)
Regularized gradient descent/ascent (with jammer) [Proposed method]

Mingyi Hong (University of Minnesota) Minimization-Maximization Problems: Applications (in Communication), Challenges and AlgorithmsMay 31, 2019 35 / 39



Numerical Results

Power Control in the Presence of Jammer-Results
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Figure: Sum-rate w.r.t number of channels (left) and number of iterations (right).
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Numerical Results

Conclusion

Mini-Max is an interesting optimization problem arises in many
contemporary applications

SP/Comm problems, learning problems, GAN

More challenging to analyze than the min-only problems

Preliminary step towards understanding efficient algorithms; other
related recent works [Nouiehed et al., 2019], [Rafique et al., 2018],
[Sanjabi et al., 2018a], [Sanjabi et al., 2018b]

Many open problems – both sides non-convex? how to characterize
solution quality, etc.

Our paper can be found online arXiv preprint arXiv:1902.08294
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Numerical Results

Thank You!
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