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Abstract In this paper, we propose a perturbed proximal primal-dual algorithm (PProx-PDA)
for an important class of linearly constrained optimization problems, whose objective is the sum of
smooth (possibly nonconvex) and convex (possibly nonsmooth) functions. This family of problems
can be used to model many statistical and engineering applications, such as high-dimensional
subspace estimation and the distributed machine learning. The proposed method is of the Uzawa
type, in which a primal gradient descent step is performed followed by an (approximate) dual
gradient ascent step. One distinctive feature of the proposed algorithm is that the primal and
dual steps are both perturbed appropriately using past iterates so that a number of asymptotic
convergence and rate of convergence results (to first-order stationary solutions) can be obtained.
Finally, we conduct extensive numerical experiments to validate the effectiveness of the proposed
algorithm.
AMS(MOS) Subject Classifications: 49, 90.

1 Introduction

1.1 The Problem and the Proposed Algorithm

Consider the following optimization problem

min
x∈X

f(x) + h(x), s.t. Ax = b, (1)

where f(x) : RN → R is a continuous smooth function (possibly nonconvex); A ∈ RM×N is a rank
deficient matrix; b ∈ RM is a given vector; X ⊂ RN is a convex compact set; h(x) : RN → R is
a lower semi-continuous nonsmooth convex function. Problem (1) is an interesting class that can
be specialized to a number of statistical and engineering applications. We provide a few of these
applications in Sec. 1.2.

To develop an efficient algorithm for problem (1), let us first construct its augmented La-
grangian as below

Lρ(x, λ) = f(x) + h(x) + 〈λ,Ax− b〉+
ρ

2
‖Ax− b‖2, (2)

where λ ∈ RM is the dual variable associated with the equality constraint Ax = b, and ρ > 0 is
the penalty parameter for the augmented term ‖Ax− b‖2.
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Define B ∈ RM×N as a scaling matrix, and introduce two new parameters γ ∈ (0, 1) and
β > 0, where γ is a small positive parameter related to the size of the tolerable equality constraint
violation; β is the proximal parameter that regularizes the primal update. Let us choose γ > 0
and ρ > 0 such that ργ < 1. The steps of the proposed perturbed proximal primal-dual algorithm
(PProx-PDA) are given below (Algorithm 1).

Algorithm 1: The perturbed proximal primal-dual algorithm (PProx-PDA)

Initialize: λ0 and x0

Repeat: update variables by

xr+1 = arg min
x∈X

{
〈∇f(xr), x− xr〉+ h(x) + 〈(1− ργ)λr, Ax− b〉

+
ρ

2
‖Ax− b‖2 +

β

2
‖x− xr‖2BTB

}
(3a)

λr+1 = (1− ργ)λr + ρ
(
Axr+1 − b

)
= λr + ρ

(
Axr+1 − b− γλr

)
. (3b)

Until Convergence.

In contrast to the classical Augmented Lagrangian (AL) method [35, 60], in which the primal
variable is updated by minimizing the augmented Lagrangian given in (2), in PProx-PDA the
primal step minimizes an approximated augmented Lagrangian, where the approximation comes
from: 1) replacing function f(x) with the surrogate function 〈∇f(xr), x− xr〉; 2) perturbing dual
variable λ by a positive factor 1 − ργ > 0; 3) adding proximal term β

2 ‖x − x
r‖2BTB . We make a

few remarks about these algorithmic choices.
First, the use of the linear surrogate function 〈∇f(xr), x − xr〉 ensures that only first-order

information is used for the primal update. Also it is worth mentioning that one can replace the
function 〈∇f(xr), x − xr〉 with a wider class of “surrogate” functions satisfying certain gradient
consistency conditions [61, 65], and our subsequent analysis will still hold true. However, in order
to stay focused, we choose not to present those variations.

Second, the primal and dual perturbations are added to facilitate convergence analysis. In
particular, the analysis for the PProx-PDA algorithm differs from the recent analysis on nonconvex
primal/dual type algorithms, which is first presented in Ames and Hong [2] and later generalized
by [29,31,33,38,46,54,70]. Those analyses have been critically dependent on bounding the size of the
successive dual variables with that of the successive primal variables. Unfortunately, this can only
be done when the primal step immediately preceding the dual step is smooth and unconstrained.
Therefore the analysis presented in these works cannot be applied to our general formulation with
nonsmooth terms and constraints.

Our perturbation scheme is strongly motivated by the dual perturbation scheme developed for
the convex problems, for example in [44]. Conceptually, the perturbed dual step can be viewed as
performing a dual ascent step on certain regularized Lagrangian in the dual space; see [44, Sec.
3.1]. As pointed out in this reference, and in many related works, the main benefit for introducing
the dual perturbation/regularization, is to ensure that the dual update is well-behaved and easy
to analyze. One of the main contributions of this work is to develop a similar but slightly more
refined perturbation technique, so that first-order primal-dual methods can be applied to a much
wider class of problems, as compared to those that can be handled in existing works reviewed
above [2, 29,31,33,38,46,54,70].

Third, the proximal term β
2 ‖x − xr‖2BTB is used for two purposes: 1) to make the primal

subproblem strongly convex; 2) for certain applications to ensure that the primal subproblem is
decomposable over the variables. We will discuss how this can be done in the subsequent sections.
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1.2 Motivating Applications

Sparse subspace estimation. Suppose that Σ ∈ Rp×p is an unknown covariance matrix, λ1 ≥
λ2 ≥ · · ·λp and u1, u2, · · · , up are its eigenvalues and eigenvectors, respectively, and they satisfy
Σ =

∑p
i=1 λiuiu

>
i . Principal Component Analysis (PCA) aims to recover u1, u2, · · · , uk, where

k ≤ p, from a sample covariance matrix Σ̂ obtained from i.i.d samples {xi}ni=1. The subspace
spanned by {ui}ki=1 is called k-dimensional principal subspace, whose projection matrix is given

by Π∗ =
∑k
i=1 uiu

>
i . Therefore, PCA reduces to finding an estimate of Π∗, denoted by Π̂, from

the sample covariance matrix Σ̂. In high dimensional setting where the number of data points is
significantly smaller than the dimension i.e. (n� p), it is desirable to find a sparse Π̂, using the
following formulation [27]

min
Π

〈
Σ̂,Π

〉
+ Pν(Π), s.t. Π ∈ Fk, (4)

where, Fk denotes the Fantope set [69], given by Fk = {X : 0 � X � I, trace(X) = k}, which
promotes low rankness in X. The function Pν(Π) is a nonconvex regularizer that enforces sparsity
on Π. Typical forms of this regularization are smoothly clipped absolute deviation (SCAD) [21],
and minimax concave penalty (MCP) [73]. For example, MCP with parameters b and ν for some
scalar φ is given below

Pν(φ) = ι|φ|≤bν

(
ν|φ| − φ2

2b

)
+ ι|φ|>bν

(
bν2

2

)
, (5)

where, ιX denotes the indicator function for a convex set X, which is defined as

ιX(y) = 0, when y ∈ X, ιX(y) =∞, otherwise. (6)

Notice that Pν(Π) in problem (4) is an element-wise operator over all entries of matrix Π. One
particular characterization for these nonconvex penalties is that they can be decomposed as a
sum of an `1-norm function (i.e. for x ∈ RN , ‖x‖1 =

∑N
i=1 |xi|) and a concave function qν(x)

as Pν(φ) = ν|φ| + qν(φ) for some ν ≥ 0. In a recent work [27], it is shown that with high
probability, every first-order stationary solution of problem (4) (denoted as Π̂) is of high-quality.
See [27, Theorem 3] for detailed description. In order to deal with the Fantope and the nonconvex
regularizer separately, one can introduce a new variable Φ and reformulate problem (4) in the
following manner [69]

min
Π,Φ

〈
Σ̂,Π

〉
+ Pν(Φ), s.t. Π ∈ Fk, Π − Φ = 0. (7)

Clearly this is a special case of problem (1), with x = [Π,Φ], f(x) =
〈
Σ̂,Π

〉
+qν(Φ), h(x) = ν‖Φ‖1,

X = Fk, A = [I,−I], b = 0.
The exact consensus problem over networks. Consider a network which consists of N agents
who collectively optimize the following problem

min
y∈R

f(y) + h(y) :=

N∑
i=1

(fi(y) + hi(y)) , (8)

where fi(y) : R → R is a smooth function, and hi(y) : R → R is a convex, possibly nonsmooth
regularizer (here y is assumed to be scalar for ease of presentation). Note that both fi and hi are
only accessible by agent i. In particular, each local loss function fi can represent: 1) a mini-batch of
(possibly nonconvex) loss functions modeling data fidelity [4]; 2) nonconvex activation functions of
neural networks [1]; 3) nonconvex utility functions used in applications such as resource allocation
[12]. The regularization function hi usually takes the following forms: 1) convex regularizers such as
nonsmooth `1 or smooth `2 functions; 2) the indicator function for a closed convex set X, i.e. the ιX
function defined in (6). This problem has found applications in various domains such as distributed
statistical learning [53], distributed consensus [68], distributed communication networking [47,75],
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distributed and parallel machine learning [23, 36] and distributed signal processing [64, 75]; for
more applications we refer the readers to a recent survey [25].

To integrate the structure of the network into problem (8), we assume that the agents are
connected through a network defined by an undirected, connected graph G = {V, E}, with |V| = N
vertices and |E| = E edges. For agent i ∈ V the neighborhood set is defined as Ni := {j ∈
V s.t. (i, j) ∈ E}. Each agent can only communicate with its neighbors, and it is responsible for
optimizing one component function fi regularized by hi. Define the incidence matrix A ∈ RE×N
as following: if e ∈ E and it connects vertex i and j with i > j, then Aev = 1 if v = i, Aev = −1 if
v = j and Aev = 0 otherwise. Using this definition, the signed graph Laplacian matrix L− is given
by L− := ATA ∈ RN×N . Introducing N new variables xi as the local copy of the global variable
y, and define x := [x1; · · · ;xN ] ∈ RN , problem (8) can be equivalently expressed as

min
x∈RN

f(x) + h(x) :=

N∑
i=1

(fi(xi) + hi(xi)) , s.t. Ax = 0. (9)

This problem is precisely the original problem (1) with the correspondence: X = RN , b = 0,

f(x) :=
∑N
i=1 fi(xi), and h(x) :=

∑N
i=1 hi(xi).

For this problem, let us see how the proposed PProx-PDA can be applied. The first observation
is that choosing the scaling matrix B is critical because the appropriate choice of B ensures that
problem (3a) is decomposable over different variables (or variable blocks), thus the PProx-PDA
algorithm can be performed fully distributedly. Let us define the signless incidence matrixB := |A|,
where A is the signed incidence matrix defined above, and the absolute value is taken for each
component of A. Using this choice of B, we have BTB = L+ ∈ RN×N , which is the signless
graph Laplacian whose (i, i)th diagonal entry is the degree of node i, and its (i, j)th entry is 1 if
e = (i, j) ∈ E , and 0 otherwise. Further, let us set ρ = β. Then x-update step (3a) becomes

xr+1= arg min
x

{ N∑
i=1

〈∇fi(xri ), xi − xri 〉+ 〈(1− ργ)λr, Ax〉+ ρxTDx− ρxTL+x
r

}
,

where D := diag[d1, · · · , dN ] ∈ RN×N is the diagonal degree matrix, with di denoting the degree
of node i. Clearly this problem is separable over the variable xi for all i = 1, 2, · · · , N . To perform
this update, each agent i only requires local information as well as information from its neighbors
Ni. This is because D is a diagonal matrix and the structure of matrix L+ ensures that the ith
block vector of L+xr is only related to xrj , where j ∈ Ni.
The partial consensus problem. In the previous application, the agents are required to reach
exact consensus, and such constraint is imposed through Ax = 0 in (9). In practice, however, con-
sensus is rarely required exactly, for example due to potential disturbances in network communi-
cation; see detailed discussion in [43]. Further, in applications ranging from distributed estimation
to rare event detection, the data obtained by the agents, such as harmful algal blooms, network
activities, and local temperature, often exhibit distinctive spatial structure [16]. The distributed
problem in these settings can be best formulated by using certain partial consensus model in which
the local variables of an agent are only required to be close to those of its neighbors. To model
such a partial consensus constraint, we denote ξ as the permissible tolerance for e = (i, j) ∈ E ,
and define the link variable ze = xi − xj . Then we replace the strict consensus constraint ze = 0
with −ξ ≤ [ze]k ≤ ξ, where [ze]k denotes the kth entry of vector ze (for the sake of simplicity we
assume that the permissible tolerance ξ is identical for all e ∈ E). Setting

z := {ze}e∈E and Z := {z; |[ze]k| ≤ ξ, ∀ e ∈ E ,∀ k},

the partial consensus problem can be formulated as

min
x,z

N∑
i=1

(fi(xi) + hi(xi)) , s.t. Ax− z = 0, z ∈ Z, (10)

which is again a special case of problem (1).
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1.3 Literature Review and Contribution.

1.3.1 Literature on Related Algorithms.

The Augmented Lagrangian (AL) method, also known as the methods of multipliers, is pioneered
by Hestenes [35] and Powell [60]. It is a classical algorithm for solving nonconvex smooth con-
strained problems and its convergence is guaranteed under rather week assumptions [7, 22, 59]. A
modified version of AL has been developed by Rockafellar in [62], in which a proximal term has
been added to the objective function in order to make it strongly convex in each iteration. Later
Wright [41] specialized this algorithm to the linear programming problem. Many existing packages
such as LANCELOT are implemented based on AL method. Recently, due to the need to solve
very large-scale nonlinear optimization problems, the AL and its variants regain their popularity.
For example, in [17] a line search AL method has been proposed for solving problem (1) with
h ≡ 0 and X = {x; l ≤ x ≤ u}. Also reference [14] has developed an AL-based algorithm for
nonconvex nonsmooth optimization, where sub-gradients of the augmented Lagrangian are used
in the primal update. When the problem is convex, smooth and the constraints are linear, Lan
and Monterio [45] have analyzed the iteration complexity for the AL method. More specifically,
the authors analyzed the total number of Nesterov’s optimal iterations [58] that are required to
reach high-quality primal-dual solutions. Subsequently, Liu et al [49] proposed an inexact AL
(IAL) algorithm which only requires an ε−approximated solution for the primal subproblem at
each iteration. Hong et al [36] proposed a proximal primal-dual algorithm (Prox-PDA), an AL-
based method mainly used to solve smooth and unconstrained distributed nonconvex problem [by
unconstrained we refer to the problem (1) with h ≡ 0 and X ∈ RN ; however, the linear con-
straint Ax = b is always imposed]. Another AL-based algorithm, which is called ALADIN [39], is
designed for nonconvex smooth optimization problem with coupled affine constraints in the dis-
tributed setting. In ALADIN the objective function is separable over different nodes and the loss
function is assumed to be twice differentiable. To implement ALADIN a fusion center is needed in
the network to propagate global variable to the agents. A comprehensive survey about AL-based
methods in both convex and nonconvex setting can be found in [34]. See more practical AL algo-
rithms in [11]. Overall, the AL-based methods often require sophisticated stepsize selection and an
accurate oracle for solving the primal problem. Further, they cannot deal with problems that have
both nonsmooth regularizer h(x) and a general convex constraint. Therefore, it is not straight-
forward to apply these methods to problems such as distributed learning and high-dimensional
sparse subspace estimation mentioned in the previous subsection.

Recently, the alternating direction method of multipliers (ADMM), a variant of the AL, has
gained popularity for decomposing large-scale nonsmooth optimization problems [13]. The method
originates in early 1970s [24, 26], and has since been studied extensively [9, 19, 37]. The main
strength of this algorithm is that it is capable of decomposing a large problem into a series of small
and simple subproblems, therefore making the overall algorithm scalable and easy to implement.
However, unlike the AL method, the ADMM is designed for convex problems, despite its good
numerical performance in nonconvex problems such as the nonnegative matrix factorization [67],
phase retrieval [71], distributed clustering [23], tensor decomposition [48] and so on. Only very
recently, researchers have begun to rigorously investigate the convergence of ADMM (to first-
order stationary solutions) for nonconvex problems. Zhang [74] have analyzed a class of splitting
algorithms (which includes the ADMM as a special case) for a very special class of nonconvex
quadratic problems. Ames and Hong in [2] have developed an analysis for ADMM for certain `1
penalized problem arising in the high-dimensional discriminant analysis. Other works along this
line include [32,38,46,54] and [70]; See Table 1 in [70] for a comparison of the conditions required
for these works. Despite the recent progress, it appears that the aforementioned works still pose
very restrictive assumptions on the problem types in order to achieve convergence. For example, it
is not clear whether the ADMM can be used for the distributed nonconvex optimization problem
(9) over an arbitrary connected graph with regularizers and constraints, despite the fact that for
a convex problem such application is popular, and the resulting algorithms are efficient.
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1.3.2 Literature on Applications.

The sparse subspace estimation problem formulations (4) and (7) have been first considered
in [18, 69] and subsequently considered in [27]. The work [69] proposes a semidefinite convex
optimization problem to estimate principal subspace of a population matrix Σ based on a sample
covariance matrix. The authors of [27] further show that by utilizing nonconvex regularizers it
is possible to significantly improve the estimation accuracy for a given number of data points.
However, the algorithm considered in [27] is not guaranteed to reach any stationary solutions.

The consensus problem (8) and (9) have been studied extensively in the literature when the
objective functions are all convex; see for example [6, 50, 55, 56, 66]. Without assuming convexity
of fi’s, the literature has been very scant; see recent developments in [10, 30, 38, 51]. However,
all of these recent results require that the nonsmooth terms hi’s, if present, have to be identical
for all agents in the network. This assumption is unnecessarily strong and it defeats the purpose
of distributed consensus since global information about the objective function has to be shared
among the agents. Further, in the nonconvex setting, we are not aware of any existing distributed
algorithm with convergence guarantee that can deal with the more practical problem (10) with
partial consensus.

1.3.3 Contributions of This work.

In this paper, we develop an AL-based algorithm, named the perturbed proximal primal-dual
algorithm (PProx-PDA), for the challenging linearly constrained nonconvex nonsmooth problem
(1). The proposed method, listed in Algorithm 1, is of the Uzawa type [42] and it has a very
simple update rule. It is a single-loop algorithm that alternates between a primal (scaled) proximal
gradient descent step, and an (approximate) dual gradient ascent step. Further, by appropriately
selecting the scaling matrix in the primal step, the variables can be easily updated in parallel. These
features make the algorithm attractive for applications such as the high-dimensional subspace
estimation and the distributed learning problems discussed in Section 1.2.

One distinctive feature of the PProx-PDA is that it incorporates a novel primal-dual perturba-
tion scheme, which is designed to ensure a number of asymptotic convergence and rate of conver-
gence properties (to approximate first-order stationary solutions). Specifically, we show that when
certain perturbation parameter remains constant across the iterations, the algorithm converges
globally sub-linearly to the set of approximate first-order stationary solutions. Further, when the
perturbation parameter reduces to zero with an appropriate rate, the algorithm converges to the
set of exact first-order stationary solutions. To the best of our knowledge, the proposed algorithm
represents one of the first first-order methods with convergence and rate of convergence guarantees
(to certain approximate stationary solutions) for problems in the form of (1).

Notation. We use ‖ · ‖, ‖ · ‖1, and ‖ · ‖F to denote the Euclidean norm, `1-norm, and Frobenius
norm respectively. For given vector x, and matrix H, we denote ‖x‖2H := xTHx. For two vectors a,
b we use 〈a, b〉 to denote their inner product. We use σmax(A) to denote the maximum eigenvalue
for a matrix A. We use IN to denote an N ×N identity matrix. For a nonsmooth convex function
h(x), ∂h(x) denotes the sub-differential set defined by

∂h(x) = {v ∈ RN : h(y) ≥ h(x) + 〈v, y − x〉 ∀y ∈ RN}. (11)

For a convex function h(x) and a constant α > 0 the proximity operator is defined as below

prox
1/α
h (x) := argmin

z

{
1

2α
‖x− z‖2 + h(z)

}
. (12)
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2 Convergence Analysis of PProx-PDA

In this section, we provide the convergence analysis for PProx-PDA presented in Algorithm 1. We
will frequently use the following identity

〈b, b− a〉 =
1

2

(
‖b− a‖2 + ‖b‖2 − ‖a‖2

)
. (13)

Also, for the notation simplicity we define

wr := (xr+1 − xr)− (xr − xr−1). (14)

To proceed, let us make the following blanket assumptions on problem (1).
Assumptions A.

A1. The gradient of function f(x) is Lipschitz-continuous on X i.e., there exists L > 0 such that

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, ∀ x, y ∈ X. (15)

Further, without loss of generality, assume that f(x) ≥ 0 for all x ∈ X.
A2. The function h(x) is nonsmooth lower semi-continuous convex function, lower bounded (for

simplicity we assume h(x) ≥ 0, ∀ x ∈ X), and its sub-gradient is bounded.
A3. The problem (1) is feasible.
A4. The feasible set X is a convex and compact set.
A5. The scaling matrix B is chosen such that ATA+BTB � I.

Our first lemma characterizes the relationship between the primal and dual variables for two
consecutive iterations.

Lemma 1 Under Assumptions A, the following holds true for PProx-PDA for every r ≥ 1

1− ργ
2ρ

‖λr+1 − λr‖2 +
β

2
‖xr+1 − xr‖2BTB +

L

2
‖xr+1 − xr‖2

≤ 1− ργ
2ρ

‖λr − λr−1‖2 +
β

2
‖xr − xr−1‖2BTB +

L

2
‖xr − xr−1‖2 + L‖xr+1 − xr‖2 − γ‖λr+1 − λr‖2.

(16)

Proof. From the optimality condition of the x-update in (3a) we obtain

〈∇f(xr) +ATλr(1− ργ) + ρAT (Axr+1 − b)
+ βBTB(xr+1 − xr) + ξr+1, xr+1 − x〉 ≤ 0, ∀ x ∈ X, (17)

for some ξr+1 ∈ ∂h(xr+1). Using the dual update rule (3b) we obtain

〈∇f(xr) +ATλr+1 + βBTB(xr+1 − xr) + ξr+1, xr+1 − x〉 ≤ 0, ∀ x ∈ X. (18)

Using this equation for r − 1, we have, for all r ≥ 1

〈∇f(xr−1) +ATλr + βBTB(xr − xr−1) + ξr, xr − x〉 ≤ 0, ∀ x ∈ X, (19)

for some ξr ∈ ∂h(xr). Let x = xr in the first inequality and x = xr+1 in the second, we can then
add the resulting inequalities to obtain the following for all r ≥ 1

〈∇f(xr)−∇f(xr−1), xr+1 − xr〉+ 〈AT (λr+1 − λr), xr+1 − xr〉
+ β〈BTBwr, xr+1 − xr〉 ≤ 〈ξr − ξr+1, xr+1 − xr〉 ≤ 0, (20)

where in the last inequality we have utilized the monotonicity of the sub-differential.
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Now let us analyze each terms in the left hand side (LHS) of (20). For the first term we have
the following

〈∇f(xr−1)−∇f(xr), xr+1 − xr〉 ≤ L

2
‖xr − xr−1‖2 +

L

2
‖xr+1 − xr‖2, (21)

where we applied Young’s inequality and the Lipschitz continuity of the gradient of function f .
Then we can express the second term in the LHS of (20)

〈AT (λr+1 − λr), xr+1 − xr〉 = 〈A(xr+1 − xr), λr+1 − λr〉
= 〈(Axr+1 − b− γλr)− (Axr − b− γλr−1), λr+1 − λr〉+ γ〈λr − λr−1, λr+1 − λr〉
(3b),(13)

=
1

2

(
1

ρ
− γ
)(
‖λr+1 − λr‖2 − ‖λr − λr−1‖2

+ ‖(λr+1 − λr)− (λr − λr−1)‖2
)

+ γ‖λr+1 − λr‖2. (22)

For the term β〈BTBwr, xr+1 − xr〉, we have

β〈BTBwr, xr+1 − xr〉 (13)
=

β

2

(
‖xr+1 − xr‖2BTB − ‖x

r − xr−1‖2BTB + ‖wr‖2BTB

)
≥ β

2

(
‖xr+1 − xr‖2BTB − ‖x

r − xr−1‖2BTB

)
. (23)

Therefore, combining (21) – (23), we obtain the desired result in (16). Q.E.D.

Next we analyze the behavior of the primal iterations. Towards this end, let us define the
following new quantity

T (x, λ) := f(x) + h(x) + 〈(1− ργ)λ,Ax− b− γλ〉+
ρ

2
‖Ax− b‖2. (24)

Note that this quantity is identical to the augmented Lagrangian when γ = 0. It is constructed to
track the behavior of the algorithm. Even though the function f is not convex, it is easy to show
that T (x, λ) + β

2 ‖x− x
r‖2BTB is strongly convex with respect to the variable x, and with modulus

β − L when ρ ≥ β, and β > L. First let us define g(x, λ;xr) = T (x, λ) − h(x) + β
2 ‖x − x

r‖2BTB ,
which is a smooth function. For this function we have

〈∇xg(x, λ;xr)−∇yg(y, λ;xr), x− y〉
= 〈∇f(x)−∇f(y) + ρATA(x− y) + βBTB(x− y), x− y〉
(i)

≥ 〈∇f(x)−∇f(y), x− y〉+ β(ATA+BTB)‖x− y‖2

(ii)

≥ −L‖x− y‖2 + β(ATA+BTB)‖x− y‖2

(iii)

≥ (β − L)‖x− y‖2, (25)

where (i) is true because ρ ≥ β; (ii) is from the Lipschitz continuity of ∇f ; (iii) is true because
we assumed that [see Assumption A.5] ATA + BTB � I. This proves that g(x, λ;xr) is strongly
convex with modulus β − L when β > L. Since h(x) is assumed to be convex, we conclude that
T (x, λ) + β

2 ‖x − x
r‖2BTB is also strongly convex with modulus β − L. The next lemma analyzes

the change of T in two successive iterations of the algorithm.

Lemma 2 Suppose that β > 3L and ρ ≥ β. Then we have the following

T (xr+1, λr+1) +
(1− ργ)γ

2
‖λr+1‖2

≤ T (xr, λr) +
(1− ργ)γ

2
‖λr‖2 +

(
(1− ργ)(2− ργ)

2ρ

)
‖λr+1 − λr‖2

−
(
β − 3L

2

)
‖xr+1 − xr‖2, ∀ r ≥ 0. (26)
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Proof. It is easy to see that the change of x results in the following reduction of T

T (xr+1, λr)− T (xr, λr)

(i)

≤ 〈∇f(xr+1) + ξr+1 + (1− ργ)ATλr + ρAT (Axr+1 − b) + βBTB(xr+1 − xr),

xr+1 − xr〉 − β − L
2
‖xr+1 − xr‖2

(ii)

≤ −
(
β − 3L

2

)
‖xr+1 − xr‖2, (27)

where (i) is true because from (25) we know that when β > 3L, ρ ≥ β and ATA + BTB � I,
the function T (x, λ) + β

2 ‖x − x
r‖BTB is strongly convex with modulus β − L; (ii) is true due to

the optimality condition (17) for x-subproblem, and the assumption that the gradient of f(x) is
Lipschitz continuous. Second, let us analyze T (xr+1, λr+1)− T (xr+1, λr) as the following

T (xr+1, λr+1)− T (xr+1, λr) (28)

= (1− ργ)
(
〈λr+1 − λr, Axr+1 − b− γλr〉

)
− (1− ργ)〈γλr+1 − γλr, λr+1〉

(3b)
=

1

ρ

〈
(λr+1 − λr)− (λr − λr−1), λr+1 − λr

〉
+ γ〈λr − λr+1, λr+1 − λr〉

(13)
= (1− ργ)

(
1

ρ
‖λr+1 − λr‖2 +

γ

2
(‖λr‖2 − ‖λr+1‖2 − ‖λr+1 − λr‖2)

)
.

Combining the previous two steps, we obtain the desired inequality in (26). Q.E.D.

Comparing the results of Lemma 1 and Lemma 2, from (16) we can observe that the term
1
2 ( 1
ρ−γ)‖λr+1−λr‖2+β

2 ‖x
r+1−xr‖2BTB is descending in ‖λr+1−λr‖2 and ascending in ‖xr+1−xr‖2,

while from (26) we can see that T (xr+1, λr+1) + (1−ργ)γ
2 ‖λr+1‖2 behaves in an opposite manner.

Therefore, let us define the following potential function Pc as a conic combination of these two
terms such that it is descending in each iteration. For some c > 0 let us define

Pc(x
r+1, λr+1;xr, λr) := T (xr+1, λr+1) +

(1− ργ)γ

2
‖λr+1‖2

+ c

(
1− ργ
ρ
‖λr+1 − λr‖2 + β‖xr+1 − xr‖2BTB + L‖xr+1 − xr‖2

)
. (29)

Then according to the previous two lemmas, one can conclude that the following holds

Pc(x
r+1, λr+1;xr, λr)− Pc(xr, λr;xr−1, λr−1)

≤ −a1‖λr+1 − λr‖2 − a2‖xr+1 − xr‖2, (30)

where a1 and a2 are given below

a1 =

(
(1− ργ)

γ

2
+ 2cγ − 1− ργ

ρ

)
, and a2 =

(
β − 3L

2
− 2cL

)
. (31)

Therefore, in order to make the function Pc decrease at each iteration, it suffices to ensure that

(1− ργ)
γ

2
+ 2cγ − 1− ργ

ρ
> 0, and β > (3 + 4c)L. (32)

Therefore a sufficient condition is that

τ := ργ ∈ (0, 1), c >
1

τ
− 1 > 0, β > (3 + 4c)L, ρ > β. (33)

From the discussion here we can see the necessity for having perturbation parameter γ > 0. In
particular, if γ = 0 the constant in front of the ‖λr+1−λr‖2 would be 1

ρ , which is always positive.
Therefore, it is difficult to construct a potential function that has descent on the dual variable.

Next, let us show that the potential function Pc is lower bounded, when choosing particular
parameters given in Lemma 2.
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Lemma 3 Suppose Assumptions A are satisfied, and the algorithm parameters are chosen accord-
ing to (33). Then the following statement holds true

∃ P s.t. Pc(x
r+1, λr+1;xr, λr) ≥ P > −∞, ∀ r ≥ 0. (34)

Proof. First, we analyze terms related to T (xr+1, λr+1). The inner product term in (24) can be

bounded as

〈λr+1 − ργλr+1, Axr+1 − b− γλr+1〉
(13)
=

1

2

(
1− ργ
ρ

− (1− ργ)γ

)
(‖λr+1‖2 − ‖λr‖2 + ‖λr+1 − λr‖2)

=
(1− ργ)2

2ρ
(‖λr+1‖2 − ‖λr‖2 + ‖λr+1 − λr‖2). (35)

Clearly, the constant in front of the above equality is positive. Summing over R iterations of
T (xr+1, λr+1), we obtain

R∑
r=1

T (xr+1, λr+1) =

R∑
r=1

(
f(xr+1) + h(xr+1) +

ρ

2
‖Axr+1 − b‖2

)
+

(1− ργ)2

2ρ
(‖λR+1‖2 − ‖λ1‖2 +

R∑
r=1

‖λr+1 − λr‖2)

≥
R∑
r=1

(
f(xr+1) + h(xr+1) +

ρ

2
‖Axr+1 − b‖2

)
+

(1− ργ)2

2ρ
(‖λR+1‖2 − ‖λ1‖2)

≥ − (1− ργ)2

2ρ
‖λ1‖2, (36)

where the last inequality comes from the fact that f and h are both assumed to be lower bounded
by 0. Since ‖λ1‖2 ≤ ∞, it follows that the sum of the T (·, ·) function is lower bounded. From (36)

we conclude that
∑R
r=1 Pc(x

r+1, λr+1;xr, λr) is also lower bounded by − (1−ργ)2

2ρ ‖λ1‖2 for any R,

because besides the term
∑R
r=1 T (xr+1, λr+1), the rest of the terms are all positive. Combined

with the fact that Pc is non-increasing we conclude that the potential function is lower bounded.
This proves the claim. Q.E.D.

To present the main result on the convergence of the PProx-PDA, we need the following notion
of approximate stationary solutions for the problem (1).

Definition 1 Approximate stationary solution. Consider problem (1). Then for given ε > 0,
we say the tuple (x∗, λ∗) is an ε-stationary solution for the problem (1) if the following holds

‖Ax∗ − b‖2 ≤ ε, 〈∇f(x∗) +ATλ∗ + ξ∗, x∗ − x〉 ≤ 0, ∀ x ∈ X, (37)

where x∗ ∈ X and ξ∗ is some vector that satisfies ξ∗ ∈ ∂h(x∗).

It is important to note that, suppose that x∗ is a local optimal solution and it satisfies appropriate
constraint qualification (CQ) condition, then it must also satisfy (37) with ε = 0. We note that
the ε-stationary solution slightly violates the constraint ‖Ax − b‖ = 0. This definition is closely
related to the approximate KKT (AKKT) condition in the existing literature [3,20,28]. It can be
verified that when X = RN , and h ≡ 0, then the condition in (37) satisfies the stopping criteria for
reaching AKKT condition Eq. (9)-(11) in [3]. We refer the readers to [3, Section 3.1] for detailed
discussion of the relationship between AKKT and KKT conditions.

We show below that by appropriately choosing the algorithm parameters, the PProx-PDA
converges to the set of approximate stationary solutions.
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Theorem 1 Suppose Assumptions A hold. Further assume that the parameters γ, ρ, β, c satisfy
(33). Then the following is true for the sequence {(xr, λr)} generated by the PProx-PDA

– The sequences {xr} and {λr} are bounded, and that

λr+1 − λr → 0, xr+1 − xr → 0.

– Let (x∗, λ∗) denote any accumulation point of the sequence {(xr, λr)}. Then (x∗, λ∗) is a
(γ2‖λ∗‖2)-stationary solution of problem (1).

Proof. Using the assumption that X is a compact set, we have that the sequence {xr} is bounded.

Further, combining the bound given in (30) with the fact that the potential function Pc is decreas-
ing and lower bounded, we have

λr+1 − λr → 0, xr+1 − xr → 0. (38)

Also, from the dual update equation (3b) we have λr+1 − λr = ρ
(
Axr+1 − b− γλr

)
. Combining

with λr+1 − λr → 0 we can see that {λr} is also bounded. This proves the first part.
In order to prove the second part let (x∗, λ∗) be any accumulation point of the sequence

{(xr, λr)}. From (3b) we have λr+1−λr = ρ(Axr+1− b− γλr). Then combining this with (38) we
obtain

Ax∗ − b− γλ∗ = 0. (39)

Thus, we have ‖Ax∗ − b‖2 ≤ γ2‖λ∗‖2; which proves the first inequality in (37).
Further, from the optimality condition of (18) we have

〈∇f(xr) +ATλr(1− ργ) + ρAT (Axr+1 − b) + βBTB(xr+1 − xr), xr+1 − x〉
≤ 〈ξr+1, x− xr+1〉, ∀ x ∈ X. (40)

Recall that ξr+1 ∈ ∂h(xr+1) and h is convex. Then it follows that for all x ∈ X we have 〈ξr+1, x−
xr+1〉 ≤ h(x) − h(xr+1). Plugging this inequality into (40), using the update equation (3b) and
rearranging the terms we obtain for all x ∈ X

h(xr+1) + 〈∇f(xr) +ATλr+1 + βBTB(xr+1 − xr), xr+1 − x〉 ≤ h(x). (41)

Rearranging the terms, we have for all x ∈ X

h(xr+1) + 〈∇f(xr), xr+1 − x〉+ 〈λr+1, Axr+1〉+ 〈βB(xr+1 − xr), B(xr+1 − x)〉
≤ h(x) + 〈λr+1, Ax〉. (42)

Note the following relation holds

〈B(xr+1 − xr), B(xr+1 − x)〉 = ‖xr+1 − xr‖2BTB + 〈B(xr+1 − xr), B(xr − x)〉

=
1

2
‖xr+1 − xr‖2BTB −

1

2
‖xr − x‖2BTB +

1

2
‖xr+1 − xr + (xr − x)‖2BTB

≥ 1

2
‖xr+1 − xr‖2BTB −

1

2
‖xr − x‖2BTB . (43)

Plugging the above into (42) and add and subtract xr in the term 〈∇f(xr), xr+1 − x〉 we obtain

h(xr+1) + 〈∇f(xr), xr+1 − xr〉+ 〈λr+1, Axr+1〉+
β

2
‖B(xr+1 − xr)‖2

≤ h(x) + 〈∇f(xr), x− xr〉+ 〈λr+1, Ax〉+
β

2
‖B(x− xr)‖2, ∀ x ∈ X.
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Let (x∗, λ∗) be an accumulation point for the sequence {xr+1, λr+1}. Taking the limit, and using
the fact that xr+1 − xr → 0, we have

h(x∗) + 〈λ∗, Ax∗〉 ≤ h(x) + 〈∇f(x∗), x− x∗〉+ 〈λ∗, Ax〉+
β

2
‖B(x− x∗)‖2, ∀ x ∈ X.

The above inequality suggests that x = x∗ achieves the optimality for the right hand side. In
particular, we have

x∗ = arg min
x∈X

h(x) + 〈∇f(x∗), x− x∗〉+ 〈λ∗, Ax〉+
β

2
‖B(x− x∗)‖2. (44)

The optimality of the above problem becomes

〈∇f(x∗) +ATλ∗ + ξ∗, x∗ − x〉 ≤ 0, ∀ x ∈ X, (45)

for some ξ∗ ∈ ∂h(x∗). Q.E.D.

2.1 The Choice of Perturbation Parameter

In this section, we discuss how to obtain ε-stationary solution. First, note that in Theorem 1 we
proved that the sequence {λr} is bounded. Therefore, if the bound is independent of the choice of
parameters γ, ρ, β, c, then one can choose γ = O(

√
ε) to reach an ε-optimal solution. In the rest of

this section, we take an alternative approach to argue ε-stationary solution. Our general strategy
is to take 1

ρ and γ proportional to the accuracy parameter ε, while keeping τ = ργ ∈ (0, 1) and c

fixed to some ε-independent constants. Let us define the following constants for problem (1)

d1 = max{‖Ax− b‖2 | x ∈ X}, d2 = max{‖x− y‖2 | x, y ∈ X},
d3 = max{‖x− y‖2BTB | x, y ∈ X}, d4 = max{f(x) + h(x) | x ∈ X}.

(46)

The lemma below provides a parameter independent bound for ρ
2‖Ax

1 − b‖2.

Lemma 4 Suppose λ0 = 0, Ax0 = b, ρ ≥ β, and β − 3L > 0. Then we have

ρ

2
‖Ax1 − b‖2 ≤ d4,

β

2
‖x1 − x0‖2 ≤ d4 +

3L

2
d2. (47)

Proof. From Lemma 2 and using x0 and λ0 in the statement of the lemma, we obtain

T (x1, λ1) +
(1− ργ)γ

2
‖λ1‖2 +

β − 3L

2
‖x1 − x0‖2

≤ T (x0, λ0) +

(
1− ργ
ρ

− γ

2
(1− ργ)

)
‖λ1‖2.

Utilizing the definition of T (x, λ) and (35), we obtain

T (x1, λ1) = f(x1) + h(x1) +
(1− ργ)2

ρ
‖λ1‖2 +

ρ

2
‖Ax1 − b‖2,

T (x0, λ0) = f(x0) + h(x0).

Combining the above, we obtain(
(1− ργ)γ − 1− ργ

ρ
+

(1− ργ)2

ρ

)
‖λ1‖2 +

ρ

2
‖Ax1 − b‖2 +

β − 3L

2
‖x1 − x0‖2

≤ T (x0, λ0)− f(x1)− h(x1).
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By ssome imple calculation we can show that
(

(1− ργ)γ − 1−ργ
ρ + (1−ργ)2

ρ

)
= 0. By using the

assumption f(x1) ≥ 0, h(x1) ≥ 0, it follows that

β − 3L

2
‖x1 − x0‖2 ≤ d4,

ρ

2
‖Ax1 − b‖2 ≤ d4. (48)

This leads to the desired claim. Q.E.D.

Combining Lemma 4 with the dual update (3b), we can conclude that

1

2ρ
‖λ1‖2 =

ρ

2
‖Ax1 − b‖2 ≤ d4. (49)

Next, we derive an upper bound for the initial potential function Pc(x
1, λ1;x0, λ0). Assuming that

Ax0 = b, λ0 = 0, we have

Pc(x
1, λ1;x0, λ0)

(29)
= T (x1, λ1) +

(1− ργ)(γ + 2c/ρ)

2
‖λ1‖2

+ c
(
β‖x1 − x0‖2BTB + L‖x1 − x0‖2

)
(24),(35)

≤ f(x1) + h(x1) +
(1− ργ)2

ρ
‖λ1‖2 +

ρ

2
‖Ax1 − b‖2

+
(1− ργ)(γ + 2c/ρ)

2
‖λ1‖2 + c

(
β‖x1 − x0‖2BTB + L‖x1 − x0‖2

)
(47)

≤
[
2 + 2(1− ργ)2 + (1− ργ)(2c+ ργ)

]
d4 + c

(
2σmax(BTB)(d4 +

3L

2
d2) + Ld2

)
=
[
2 + 2(1− τ)2 + (1− τ)(2c+ τ)

]
d4 + c

(
2σmax(BTB)(d4 +

3L

2
d2) + Ld2

)
:= P 0

c (50)

It is important to note that P 0
c does not depend on ρ, γ, β individually, but only on ργ and c, both

of which can be chosen as absolute constants. The next lemma bounds the size of ‖λr‖2.

Lemma 5 Suppose that (ρ, γ, β) are chosen according to (33), and the assumptions in Lemma 4
hold true. Then the following holds true for all r ≥ 0

γ(1− ργ)

2
‖λr‖2 ≤ P 0

c . (51)

Proof. We use induction to prove the lemma. The initial step r = 0 is clearly true. In the

inductive step we assume that

γ(1− ργ)

2
‖λr‖2 ≤ P 0

c , for some r ≥ 0. (52)

Using the fact that the potential function is decreasing (cf. (30)), we have

Pc(x
r+1, λr+1;xr, λr) ≤ Pc(x1, λ1;x0, λ0) ≤ P 0

c . (53)

Combining (53) with (35), and using the definition of Pc in (29), we obtain

(1− ργ)2

2ρ
(‖λr+1‖2 − ‖λr‖2) +

γ(1− ργ)

2
‖λr+1‖2 ≤ P 0

c . (54)

If ‖λr+1‖ − ‖λr‖ ≥ 0, then we have

γ(1− ργ)

2
‖λr+1‖2 ≤ γ(1− ργ)

2
‖λr+1‖2 +

(1− ργ)2

2ρ
(‖λr+1‖2 − ‖λr‖2)

(54)

≤ P 0
c .
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If ‖λr+1‖ − ‖λr‖ < 0, then we have

γ(1− ργ)

2
‖λr+1‖2 < γ(1− ργ)

2
‖λr‖2 ≤ P 0

c ,

where the second inequality comes from the induction assumption (52). This concludes the proof.
Q.E.D.

From Lemma 5, and the fact that ργ = τ ∈ (0, 1), we have

γ‖λr+1‖2 ≤ 2P 0
c

1− τ
, ∀ r ≥ 0. (55)

Therefore, we get

γ2‖λr+1‖2 ≤ 2P 0
c γ

1− τ
, ∀ r ≥ 0. (56)

Also note that ρ and β should satisfy (33), restated below

τ := ργ ∈ (0, 1), c >
1

τ
− 1 > 0, β > (3 + 4c)L, ρ ≥ β. (57)

Combining the above results, we have the following corollary about the choice of parameters to
achieve ε-stationary solution.

Corollary 1 Consider the following choices of the algorithm parameters.

γ = min

{
ε,

1

β

}
, ρ =

1

2
max

{
β,

1

ε

}
, β > 11L, c = 2. (58)

Further suppose Assumptions A are satisfied, and that Ax0 = b, λ0 = 0. Then the sequence of
dual variables {λr} lies in a bounded set, and λr+1 − λr → 0, xr+1 − xr → 0. Further, every
accumulation point generated by the PProx-PDA algorithm is an ε-stationary solution.

Proof. Using the parameters in (58), we have the following relation

τ = ργ =
1

2
,

γ

1− ργ
≤ 2ε.

Then we can bound P 0
c by the following

P 0
c =

[
2 + 2(1− ργ)2 + (1− ργ)(c+ ργ)

]
d4 +

c

2
(2σmax(BTB)(d4 +

3L

2
d2) + Ld2)

≤ (6 + 2σmax(BTB))d4 + (3σmax(BTB)L+ L)d2.

Therefore using (56) we conclude

γ2‖λr+1‖2 ≤ 2P 0
c γ

1− ργ
≤ 4((6 + 2σmax(BTB))d4 + (3σmax(BTB)L+ L)d2)ε.

Note that the constant in front of ε is not dependent on algorithm parameters. This implies that
γ2‖λr+1‖2 = O(ε). Q.E.D.

Remark 1 First, in the above result, the ε-stationary solution is obtained by imposing the addi-
tional assumption that the initial solution is feasible for the linear constraint (i.e., Ax0 = b), and
that λ0 = 0. Admittedly, obtaining a feasible initial solution could be challenging, but for problems
such as distributed optimization (9) and subspace estimation (4), finding feasible x0 is relatively
easy. For the former case either the agents can agree on a trivial solution (such as xi = xj = 0),
or they can run an average consensus-based algorithm such as [68] to reach consensus. For the
latter case, one can just set Π = Φ = 0. Second, the penalty parameter could be large because
it is inversely proportional to the accuracy. Having a large penalty parameter at the beginning
can make the algorithm progress slowly. In practice, one can start with a smaller ρ and gradually
increase it until reaching the predefined threshold. Following this idea, in the next section, we
will design an algorithm that allows ρ to increase unboundedly, such that the exact first-order
stationary solution can be obtained in the limit.
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2.2 Convergence Rate Analysis

In this subsection, we briefly discuss the convergence rate of the algorithm. To begin with, assume
that parameters are chosen according to (33), and Ax0 = b, λ0 = 0. Also we will choose 1/ρ and
γ proportional to certain accuracy parameter, while keeping τ = ργ ∈ (0, 1) and c fixed to some
absolute constants. To proceed, let us define the following quantities

H(xr, λr) := f(xr) + h(xr) + 〈λr, Axr − b〉, (59a)

G(xr, λr) := ‖∇̃H(xr, λr)‖2 +
1

ρ2
‖λr+1 − λr‖2, (59b)

Q(xr, λr) := ‖∇̃H(xr, λr)‖2 + ‖Axr − b‖2, (59c)

where ∇̃H(xr, λr) is the proximal gradient defined as

∇̃H(xr, λr) = xr − proxβh+ι(X)

[
xr − 1

β
∇(H(xr, λr)− h(xr))

]
. (60)

It can be checked that Q(xr, λr) → 0 if and only if a stationary solution for problem (1) is
obtained. Therefore we say that a θ-stationary solution is obtained if Q(xr, λr) ≤ θ. Note that
the θ-stationary solution has been used in [38] for characterizing the rate for ADMM method.
Compared with the ε-stationary solution defined in Definition 1, its progress is easier to quantify.
Using the definition of proximity operator, the optimality condition of the x-subproblem (3a) can
be equivalently written as

xr+1 = proxβh+ι(X)

[
xr+1 − 1

β

[
∇f(xr) +ATλr+1 + βBTB(xr+1 − xr)

]]
.

By using the non-expansiveness of the proximity operator, we obtain the following

‖∇̃H(xr, λr)‖2 =

∥∥∥∥xr − proxβh+ι(X)

[
xr − 1

β
∇
[
H(xr, λr)− h(xr)

]] ∥∥∥∥2

=

∥∥∥∥xr+1 − proxβh+ι(X)

[
xr+1 − 1

β

[
∇f(xr) +ATλr+1 + βBTB(xr+1 − xr)

]]
− xr + proxβh+ι(X)

[
xr − 1

β
∇
[
H(xr, λr)− h(xr)

]] ∥∥∥∥2

≤ 2‖xr+1 − xr‖2 +
4

β2
‖AT (λr+1 − λr)‖2 + 4‖(I −BTB)(xr+1 − xr)‖2

≤ (2 + 4σ2
max(B̂))‖xr+1 − xr‖2 +

4σmax(ATA)

β2
‖λr+1 − λr‖2,

where in the last inequality we define B̂ := I −BTB. Therefore,

G(xr, λr) ≤ b1‖λr+1 − λr‖2 + b2‖xr+1 − xr‖2, (61)

where we have defined

b1 =
4σmax(ATA)

β2
+

1

ρ2
, b2 = 2 + 4σ2

max(B̂). (62)

Combining (61) with the descent estimate for the potential function Pc given in (30), we obtain

G(xr, λr) ≤ V
[
Pc(x

r, λr;xr−1, λr−1)− Pc(xr+1, λr+1;xr, λr)
]
, (63)

where we have defined

V :=
max(b1, b2)

min(a1, a2)
.
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It is easy to verify that V is in the order of O(1/γ) because a1 is in the order of γ; cf. (31). From
part 1 of Theorem 1 and (61) we conclude that G(xr, λr) → 0. Let R denote the first time that
G(xr+1, λr+1) reaches below a given number θ > 0. Summing both sides of (63) over R iterations,
and utilizing the fact that Pc is lower bounded by P , it follows that

θ ≤
V
(
P 0
c − P

)
R

≤
V
(
P 0
c + (1−ργ)2

2ρ ‖λ1‖2
)

R

(49)

≤
V
(
P 0
c + (1− τ)2d4

)
R

, (64)

where d4 is given in (46), and P 0
c is given in (50). Note that Gr+1 ≤ θ implies that 1/ρ2‖λr+1 −

λr‖2 = ‖Axr+1 − b− γλr‖2 ≤ θ. From (51) we have that

‖γλr+1‖ ≤

√
2P 0

c γ

1− ργ
, ∀ r ≥ 0.

It follows that

‖Axr+1 − b‖ ≤ 1

ρ
‖λr+1 − λr‖+ ‖γλr‖ ≤

√
θ +

√
2P 0

c γ

1− ργ
.

It follows that whenever G(xr, λr) ≤ θ we have

Q(xr, λr) := ‖∇̃H(xr, λr)‖2 + ‖Axr − b‖2 ≤ θ +

(
√
θ +

√
2P 0

c γ

1− ργ

)2

. (65)

Let us pick the parameters such that they satisfy (33) and the following [note that this is always
possible by fixing τ and making γ in the order of O(θ)]

2P 0
c γ

1− ργ
=

2P 0
c γ

1− τ
= θ.

Then whenever G(xr, λr) ≤ θ, we have Q(xr, λr) ≤ 5θ. Using (64), it follows that the total number
of iterations it takes for Q(xr, λr) to reach below 5θ is given by

R ≤
V
(
P 0
c + (1− τ)2d4

)
θ

= O
(

1

θ2

)
, (66)

where the last relation holds because V is in the order of O( 1
γ ), γ is chosen in the order of O(θ),

and P 0
c , d4 and τ are not dependent on the problem accuracy. The result below summarizes our

discussion above.

Corollary 2 Suppose that Ax0 = b and λ0 = 0. Additionally, for a given θ > 0, and τ ∈ (0, 1),
choose γ, ρ, c, β as follows

γ =
θ(1− τ)

2P 0
c

, ρ =
τ

γ
, c >

1

τ
− 1, ρ ≥ β and β > (3 + 4c)L.

Let R denote the first time that Q(xr, λr) reaches below 5θ. Then we have R = O
(

1
θ2

)
.
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Algorithm 2: PProx-PDA with increasing accuracy (PProx-PDA-IA)

Initialize: λ0 and x0

Repeat: update variables by

xr+1 = arg min
x∈X

{
〈∇f(xr), x− xr〉+ h(x) + 〈(1− ρr+1γr+1)λr, Ax− b〉

+
ρr+1

2
‖Ax− b‖2 +

βr+1

2
‖x− xr‖2BTB

}
. (67a)

λr+1 = (1− ρr+1γr+1)λr + ρr+1
(
Axr+1 − b

)
= λr + ρr+1

(
Axr+1 − b− γr+1λr

)
. (67b)

Until Convergence.

3 An Algorithm with Increasing Accuracy

So far we have shown that PProx-PDA converges to the set of approximate stationary solutions by
properly choosing the algorithm parameters. The inaccuracy of the algorithm can be attributed
to the use of perturbation parameter γ. Is it possible to gradually reduce the perturbation so that
asymptotically the algorithm reaches the exact stationary solutions? Is it possible to avoid using
very large penalty parameter ρ at the beginning of the algorithm? This section designs an algorithm
that addresses the above questions. We consider a modified algorithm in which the parameters
(ρ, β, γ) are iteration-dependent. In particular, we choose ρr+1, βr+1 and 1/γr+1 to be increasing
sequences. The new algorithm, named PProx-PDA with increasing accuracy (PProx-PDA-IA), is
listed in Algorithm 2. Below we analyze the convergence of the new algorithm. Besides assuming
that the optimization problem under consideration satisfies Assumptions A, we make the following
additional assumptions:
Assumptions B

B1. Assume that

ρr+1γr+1 = τ ∈ (0, 1), for some fixed constant τ.

B2. The sequence {ρr} satisfies

ρr+1 →∞,
∞∑
r=1

1

ρr+1
=∞,

∞∑
r=1

1

(ρr+1)2
<∞, ρr+1 − ρr = D > 0,

for some D > 0. A simple choice of ρr+1 is ρr+1 = r+1. Similarly, the sequence {γr+1} satisfies

γr+1 − γr ≤ 0, γr+1 → 0,

∞∑
r=1

γr+1 =∞,
∞∑
r=1

(γr+1)
2
<∞. (68)

B3. Assume that

∃ c0 > 1 s.t. βr+1 = c0ρ
r+1, for r large enough. (69)

B4. There exists Λ > 0 such that for every r > 0 we have ‖λr‖ ≤ Λ.

We note that Assumption [B4] is somewhat restrictive because it is an assumption on the iterates,
therefore, it is difficult to verify a priori. In the Appendix, we will show that such an assumption
can be satisfied under some additional regularity condition about problem (1). We choose to state
[B4] here to avoid lengthy discussion on those regularity conditions before the main convergence
analysis. The main idea of the proof is similar to that of Theorem 1. We first construct certain
potential function and show that with appropriate choices of algorithm parameters, it will decrease
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eventually. A classical result in [8] is then used to argue the convergence. The main challenge is
to carefully analyze how different algorithm parameters affect the dynamics of the iterates. Below
we provide an outline of the proof. The full proof can be found in the appendix.

Theorem 2 Suppose that Assumptions A–B hold true, and that τ , c and D are picked such that
the following relations are satisfied

0 < c <
c0

2(L+ c0‖BTB‖)
, 0 < D <

1− τ
c

. (70)

Then every accumulation point of the sequence generated by PProx-PDA-IA is a stationary solution
of problem (1).

Proof Sketch. Similar to Lemma 1, our first step utilizes the optimality condition of two consec-
utive iterates to analyze the change of the primal and dual differences.

[Step 1]. Suppose that the Assumptions A and [B1]-[B3] hold true, and that τ,D, are constants
defined in Assumptions B. Then for large enough r, there exists constant C1 such that

(1− τ)

2
‖λr+1 − λr‖2 +

τ

2
(
ρr+1

ρr+2
− 1)‖λr+1‖2 +

βr+1ρr+1

2
‖xr+1 − xr‖2BTB +

ρr+1L

2
‖xr+1 − xr‖2BTB

≤ (1− τ)

2
‖λr − λr−1‖2 +

τ

2
(
ρr

ρr+1
− 1)‖λr‖2 +

βrρr

2
‖xr − xr−1‖2BTB +

ρrL

2
‖xr − xr−1‖2BTB

− τ

2
‖λr+1 − λr‖2 +

C1(γr+1)2

2
‖λr+1‖2

+
Lρr +D(L+ βr+1‖BTB‖)

2
‖xr+1 − xr‖2BTB −

βrρr

2
‖wr‖2BTB . (71)

[Step 2]. The second step analyzes the behavior of T (x, λ) which is originally defined in (24) in
order to bound the descent of the primal variable. In this case, because T is also a function of
time varying parameters ρ and γ, we denote it as T (x, λ; ρ, γ). Suppose that the Assumptions A
and [B1]-[B3] hold true, τ and D are constants defined in Assumptions B. Then we have

T (xr+1, λr+1; ρr+2, γr+2) +

(
(1− τ)

γr+2

2
+D

2τ − 1

2τ
(γr+2)2

)
‖λr+1‖2

≤ T (xr, λr; ρr+1, γr+1) +

(
(1− τ)

γr+1

2
+D

2τ − 1

2τ
(γr+1)2

)
‖λr‖2

−
(
βr+1 − 3L

2

)
‖xr+1 − xr‖2 + (1− τ)

(
2− τ
2ρr+1

+
D(γr+1)2

2τ2(1− τ)

)
‖λr+1 − λr‖2

+

[
(1− τ)(γr+1 − γr+2)

2
+
D(γr+2)2

2
+D

(γr+1)2 − (γr+2)2

2τ

]
‖λr+1‖2. (72)

[Step 3]. In the next step we construct and estimate the descent of the potential function. For
some given c > 0, satisfying (70) we construct the following potential function

P r+1
c :=T (xr+1, λr+1; ρr+2, γr+2) (73)

+

(
(1− τ)

γr+2

2
+D

2τ − 1

2τ
(γr+2)2

)
‖λr+1‖2

+ c

(
(1− τ)

2
‖λr+1 − λr‖2 +

τ

2
(
ρr+1

ρr+2
− 1)‖λr+1‖2

+
βr+1ρr+1

2
‖xr+1 − xr‖2BTB +

ρr+1L

2
‖xr+1 − xr‖2BTB

)
.
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Suppose that the Assumptions A and [B1]-[B3] hold true, and let τ and D be the constants defined
in Assumptions B. Then for large enough r we have the following for the potential function Pc

P r+1
c − P rc ≤−

(
βr+1 − 3L

2
− cLρr − cDL− cβr+1‖BTB‖

)
‖xr+1 − xr‖2

− cτ
4
‖λr+1 − λr‖2 +D0(γr+1)2‖λr+1‖2 − cβ

rρr

2
‖wr‖2BTB , (74)

where D0 is a positive constant. Further, the potential function is lower bounded.
Sketch Proof of Theorem 2. First, fix a small enough c > 0 to make the constant in front of
‖xr+1 − xr‖2 in (74) proportional to −βr+1 for large enough r. Then using Step 2-3, and note
that λr+1 is assumed to be bounded, and (γr+1)2 is summable, we have

∞∑
r=1

βr+1‖xr+1 − xr‖2 <∞,
∞∑
r=1

‖λr+1 − λr‖2 <∞, (75)

∞∑
r=1

(βr+1)2‖wr+1‖2BTB <∞. (76)

From (75) we have λr+1 − λr → 0, which implies that (ρr+1)(Axr+1 − b) − τλr → 0. Combined
with the assumption that {λr} is a bounded sequence, and ρr+1 →∞, we conclude Axr+1−b→ 0.
Let (x∗, λ∗) be an accumulation point of (xr+1, λr+1). Comparing the optimality condition of the
problem (1) and the optimality condition of x-subproblem (67a), in order to argue convergence
to stationary solutions, we need to show βr+1‖xr+1 − xr‖ → 0. To proceed, let us define vr+1 :=
βr+1(xr+1 − xr). From the first inequality in (75) (and after shifting the indices)

∞∑
r=1

1

βr
‖vr‖2 <∞. (77)

This relation combined with Assumption [B3] implies: lim infr→∞ ‖vr‖ = 0. The remaining part
of the proof is to show lim supr→∞ ‖vr‖ = 0. The proof is a modification of the classical result
for using diminishing stepsize for the unconstrained problem in [8, Proposition 3.5], and recent
extension to the constrained problems in [65, Theorem 4]. The difference is that none of these
works involves relaxing the equality constraints. Due to space limitations, we omit the rest of the
proof. Q.E.D.

4 Numerical Results

In this section, we customize the proposed algorithms to a number of applications in Section 1.2,
and compare with the state-of-the-art algorithms.

4.1 Distributed Nonconvex Quadratic Problem

In this subsection we consider the nonconvex regularized, nonnegative, sparse principal component
analysis (SPCA) problem [5]. Distributed version of this problem [which is a special case of problem
(1)] can be modeled as below

min
x

N∑
i=1

{
−x>i Σixi + hi(xi)

}
(78)

s.t. ‖xi‖2 ≤ 1, xi ≥ 0, i = 1, · · · , N
Ax = 0, [Consensus Constraint]

where xi ∈ Rd for each i; x := {xi}Ni=1 stacks all xi’s, Σi ∈ Rd×d is the covariance matrix for
the mini-batch data in node i; hi(·) is some regularizer to promote structure in the solution (e.g.,

sparsity). For simplicity define h(x) :=
∑N
i=1 hi(xi)
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Define x̄ := 1
N

∑N
i=1 xi, f(x̄) :=

∑N
i=1 x̄

TΣix̄, and X := {xi | ‖x̄‖2 ≤ 1, x̄ ≥ 0}. The
stationarity-gap (stat-gap) and the constraint violation (const-vio) are defined below

stat-gap =

∥∥∥∥x̄− proxh+ιX [x̄−∇f(x̄)]

∥∥∥∥2

, const-vio = ‖Ax‖2. (79)

At this point, one can certainly use Algorithm 1 or Algorithm 2 to solve problem (78) directly.
However, the resulting x- subproblems for both algorithms are difficult to solve due to the fact
that computing the proximity operator for nonsmooth function h(x) + ι‖x‖2≤1(x) + ιx≥0(x) does
not have a closed form. On the contrary, in most of the problems encountered in practice, the
proximity operators for the individual component functions all have closed-form. To utilize such a
problem structure, we divide the agents into three subsets, each with a distinctive regularizer or
constraint set. Let us denote r = bN/3c. The new reformulation is given below

min

r∑
i=1

{
−x>i Σixi +

N

r
hi(xi)

}
−

2r∑
i=r+1

x>i Σixi −
N∑

i=2r+1

x>i Σixi (80)

s.t. ‖xi‖2 ≤ 1, i = r + 1, · · · , 2r
xi ≥ 0, i = 2r + 1, · · · , N
Ax = 0, [Consensus Constraint].

To the best of our knowledge, no existing methods for nonconvex distributed optimization can
effectively deal with the above problem (at least not with theoretical convergence guarantee to the
stationary solution). The major difficulty is to deal with the agent-specific nonsmooth terms. In our
numerical result, the graph G is generated based on the scheme proposed in [72]. In this scheme,
a random graph with N nodes and radius R is generated with nodes uniformly distributed over a
unit square, and two nodes connect to each other if their distance is less than R. The test problems
are generated in the following manner. We specialize the regularizer to be hi(xi) := α‖xi‖1, ∀ i.
The number of agents, the network radius, the problem dimension, and the sparsity parameter are
chosen to be: N = 20, R = 0.7, d = 10, α = 0.01, respectively. For PProx-PDA we set perturbation
parameter γ = 10−4, and ρ and β are picked such that they satisfy the theoretical bounds given
in (57). For PProx-PDA-IA we set the increasing penalty and the proximal coefficients to be
ρr = βr = 30r, ∀ r, and decreasing perturbation parameter to be γr = 10−3/r, ∀ r. The proposed
methods are compared with the DSG algorithm [57], whose parameters are given below. For
the DSG algorithm the stepsize is set to 0.1/r (this choice is made so that DSG has the best
performance). Each algorithm is run for 20 independents trials, with random initialization and
randomly generated data. All algorithms stop after 1000 iterations. The results are plotted in Fig.
1 and 2. In the figures, dashed lines with light colors are used to show the performance for each
individual trial, while the solid dark lines are the average performance over all 20 trials. From the
plots it can be observed that the proposed algorithms, especially the increasing penalty version,
outperform the DSG algorithm.

To see more numerical results we compare different algorithms with different problem setups.
The algorithms are run for 20 independent trials with randomly generated data and random
initial solutions in each individual trials. All algorithm parameters are set to be the same as in the
previous experiment. The comparison results are displayed in Table 1. The first column describes
the problem parameters including the number of agents N , the number of variables n, and the
network radius R, while ‘Alg1’ and ‘Alg2’ stand for PProx-PDA and PProx-PDA-IA, respectively.
It can be observed that in all scenarios the proposed algorithms outperform DSG.

4.2 Nonconvex subspace estimation

In this subsection we study the problem of sparse subspace estimation (4). We compare the pro-
posed PProx-PDA and PProx-PDA-IA with the ADMM algorithm studied in [27, Algorithm 1].
Note that the latter is a heuristic algorithm that does not have convergence guarantee. We first
consider a problem with the number of samples, problem dimension, and MCP parameters chosen
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Fig. 1: Comparison of proposed algorithms with DSG [57] in
terms of stationarity-gap for problem (80) with parameters
N = 20, R = 0.7, d = 10, α = 0.01.
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Fig. 2: Comparison of proposed algorithms with DSG [57]
in terms of constraint violation for problem (80) with pa-
rameters N = 20, R = 0.7, d = 10, α = 0.01.

Table 1: Comparison of proposed algorithms with DSG algorithm. Alg1 and Alg2 denote PProx-PDA and PProx-PDA-IA
algorithms respectively.

Stationarity-Gap Cons-Vio
Parameters Alg1 Alg2 DSG Alg1 Alg2 DSG

N = 5, n = 80, R = 0.7 1.9E-4 6.0E-5 9.0E-4 6.0E-6 9.5E-7 4.3E-5
N = 20, n = 15, R = 0.7 1.3E-4 5.0E-8 9.4E-5 1.7E-3 6.8E-6 0.013
N = 30, n = 20, R = 0.5 6.3E-5 2.1E-8 2.6E-4 7.0E-3 6.4E-7 0.06
N = 40, n = 30, R = 0.5 2.0E-4 4.9E-8 1.5E-3 8.1E-3 1.5E-6 0.05

as n = 80, p = 128, ν = 3, b = 3, respectively. For PProx-PDA we set perturbation parameter
γ = 10−4, and ρ and β are chosen to satisfy the theoretical bounds given in (57). For PProx-PDA-
IA we set increasing penalty ρ = β = 5r, and decreasing perturbation γ = 10−4/r. The data set
is generated following the same procedure as in [27]. In particular, we set s = 5 and k = 1, the
leading eigenvalue of its covariance matrix Σ is set as ν1 = 100, and its corresponding eigenvector
is sparse such that only the first s = 5 entries are nonzero, and they take the value 1/

√
5. The

rest of the eigenvalues are set to be 1, and their eigenvectors are chosen arbitrarily. For all three
algorithms, we measure the stationarity-gap, the constraint violation, the objective value, and the
distance to the global optimal solution (i.e. ‖Π̂−Π∗‖). The results, which are from 20 independent
trials with random initial solutions, are plotted in Fig. 3– 6. As shown in these figures, compared
to the ADMM algorithm, the PProx-PDA-IA algorithm converges faster, and to better solutions.
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Fig. 3: Comparison of proposed algorithms with ADMM
in terms of stationarity-gap for nonconvex subspace esti-
mation problem with MCP Regularization. Each dotted
line represents the performance of one realization, and each
solid line represents an average of 20 independent trials.
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Fig. 4: Comparison of proposed algorithms with ADMM in
terms of constraint violation ‖Ax‖2 for nonconvex subspace
estimation problem with MCP Regularization. Each dotted
line represents the performance of one realization, and each
solid line represents an average of 20 independent trials.

Our next experiment is designed to understand the effect that the problem parameters (i.e.
n, p, k, and s) have on the solution quality. Here, we compare the PProx-PDA-IA [with ρ =
O(r), γ = O(1/r)] with ADMM algorithm with stepsize ρ = 5. Both algorithms will be run for 200
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Fig. 5: Comparison of proposed algorithms with ADMM
in terms of Global Error for nonconvex subspace estima-
tion problem with MCP Regularization. The problem pa-
rameters are n = 80, p = 128, ν = 3, b = 3. Each dotted
line represents the performance of one realization, and each
solid line represents an average of 20 independent trials.
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Fig. 6: Comparison of proposed algorithms with ADMM
in terms of objective value for nonconvex subspace esti-
mation problem with MCP Regularization. The solid lines
and dotted lines represent the single performance and the
average performance, respectively.

iterations. In this experiment we generate data sets with s = 10, k = 5, and vary other problem
parameter. For this dataset the top five eigenvalues are set as λ1 = · · · = λ4 = 100 and λ5 = 10. To
generate their corresponding eigenvectors we sample its nonzero entries from a standard Gaussian
distribution, and then orthnormalize them while retaining the first s = 10 rows to be nonzero [27].
The rest of the eigenvalues are set as λ6 = · · · = λp = 1, and the associated eigenvectors are chosen

arbitrarily. The results in terms of the error ‖Π̂ −Π∗‖ are shown in Table 2. In all scenarios the
proposed algorithm PProx-PDA-IA outperforms ADMM.

Table 2: Comparison of PPox-PDA-IA with ADMM in terms of Global Error ‖Π̂−Π∗‖ for nonconvex subspace estimation
problem with MCP Regularization.

‖Π̂ −Π∗‖
Parameters PProx-PDA-IA ADMM

n = 30, p = 128, k = 1, s = 5 0.045± 0.02 0.052± 0.02
n = 80, p = 128, k = 1, s = 5 0.024± 0.01 0.028± 0.08
n = 120, p = 128, k = 1, s = 5 0.020± 0.07 0.021± 0.06
n = 150, p = 200, k = 1, s = 5 0.022± 0.07 0.022± 0.07
n = 80, p = 128, k = 1, s = 10 0.048± 0.01 0.062± 0.01
n = 80, p = 128, k = 5, s = 10 0.21± 0.05 0.29± 0.02
n = 128, p = 128, k = 5, s = 10 0.18± 0.02 0.25± 0.02
n = 70, p = 128, k = 5, s = 10 0.26± 0.03 0.33± 0.03

Further, the True Positive Rate (TPR) and False Positive Rate (FPR) [40] are measured and
the results are displayed in Table 3 to see the recovery results. For this problem the event of being
zero in vector v = |supp(diag(Π̂))| (here Π̂ denotes the output of the algorithm) is considered as
a positive event. Let P denotes the number of positives, and S denotes the number of non-zeros
in the ground truth vector denoted by Π∗. Further, let us use FP and TP to denote false positive
and true positive respectively. In particular, FP counts the number of positive events (i.e. zeros
in our case) in vector Π̂ which are nonzero in ground truth vector Π∗. In contrast, TP counts the
number of zeros in Π̂ which are true zeros in Π∗. Given these notations, the FPR and TPR are
defined as follows

TPR =
TP

P
, FPR =

FP

S
. (81)

In terms of TPR both algorithms work perfectly well. However, PProx-PDA-IA gets lower FPR
compare to the ADMM algorithm.
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Table 3: Recovery results for PPox-PDA-IA and ADMM in terms of TPR and FPR.

TPR FPR
Parameters PProx-PDA-IA ADMM PProx-PDA-IA ADMM

n = 30, p = 128, k = 1, s = 5 1.0± 0.0 1.0± 0.0 0.00± 0.00 0.00± 0.00
n = 80, p = 128, k = 1, s = 5 1.0± 0.0 1.0± 0.0 0.00± 0.00 0.00± 0.00
n = 120, p = 128, k = 1, s = 5 1.0± 0.0 1.0± 0.0 0.00± 0.00 0.00± 0.00
n = 150, p = 200, k = 1, s = 5 1.0± 0.0 1.0± 0.0 0.00± 0.00 0.00± 0.00
n = 80, p = 128, k = 1, s = 10 1.0± 0.0 1.0± 0.0 0.00± 0.00 0.00± 0.00
n = 80, p = 128, k = 5, s = 10 1.0± 0.0 1.0± 0.0 0.53± 0.03 0.56± 0.04
n = 128, p = 128, k = 5, s = 10 1.0± 0.0 1.0± 0.0 0.57± 0.01 0.59± 0.02
n = 70, p = 128, k = 5, s = 10 1.0± 0.0 1.0± 0.0 0.53± 0.05 0.54± 0.01

4.3 Partial Consensus

The partial consensus optimization problem has been introduced in (10). As stated in the intro-
duction, we are not aware of any existing algorithm that is able to perform nonconvex partial
consensus optimization with guaranteed performance. Let us consider regularized logistic regres-
sion problem [4] in a network with N nodes, in mini-batch setup i.e. each node stores b (batch
size) data points, and each component function is given by

fi(xi) =
1

Nb

[ b∑
j=1

log(1 + exp(−yijxTi vij)) +

M∑
k=1

β̂α̂x2
i,k

1 + α̂x2
i,k

]
,

where vij ∈ RM and yij ∈ {1,−1} are the feature vector and the label for the jth date point in

i-th agent, α̂ and β̂ are the regularization parameters [4].

We set N = 20, M = 10, b = 100, β̂ = 0.01, α̂ = 1, and ξ = 0.001. The graph G is
generated similar to the problem in Sec. 4.1. The PProx-PDA and PProx-PDA-IA algorithms are
implemented for the above problem. Both algorithms stop after 1000 iterations, and we measure the
averaged performance over 20 trials, where in each trial the data matrix and the initial solutions are
generated randomly independent. In Fig. 7 the stationarity-gap for the problem has been plotted.
It can be observed that the gap is vanishing as the algorithm proceeds, and it appears that
PProx-PDA-IA is faster than PProx-PDA. Fig. 8 displays the constraint violation for the PProx-
PDA algorithm with different tolerance ξ. It is also interesting to observe that when reducing the
constraint violation error (represented by ξ > 0), the resulting solution indeed achieves higher
degrees of consensus.
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Fig. 7: The stationarity-gap achieved by the proposed meth-
ods for the partial consensus problem. The solid lines and
dotted lines represent the single performance and the aver-
age performance, respectively.
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Fig. 8: Constraint Violation ‖Ax‖ achieved by the proposed
method for the partial consensus problem with different per-
missible tolerance ξ.
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5 Conclusion

In this paper, we proposed a class of perturbed primal-dual based algorithms for optimizing non-
convex and linearly constrained problems. The proposed methods are of Uzawa type, in which
a primal gradient descent step is performed followed by an (approximate) dual gradient ascent
step. We performed theoretical convergence analysis and tested their performance on a number of
statistical and engineering applications. In the future, we plan to investigate, both in theory and
in practice, whether the perturbation is necessary for primal-dual type algorithms to reach sta-
tionary solutions. Further, we plan to extend the proposed algorithms to problems with stochastic
objective functions.
Acknowledgment. The authors would like to thank Dr. Quanquan Gu who provided us with the
codes of [27]. The authors would also like to thanks Dr. Gesualdo Scutari for helpful discussions
about the numerical results.
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63. Ruszczyński, A.: Nonlinear optimization. Princeton University (2011)
64. Schizas, I., Ribeiro, A., Giannakis, G.: Consensus in ad hoc WSNs with noisy links - part I: Distributed

estimation of deterministic signals. IEEE Transactions on Signal Processing 56(1), 350 – 364 (2008)
65. Scutari, G., Facchinei, F., Song, P., Palomar, D.P., Pang, J.S.: Decomposition by partial linearization: Parallel

optimization of multi-agent systems. IEEE Transactions on Signal Processing 63(3), 641–656 (2014)
66. Shi, W., Ling, Q., Wu, G., Yin, W.: EXTRA: An exact first-order algorithm for decentralized consensus

optimization. SIAM Journal on Optimization 25(2), 944–966 (2014)
67. Sun, Y., Scutari, G., Palomar, D.: Distributed nonconvex multiagent optimization over time-varying networks.

In: 50th Asilomar Conference on Signals, Systems and Computers, pp. 788–794 (2016)
68. Tsitsiklis, J.: Problems in decentralized decision making and computation (1984). Ph.D. thesis, Massachusetts

Institute of Technology
69. Vu, V.Q., Cho, J., Lei, J., Rohe, K.: Fantope projection and selection: A near-optimal convex relaxation of

sparse PCA. In: Advances in Neural Information Processing Systems (NIPS), pp. 2670–2678 (2013)
70. Wang, Y., Yin, W., Zeng, J.: Global convergence of ADMM in nonconvex nonsmooth optimization. Journal of

Scientific Computing 78(1), 29–63 (2019)
71. Wen, Z., Yang, C., Liu, X., Marchesini, S.: Alternating direction methods for classical and ptychographic phase

retrieval. Inverse Problems 28(11), 1–18 (2012)
72. Yildiz, M.E., Scaglione, A.: Coding with side information for rate-constrained consensus. IEEE Transactions

on Signal Processing. 56(8), 3753–3764 (2008)
73. Zhang, C.H.: Nearly unbiased variable selection under minimax concave penalty. Ann. Statist. 38(2), 894–942

(2010)
74. Zhang, Y.: Convergence of a class of stationary iterative methods for saddle point problems (2010). Preprint
75. Zhu, H., Cano, A., Giannakis, G.: Distributed consensus-based demodulation: algorithms and error analysis.

IEEE Transactions on Wireless Communications 9(6), 2044–2054 (2010)

Appendix A

In this section, we justify Assumption [B4], which imposes the boundedness of the sequence of
dual variables. Throughout this section we will assume that Assumptions A and [B1]–[B3] hold.

First we prove the following. If λr+1 is unbounded, then the following holds

lim inf
r→∞

βr+1‖xr+1 − xr‖
‖λr+1‖

= 0. (82)

Assume the contrary, that λr+1 is unbounded, but there exists c1 > 0 such that

lim
r→∞

βr+1‖xr+1 − xr‖2 ≥ c1
1

βr+1
‖λr+1‖2. (83)

Combining the above with (74), and the fact that γr+1 = τc0
βr+1 , we can deduce that there exists

r0 large enough, such that the potential function is decreasing, that is,

P r+1
c − P rc ≤−

(
βr+1 − 4L

2
− cLρr − cDL− cβr+1‖BTB‖

)
‖xr+1 − xr‖2

− cτ
4
‖λr+1 − λr‖2, ∀ r ≥ r0. (84)

Then similarly as in Lemma 3, we can combine the above descent estimate with the lower bound
of the T (xr+1, λr+1; ρr+2, γr+2) function in (123), we can show that the potential function is lower
bounded.

The above lower boundedness of the potential function, combined with the descent estimate
in (84), suggests that if c is chosen as (70), then we have

∞∑
r=0

βr+1‖xr+1 − xr‖2 <∞,
∞∑
r=0

‖λr+1 − λr‖2 <∞, (85)
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which by (83) further suggests that

∞∑
r=0

1

βr+1
‖λr+1‖2 <∞. (86)

Note that from (85), (86), the update of λr+1 (67b), and ρr+1γr+1 = τ , we have

ρr+1(Axr+1 − b)− τλr → 0, (87)

which further implies that

ρr+1‖Axr+1 − b‖2 → τ2

ρr+1
‖λr+1‖2. (88)

Since ρr+1 and βr+1 are in the same order, we obtain

ρr+1‖Axr+1 − b‖2 ≤ ∞. (89)

Further, using (84), it is easy to see that the potential function is also upper bounded by P r0+1
c ,

which is finite. By investigating the terms in the definition of the potential function in (122), and
using (85), (86) and (89), we can conclude that the following term in the potential function is

bounded: β
r+1ρr+1

2 ‖xr+1 − xr‖2. Using Assumption [B3] we have the following identity

βr+1ρr+1

2
‖xr+1 − xr‖2 =

(βr+1)2

2c0
‖xr+1 − xr‖2. (90)

Therefore, there exists D1 such that

βr+1‖xr+1 − xr‖ ≤ D1. (91)

However, by (83), this also implies that λr+1 is bounded, which is a contradiction. Therefore we
reach the conclusion that, if λr+1 is unbounded, then (82) holds.

Then we are ready to make use of some constraint qualification to argue the boundedness of
the dual variables. The technique used in the proof is relatively standard, see recent works [20,52].
Assume that the so-called Robinson’s condition is satisfied for problem (1) at x̂ [63, Chap. 3]. This
means {Adx | dx ∈ TX(x̂)} = RM , where dx is the tangent direction for convex set X, and TX(x̂)
is the tangent cone to the feasible set X at the point x̂. Utilizing this assumption we will prove
that the dual variable is bounded.

Lemma 6 Suppose the Robinson’s condition holds true for problem (1). Then the sequence of dual
variable {λr} generated by (67b) is bounded.

Proof. We argue by contradiction. Suppose that the dual variable sequence is not bounded, i.e.,

‖λr‖ → ∞. (92)

From the optimality condition of xr+1 we have for all x ∈ X

〈∇f(xr) + ξr+1 +ATλr+1 + βr+1BTB(xr+1 − xr), x− xr+1)〉 ≥ 0.

Note that (82) holds true, so the following also holds:

lim inf
r→∞

βr+1‖BTB(xr+1 − xr)‖
‖λr+1‖

= 0. (93)

Let us define a new bounded sequence as µr = λr/‖λr‖, r = 1, 2, · · · . Let (x∗, µ∗) be an accumula-
tion point of {xr+1, µr+1}. Assume that the Robinson’s condition holds at x∗. Dividing both sides
of the above inequality by ‖λr+1‖ we obtain for all x ∈ X

〈∇f(xr)/‖λr+1‖+ ξr+1/‖λr+1‖+ATµr+1 + βr+1BTB(xr+1 − xr)/‖λr+1‖, x− xr+1〉 ≥ 0.
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Taking the limit, passing to a subsequence if needed, and utilizing the assumption that ‖λr+1‖ →
∞, X is a compact set, and the subgradient ξr+1 is bounded, we obtain

〈ATµ∗, x− x∗〉 ≥ 0, ∀ x ∈ X.

Utilizing the Robinson’s condition, we know that there exists x ∈ X and a scaling constant c > 0
that such cA(x − x∗) = −µ∗, which combined with the above relation yields: −c‖µ∗‖2 ≤ 0.
Therefore we must have µ∗ = 0. However, this contradicts to the fact that ‖µ∗‖ = 1. Therefore,
we conclude that {λr} is a bounded sequence. Q.E.D.

Appendix B

We show how the sufficient conditions developed in Appendix A can be applied to the problems
discussed in Section 1.2. We will focus on the partial consensus problem (10).

Consider the partial consensus problem given in (10). To proceed, we note that the Robinson’s
condition reduces to the well-known Mangasarian-Fromovitz constraint qualification (MFCQ) if
we set X = RN , and write out explicitly the inequality constraints as g(x) ≤ 0 [63, Lemma 3.16].
To state the MFCQ, consider the following system

pi(y) = 0, i = 1, · · · ,M (94)

gj(y) ≤ 0, j = 1, · · · , P

where pi : RN → R and gj : RN → R are all continuously differentiable functions. For a given
feasible solution ŷ let us use A(ŷ) to denote the indices for active inequality constraints, that is

A(ŷ) := {1 ≤ j ≤ P | gj(ŷ) = 0}. (95)

Let us define

p(y) := [p1(y); p2(y); · · · ; pM (y)], g(y) := [g1(y); g2(y); · · · ; gP (y)].

Then the MFCQ holds for system (94) at point ŷ if we have: 1) The rows of Jacobian matrix of
p(y) denoted by ∇p(ŷ) are linearly independent. 2) There exists a vector dy ∈ RN such that

∇p(ŷ)dy = 0, ∇gj(ŷ)T dy < 0, ∀ j ∈ A(ŷ). (96)

See [63, Lemma 3.17] for more details. In the following, we show that MFCQ holds true for
problem (10) at any point (x, z) that satisfies z ∈ Z. Comparing the constraint set of this problem
with system (94) we have the following specifications. The optimization variable y = [x; z], where
x ∈ RN stacks all xi ∈ R from N nodes (here we assume xi ∈ R only for the ease of presentation).
Also, z ∈ RE stacks all ze ∈ R for e ∈ E . The equality constraint is written as p(y) = [A,−I]y = 0,
where A ∈ RE×N and I is an E×E identity matrix. Finally, for the inequality constraint we have
ge(y) = |ze| − ξ, and the active set is given by A(y) := A+(y) ∪ A−(y), where

A+(y) = {e ∈ E | ze = ξ}, A−(y) = {e ∈ E | ze = −ξ}.

Without loss of generality we assume ξ = 1. To show that MFCQ holds, consider a solution
ŷ := (x̂, ẑ). First observe that the Jacobian of equality constraint is ∇p(ŷ) = [A,−I] which has
full row rank. In order to verify the second condition we need to find a vector dy := [dx; dz] ∈ RN+E

such that

Adx = dz, (97a)

[dz]e < 0 for e ∈ A+(ŷ), (97b)

[dz]e > 0 for e ∈ A−(ŷ), (97c)

where [dz]e denotes the eth component of vector dz. Let us denote an all-one vector and all-zero
vector by 1 and 0 respectively. To proceed, let us consider two different cases:
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Case 1: For the vector ẑ ∈ RE we have ẑ 6= 1 and ẑ 6= −1. Let us take

dz =
1

E
(ẑT1)1− ẑ.

First we can show that dz ∈ col(A). Note that for our problem when the graph is connected, the
only null space of A (which is the incidence of the graph) is spanned by the vector 1 [15]. Using this
fact, we have 1T dz = ẑT1−1T ẑ = 0, therefore, Adx = dz holds true. Second, for e ∈ A+(ŷ) we have
that ẑe = 1. Therefore, we can check that [dz]e =

[
1
E (ẑT1)1− ẑ

]
e
< 0, because 1

E (ẑT1)1 < 1 from
the fact that ẑ 6= 1. Condition (97b) is verified. Using similar argument we can verify condition
(97c).
Case 2: Suppose we have ẑ = 1 (resp. ẑ = −1). Since ẑ ∈ null(A) let us set dx = 0 and dz = −ẑ
(resp. dz = ẑ). First we have Adx = dz. Second, for e ∈ A+(ŷ) we have that [dz]e < 0. Similarly,
we have [dz]e > 0 for e ∈ A−(ŷ). All conditions (97a)–(97c) are verified. The above proof shows
that MFCQ holds true for the sequence {(xr, zr)} generated by the PProx-PDA algorithm, since
in the algorithm it is always guaranteed that zr ∈ Z.

Appendix C

In this appendix, we provide detailed proofs for various claims made in Section 3.

5.1 Proofs of intermediate results

Lemma 7 Suppose that the Assumptions A and [B1]-[B3] hold true, and that τ,D, are constants
defined in assumption B. Then for large enough r, there exists constant C1 such that

(1− τ)

2
‖λr+1 − λr‖2 +

τ

2
(
ρr+1

ρr+2
− 1)‖λr+1‖2 +

βr+1ρr+1

2
‖xr+1 − xr‖2BTB +

ρr+1L

2
‖xr+1 − xr‖2BTB

≤ (1− τ)

2
‖λr − λr−1‖2 +

τ

2
(
ρr

ρr+1
− 1)‖λr‖2 +

βrρr

2
‖xr − xr−1‖2BTB +

ρrL

2
‖xr − xr−1‖2BTB

− τ

2
‖λr+1 − λr‖2 +

C1(γr+1)2

2
‖λr+1‖2

+
Lρr +D(L+ βr+1‖BTB‖)

2
‖xr+1 − xr‖2BTB −

βrρr

2
‖wr‖2BTB . (98)

Proof. Suppose that ξr+1 ∈ ∂h(xr+1). From the optimality condition for x-subproblem (67a) we

have for all x ∈ dom(h)

〈∇f(xr) +ATλr+1 + βr+1BTB(xr+1 − xr) + ξr+1, xr+1 − x〉 ≤ 0. (99)

Performing the above inequality for the (r − 1)th iteration, we have

〈∇f(xr−1) +ATλr + βrBTB(xr − xr−1) + ξr, xr − x〉 ≤ 0, ∀ x ∈ dom(h).

Plugging in x = xr in the first inequality, x = xr+1 in the second one, add them together, and use
the fact that h is convex, we obtain

〈∇f(xr)−∇f(xr−1) +AT (λr+1 − λr)
+ βr+1BTB(xr+1 − xr)− βrBTB(xr − xr−1), xr+1 − xr〉 ≤ 0. (100)

Let us analyze the above inequality term by term. First, using Young’s inequality and the assump-
tion that f is L-smooth i.e. (15) we have

〈∇f(xr−1)−∇f(xr), xr+1 − xr〉 ≤ L

2
‖xr+1 − xr‖2 +

L

2
‖xr − xr−1‖2.
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Second, note that we have

〈AT (λr+1 − λr), xr+1 − xr〉 = 〈λr+1 − λr, A(xr+1 − xr)〉
= 〈λr+1 − λr, Axr+1 − b− γr+1λr + γr+1λr + γrλr−1 − γrλr−1 −Axr + b〉
(67b)
= 〈λr+1 − λr, λ

r+1 − λr

ρr+1
+ γr+1λr − γrλr−1 − λr − λr−1

ρr
〉

=
1

ρr
〈λr+1 − λr, λr+1 − λr − (λr − λr−1)〉+

(
1

ρr+1
− 1

ρr

)
‖λr+1 − λr‖2

+ 〈λr+1 − λr, λr − λr−1〉γr + 〈λr+1 − λr, λr〉(γr+1 − γr)
(13)
=

1

2

(
1

ρr
− γr

)(
‖λr+1 − λr‖2 − ‖λr − λr−1‖2 + ‖(λr+1 − λr)− (λr − λr−1)‖2

)
+ γr‖λr+1 − λr‖2 +

(
1

ρr+1
− 1

ρr

)
‖λr+1 − λr‖2

+
1

2
(γr+1 − γr)(‖λr+1‖2 − ‖λr‖2 − ‖λr+1 − λr|‖2).

Summarizing, we have

〈AT (λr+1 − λr), xr+1 − xr〉 ≥ 1

2

(
1

ρr
− γr

)(
‖λr+1 − λr‖2 − ‖λr − λr−1‖2

)
+

1

2
(γr+1 − γr)(‖λr+1‖2 − ‖λr‖2)

+

(
1

ρr+1
− 1

ρr
+ γr − 1

2
(γr+1 − γr)

)
‖λr+1 − λr‖2

(B1)
=

1

2

(
1

ρr
− γr

)(
‖λr+1 − λr‖2 − ‖λr − λr−1‖2

)
+

1

2
(γr+1 − γr)(‖λr+1‖2 − ‖λr‖2)

+

(
γr −

(
1

τ
− 1

2

)
(γr − γr+1)

)
‖λr+1 − λr‖2.

Third, notice that

〈βr+1BTB(xr+1 − xr)− βrBTB(xr − xr−1), xr+1 − xr〉
(13)
= (βr+1 − βr)‖xr+1 − xr‖2BTB +

βr

2

(
‖xr+1 − xr‖2BTB − ‖x

r − xr−1‖2BTB + ‖wr‖2BTB

)
=
βr+1

2
‖xr+1 − xr‖2BTB −

βr

2
‖xr − xr−1‖2BTB +

βr+1 − βr

2
‖xr+1 − xr‖2BTB +

βr

2
‖wr‖2BTB .

Therefore, from the above three steps, we can bound (100) by

(1− τ)

2ρr
‖λr+1 − λr‖2 +

1

2
(γr+2 − γr+1)‖λr+1‖2 +

βr+1

2
‖xr+1 − xr‖2BTB +

L

2
‖xr+1 − xr‖2

≤ (1− τ)

2ρr
‖λr − λr−1‖2 +

1

2
(γr+1 − γr)‖λr‖2 +

βr

2
‖xr − xr−1‖2BTB +

L

2
‖xr − xr−1‖2

−
(
γr − (

1

τ
− 1

2
)(γr − γr+1)

)
‖λr+1 − λr‖2 + L‖xr+1 − xr‖2

+
1

2
(γr+2 − γr+1 − (γr+1 − γr))‖λr+1‖2 − βr

2
‖wr‖2BTB . (101)
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Multiplying ρr on both sides, we obtain the following

(1− τ)

2
‖λr+1 − λr‖2 +

τ

2
(
ρr+1

ρr+2
− 1)‖λr+1‖2 +

βr+1ρr+1

2
‖xr+1 − xr‖2BTB +

ρr+1L

2
‖xr+1 − xr‖2

≤ (1− τ)

2
‖λr − λr−1‖2 +

τ

2
(
ρr

ρr+1
− 1)‖λr‖2 +

βrρr

2
‖xr − xr−1‖2BTB

+
ρrL

2
‖xr − xr−1‖2 − ρr

(
γr − (

1

τ
− 1

2
)(γr − γr+1)

)
‖λr+1 − λr‖2

+ Lρr‖xr+1 − xr‖2 +
ρr

2
(γr+2 − γr+1 − (γr+1 − γr))‖λr+1‖2

+
(βr+1)(ρr+1 − ρr)

2
‖xr+1 − xr‖2BTB +

L(ρr+1 − ρr)
2

‖xr+1 − xr‖2 − βrρr

2
‖wr‖2BTB .

where we have used the following fact

0 ≥
(

ρr

ρr+2
− ρr

ρr+1

)
=

ρr

ρr+1

(
ρr+1

ρr+2
− 1

)
≥
(
ρr+1

ρr+2
− 1

)
.

Further, by Assumption B we have ρr+1−ρr = D, also we have ‖xr+1−xr‖2BTB ≤ ‖B
TB‖‖xr+1−

xr‖2. Therefore, the following holds for large enough r:

(1− τ)

2
‖λr+1 − λr‖2 +

τ

2
(
ρr+1

ρr+2
− 1)‖λr+1‖2 +

βr+1ρr+1

2
‖xr+1 − xr‖2BTB +

ρr+1L

2
‖xr+1 − xr‖2

≤ (1− τ)

2
‖λr − λr−1‖2 +

τ

2
(
ρr

ρr+1
− 1)‖λr‖2 +

βrρr

2
‖xr − xr−1‖2BTB +

ρrL

2
‖xr − xr−1‖2

− τ

2
‖λr+1 − λr‖2 +

C1(γr+1)2

2
‖λr+1‖2

+
Lρr +D(L+ βr+1‖BTB‖)

2
‖xr+1 − xr‖2 − βrρr

2
‖wr‖2BTB , (102)

where the last inequality is true using the following relations:

– To bound the term γr+2 − γr+1 − (γr+1 − γr) we have

γr+2 − γr+1 − (γr+1 − γr) =

(
τ

ρr+2
− τ

ρr+1
− τ

ρr+1
+

τ

ρr

)
= τD

ρr+2 − ρr

ρrρr+1ρr+2
=

2τD2

ρrρr+1ρr+2
.

Thus there exists a constant C1 such that

ρr

2

(
γr+2 − γr+1 − (γr+1 − γr)

)
≤ C1(γr+1)2

2
.

– For large enough r

τ ≥ D(2− τ)

ρr+1
.

The proof of the lemma is complete. Q.E.D.

Now let us analyze the behavior of T (x, λ) which is originally defined in (24). In this case, because
T is also a function of ρ and γ, we denote it as T (x, λ; ρ, γ).
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Lemma 8 Suppose that the Assumptions Assumptions A and [B1]-[B3] hold true, τ and D are
constants defined in Assumption B. Then we have

T (xr+1, λr+1; ρr+2, γr+2) +

(
(1− τ)

γr+2

2
− D(γr+2)2

2τ
+D(γr+2)2

)
‖λr+1‖2

≤ T (xr, λr; ρr+1, γr+1) +

(
(1− τ)

γr+1

2
− D(γr+1)2

2τ
+D(γr+1)2

)
‖λr‖2

−
(
βr+1 − 3L

2

)
‖xr+1 − xr‖2 +D

(γr+1)2 − (γr+2)2

2τ
‖λr+1‖2

+ (1− τ)

(
1

ρr+1
− γr+1

2
+

D(γr+1)2

2τ2(1− τ)

)
‖λr+1 − λr‖2

+
(1− τ)(γr+1 − γr+2)

2
‖λr+1‖2 +

D(γr+2)2

2
‖λr+1‖2

Proof. Following the same analysis as in (27), we have that the T function has the following

descent when only changing the primal variable

T (xr+1, λr; ρr+1, γr+1)− T (xr, λr; ρr+1, γr+1)

≤ −
(
βr+1 − 3L

2

)
‖xr+1 − xr‖2. (103)

Second, following (28), it is easy to verify that

T (xr+1, λr+1; ρr+1, γr+1)− T (xr+1, λr; ρr+1, γr+1)

≤ (1− τ)

(
‖λr+1 − λr‖2

ρr+1
+
γr+1

2

(
‖λr‖2 − ‖λr+1‖2 − ‖λr+1 − λr‖2

))
≤ (1− τ)

(
‖λr+1 − λr‖2

ρr+1
+
γr+1

2
‖λr‖2 − γr+2

2
‖λr+1‖2

− (
γr+1

2
− γr+2

2
)‖λr+1‖2 − γr+1

2
‖λr+1 − λr‖2

)
. (104)

The most involving step is the analysis of the change of T when the parameters ρ and γ are
changed. We first have the following bound

T (xr+1, λr+1; ρr+2, γr+2)− T (xr+1, λr+1; ρr+1, γr+1) (105)

= (1− τ)(γr+1 − γr+2)‖λr+1‖2 +
ρr+1 − ρr

2
‖Axr+1 − b‖2

= (1− τ)(γr+1 − γr+2)‖λr+1‖2

+
D

2
‖(Axr+1 − b)− γr+1λr‖2︸ ︷︷ ︸

(a)

− D

2
‖γr+1λr‖2︸ ︷︷ ︸

(b)

+D〈γr+1λr, Axr+1 − b〉︸ ︷︷ ︸
(c)

.

The term (a) in (105) is given by

D

2
‖(Axr+1 − b)− γr+1λr‖2 =

D

(ρr+1)2
‖λr+1 − λr‖2. (106)

The term (b) in (105) is given by

−D
2
‖γr+1λr‖2 = −(γr+1)2D

2
‖λr‖2. (107)
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The term (c) in (105) is given by

D〈γr+1λr, Axr+1 − b〉 = D〈γr+1λr,
λr+1 − λr

ρr+1
+ γr+1λr〉

= D(γr+1)2‖λr‖2 +D
(γr+1)2

2τ
(‖λr+1‖2 − ‖λr‖2 − ‖λr+1 − λr‖2). (108)

So collecting terms, we have

T (xr+1, λr+1; ρr+2, γr+2) +

(
(1− τ)

γr+2

2
− D(γr+2)2

2τ
+
D

2
(γr+2)2

)
‖λr+1‖2

≤T (xr, λr; ρr+1, γr+1) +

(
(1− τ)

γr+1

2
− D(γr+1)2

2τ
+
D

2
(γr+1)2

)
‖λr‖2

− (
βr+1 − 3L

2
)‖xr+1 − xr‖2 +D

(γr+1)2 − (γr+2)2

2τ
‖λr+1‖2

+ (1− τ)

(
1

ρr+1
− γr+1

2
+
D(γr+1)2

τ2(1− τ)

)
‖λr+1 − λr‖2

+
1− τ

2
(γr+1 − γr+2)‖λr+1‖2 + (γr+2)2D

2
‖λr+1‖2 (109)

The lemma is proved. Q.E.D.

In the next step we construct and estimate the descent of the potential function. For some given
c > 0, we construct the following potential function

P r+1
c :=T (xr+1, λr+1; ρr+2, γr+2) (110)

+

(
(1− τ)

γr+2

2
− D(γr+2)2

2τ
+
D

2
(γr+2)2

)
‖λr+1‖2

+ c

(
(1− τ)

2
‖λr+1 − λr‖2 +

τ

2
(
ρr+1

ρr+2
− 1)‖λr+1‖2

+
βr+1ρr+1

2
‖xr+1 − xr‖2BTB +

ρr+1L

2
‖xr+1 − xr‖2BTB

)
.

Lemma 9 Suppose that the Assumptions A and [B1]-[B3] hold true, and let τ and D be the
constants defined in Assumption B. Then for large enough r we have the following for the potential
function Pc

P r+1
c − P rc ≤−

(
βr+1 − 3L

2
− cLρr − cDL− cβr+1‖BTB‖

)
‖xr+1 − xr‖2

− cτ
4
‖λr+1 − λr‖2 +D0(γr+1)2‖λr+1‖2 − cβ

rρr

2
‖wr‖2BTB , (111)

where D0 is a positive constant.

Proof. According to Lemma 7 and Lemma 8, for large enough r we have

P r+1
c − P rc ≤ −

(
βr+1 − 3L

2
− cLρr − cDL− cβr+1‖BTB‖

)
‖xr+1 − xr‖2

−
(
c
τ

2
− (1− τ)

(
1

ρr+1
− γr+1

2
+
D(γr+1)2

τ2(1− τ)

))
‖λr+1 − λr‖2

+
(1− τ)(γr+1 − γr+2)

2
‖λr+1‖2 +

D(γr+2)2

2
‖λr+1‖2 − cβ

rρr

2
‖wr‖2BTB

+D
(γr+1)2 − (γr+2)2

2τ
‖λr+1‖2 + c

C1(γr+1)2

2
‖λr+1‖2. (112)
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From the properties of perturbation parameter γr given in (68) we can observe that

γr+1 − γr+2 ≤ D

τ
γr+1γr+2 ≤ D

τ
(γr+1)2.

Utilizing this result together with the Assumption [B4] related to dual variable λ, we obtain the
following relations for large enough r

(1− τ)(γr+1 − γr+2)

2
‖λr+1‖2 ≤ D (1− τ)(γr+1)2

2τ
‖λr+1‖2. (113)

Similarly we also have

c
C1(γr+1)2

2
‖λr+1‖2 ≤ cC1(γr+1)2

2
‖λr+1‖2.

Moreover, since (γr+1)2 − (γr+2)2 ≤ (γr+1)2, and γr+2 ≤ γr+1, we have

D
(γr+1)2 − (γr+2)2

2τ
‖λr+1‖2 ≤ D

2τ
(γr+1)2‖λr+1‖2. (114)

Let us set

D0 :=
D(1− τ)

2τ
+
cC1

2
+
D

2τ
+
D

2
,

which adds up the constants in front of (γr+1)2 in the above terms. We can therefore bound the
difference of the potential function by

P r+1
c − P rc ≤ −

(
βr+1 − 3L

2
− cLρr − cDL− cβr+1‖BTB‖

)
‖xr+1 − xr‖2

−
(
c
τ

2
− (1− τ)

(
1

ρr+1
− γr+1

2
+
D(γr+1)2

τ2(1− τ)

))
‖λr+1 − λr‖2

+D0(γr+1)2‖λr+1‖2 − cβ
rρr

2
‖wr‖2BTB . (115)

Since (1− τ)
(

1
ρr+1 − γr+1

2 + D(γr+1)2

τ2(1−τ)

)
→ 0, we can find r0 large enough such that for r ≥ r0

(1− τ)

(
1

ρr+1
− γr+1

2
+

D(γr+1)2

2τ2(1− τ)

)
≤ cτ

4
. (116)

Thus, for r ≥ r0 we have

P r+1
c − P rc ≤−

(
βr+1 − 3L

2
− cLρr − cDL− cβr+1‖BTB‖

)
‖xr+1 − xr‖2

− cτ
4
‖λr+1 − λr‖2 +D0(γr+1)2‖λr+1‖2 − cβ

rρr

2
‖wr‖2BTB . (117)

The claim is proved. Q.E.D.

Note that by Assumption B we have that
∞∑
r=1

(γr+1)2 <∞. (118)

Therefore to ensure the potential function decrease eventually, we need to pick the constants in
the following way [note that by (69), c0ρ

r+1 = βr+1]

c0ρ
r+1 − 3L

2
− cLρr − cDL− cc0ρr+1‖BTB‖ > 0. (119)

It is clear that if constant c is picked such that

0 < c <
c0

2(L+ c0‖BTB‖)
. (120)

Then the above inequality is satisfied for large enough r.
In this step we show that the potential function is lower bounded.
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Lemma 10 Suppose that the Assumptions A and [B1]-[B3] hold true, and that the constant c is
chosen such that

0 < c <
1− τ
D

. (121)

Then the potential function P rc defined in (110) is lower bounded.

Proof. Let us rearrange the terms of the potential function (110), we obtain

P r+1
c = T (xr+1, λr+1; ρr+2, γr+2) (122)

+

(
(1− τ)D(γr+2)2

2τ
+

(1− τ − cD)γr+2

2

)
‖λr+1‖2

+ c

(
(1− τ)

2
‖λr+1 − λr‖2 +

βr+1ρr+1

2
‖xr+1 − xr‖2BTB +

Lρr+1

2
‖xr+1 − xr‖2

)
.

First of all, we note that if we set 0 < c < 1−τ
D then the coefficient in front of ‖λr+1‖2 is positive.

Let us analyze T (xr+1, λr+1; ρr+2, γr+2). We have the following

〈λr+1 − ρr+2γr+2λr+1, Axr+1 − b− γr+2λr+1〉

=
1− τ
ρr+1

〈λr+1, λr+1 − λr〉+ (1− τ)〈λr+1, γr+1λr − γr+2λr+1〉

=
1− τ
ρr+1

〈λr+1, λr+1 − λr〉+ (1− τ)γr+1〈λr+1, λr − λr+1〉+ (1− τ)(γr+1 − γr+2)‖λr+1‖2

=

(
1− τ
ρr+1

− (1− τ)γr+1

)
〈λr+1, λr+1 − λr〉+ (1− τ)(γr+1 − γr+1)‖λr+1‖2

(i)

≥
(

1− τ
ρr+1

− (1− τ)γr+1

)
〈λr+1, λr+1 − λr〉

=
1

2ρr+1
(1− τ)2(‖λr+1‖2 − ‖λr‖2 + ‖λr+1 − λr‖2)

(ii)

≥ (1− τ)2

2
(

1

ρr+1
‖λr+1‖2 − 1

ρr
‖λr‖2). (123)

where (i) is from the fact that γr+1 ≥ γr+2, and (ii) is due to ρr+1 ≥ ρr. Note that de-
riving the above bound does not require the boundedness of {λr+1}. It follows that the sum∑∞
r=1 T (xr+1, λr+1; ρr+2, γr+2) is lower bounded. The claim can then be proved by using a similar

argument as in Lemma 3. Q.E.D.

5.2 Proof of Theorem 2

Now we are ready to prove Theorem 2.
Proof. In this proof we pick a special case of B satisfying BTB = I, in order to avoid unnecessarily

complicated notation. The proof is a modification of the classical result in [8, Proposition 3.5].
Combining Lemma 9 and Lemma 10, we have

∞∑
r=1

βr+1‖xr+1 − xr‖2 <∞,
∞∑
r=1

‖λr+1 − λr‖2 <∞, (124)

∞∑
r=1

(βr+1)2‖wr+1‖2 <∞. (125)
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From (124) we have λr+1 − λr → 0, which implies that From (125), we have

ρr+1(Axr+1 − b)− τλr → 0. (126)

Combined with the assumption that the sequence {λr} is bounded, and ρr+1 →∞, we conclude

Axr+1 − b→ 0. (127)

Let (x∗, λ∗) be an accumulation point of (xr+1, λr+1). Comparing the optimality condition of
the problem (1) and the optimality condition of x-subproblem (67a) [which is given in (99)], in
order to argue convergence to stationary solutions, we need to show

βr+1‖xr+1 − xr‖ → 0. (128)

Next we show such a claim. To proceed, let us define

vr+1 := βr+1(xr+1 − xr). (129)

From (125), it is easy to show that

‖vr+1 − vr‖ = ‖βr+1(xr+1 − xr)− βr(xr − xr−1)‖ → 0. (130)

From the first inequality in (124), we have

∞∑
r=1

1

βr+1
‖vr+1‖2 → 0. (131)

This relation combined with Assumption [B3] implies: lim inf ‖vr+1‖ = 0.
Let us pass a subsequence K to {(xr, λr)} and denote (x∗, λ∗) as its accumulation point. For

notational simplicity, in the following the index set {r} all belongs to the set K. We already know
from the previous argument that lim infr→∞ ‖vr+1‖ = 0. Then it is clear that limr→∞ ‖vr+1‖ = 0
if and only the following condition is true

lim
r→∞

‖vr+1 − vr+t‖ = 0, ∀ t > 0. (132)

Let us construct a new sequence

zr+1 = ATλr+1 + vr+1. (133)

Clearly lim infr→∞ zr+1 = ATλ∗, because along the subsequence {λr} converges to λ∗. It is also
easy to show that (132) is true if and only if the following is true

lim
r→∞

‖zr+1 − zr+t‖ = 0, ∀ t > 0. (134)

Suppose that (134) is not true. Hence there exists an ε > 0 such that ‖zr‖ < ‖ATλ∗‖ + ε/2 for
infinitely many r, and ‖zr+1‖ > ‖ATλ∗‖+ ε/2 for infinitely many r. Then there exists an infinite
subset of iteration indices R such that for each r ∈ R, there exits a t(r) such that

‖zr‖ < ‖ATλ∗‖+ ε/2, ‖zt(r)‖ > ‖ATλ∗‖+ ε,

‖ATλ∗‖+ ε/2 < ‖zt‖ ≤ ‖ATλ∗‖+ ε, ∀ r < t < t(r).
(135)

Also from the fact that ‖vr+1−vr‖ → 0 and ‖λr+1−λr‖ → 0, we can conclude that ‖zr+1−zr‖ → 0.
Therefore, we must have

‖zr‖ ≥ 3ε

8
+ ‖ATλ∗‖. (136)

Let r be large enough such that∣∣‖ATλ∗‖ − ‖ATλr‖∣∣ ≤ ‖AT (λ∗ − λr)‖ ≤ ε

4
. (137)
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Then we have

‖vt‖ ≤ ‖ATλt‖+ ‖ATλ∗‖+ ε ≤ 2(‖ATλ∗‖+ ε), ∀ r < t < t(r), (138a)

‖vt‖ ≥ ‖zt‖ − ‖ATλt‖
(137)

≥ ‖zt‖ − ‖ATλ∗‖ − ε

4

(135)

≥ ε

4
, ∀ r < t < t(r). (138b)

‖vr‖ ≥ ‖zr‖ − ‖ATλr‖ ≥ ‖zr‖ − ‖ATλ∗‖ − ε

4

(136)

≥ ε

8
. (138c)

From the definition of t(r) we have that for all r ∈ R the following is true

ε

2
≤ ‖zt(r)‖ − ‖zr‖ ≤

t(r)−1∑
t=r

‖zt+1 − zt‖. (139)

Next, we make the following simplification that X ≡ R and h ≡ 0 to avoid lengthy discussion.
The subsequent proof holds true for the general case as well, using the same techniques presented
in [65, Theorem 4]. From the optimality condition (100), and with the above simplification, we
obtain

zt+1 − zt = −(∇f(xt)−∇f(xt−1)), (140)

which implies that

‖zt+1‖ − ‖zt‖ ≤ ‖zt+1 − zt‖ ≤ L‖xt − xt−1‖ =
L

βt
‖vt‖. (141)

Combining this result with (139), we obtain

ε

2
< L

t(r)−1∑
t=r

1

βt
‖vt‖

(138a)

≤ 2L(‖ATλ∗‖+ ε)

t(r)−1∑
t=r

1

βt
. (142)

Which implies that

ε

4L(‖ATλ∗‖+ ε)
≤
t(r)−1∑
t=r

1

βt
. (143)

Using the descent of the potential function (115) we have, for r ∈ R and r large enough

P t(r)c − P rc ≤ −
t(r)−1∑
t=r

C5

βt+1
‖vt+1‖2 +

t(r)−1∑
t=r

C3(γt+1)2‖λt+1‖2

≤ − C5

L(‖ATλ∗‖+ ε)

ε2

64
(144)

where the last inequality we have used the fact that

lim
R0→∞

∞∑
r=R0

C3(γt+1)2‖λt+1‖2 → 0,

and equations (138b) and (143). This means that the potential function goes to −∞, a contradic-
tion. Therefore we conclude that

lim
r→∞

‖zr+1 − zr+t‖ = 0, ∀ t > 0. (145)

which further implies that

lim
r→∞

‖vr+1 − vr+t‖ = 0, ∀ t > 0. (146)

Combined with the fact that lim inf ‖vr+1‖ = 0, we conclude that

lim
r→∞

‖vr+1‖ = 0. (147)

We conclude that every accumulation point of the sequence is a KKT point. Q.E.D.
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