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Overview

Overview

The Alternating Direction Method of Multipliers (ADMM) is a very popular
method for dealing with large-scale optimization problems

Applications to classical problems
1 LP [Boyd 11], [Ye 15]

2 SDP [Wen-Goldfarb-Yin 10], [Sun-Toh-Yang 15]

3 QCQP [Huang-Sidiropoulos 16]

Applications to emerging areas
1 Social network inference/computing [Baingana et al 15]

2 Training neural networks [Taylor et al 16]

3 Smart grid [Dall’Anese et al 13], [Peng-Low 15]

4 Bioinformatics [Forouzan-Ihler 13]
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Overview

Research Question

Q: Is ADMM convergent for nonconvex problems?

A: Yes, for global consensus and sharing problems, and many more
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Overview

Contribution

Develop a new framework for analyzing the nonconvex ADMM

Obtain key insights on the behavior of the algorithm

Motivate new research in theory and applications
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Literature Review

The Basic Setup

Consider the following problem with K blocks of variables {xk}K
k=1:

min f (x) :=
K

∑
k=1

hk(xk) + g(x1, · · · , xK) (P)

s.t.
K

∑
k=1

Akxk = q, xk ∈ Xk, ∀ k = 1, · · · , K

hk(·): a convex nonsmooth function

g(·): a smooth, possibly nonconvex function

Ax = q: linearly coupling constraint, Ak ∈ RM×Nk , q ∈ RM

Xk ⊆ RNk : a closed convex set
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Literature Review

The Basic Setup

The augmented Lagrangian (AL) is given by

L(x; y) =
K

∑
k=1

hk(xk) + g(x1, · · · , xK) + 〈y, q− Ax〉+ ρ

2
‖q− Ax‖2,

where ρ > 0 is the penalty parameter; y is the dual variable
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Literature Review

The Basic Setup

The ADMM performs a block coordinate descent (BCD) on the AL,
followed by an (approximate) dual ascent

Inexactly optimizing the AL often yields closed-form solutions

The ADMM Algorithm
At each iteration t + 1:
Update the primal variables:

xt+1
k = arg min

xk∈Xk
L(xt+1

1 , · · · , xt+1
k−1, xk, xt

k+1, · · · , xt
K; yt), ∀ k.

Update the dual variable:

yt+1 = yt + ρ(q− Axt+1).
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Literature Review

The Convex Case

ADMM works for convex, separable, 2-block problems

The g(·) and hk(·)’s convex; g(x1, · · · , xk) = ∑K
k=1 gk(xk); K = 2

Many classic works on the analysis [Glowinski-Marroco 75], [Gabay-Mercier 76]
[Glowinski 83]...

Equivalence to Douglas-Rachford Splitting and PPA [Gabay 83],
[Eckstein-Bertsekas 92]

Convergence rates and iteration complexity analysis [Eckstein 89] [He-Yuan
12] [Deng-Yin 12] [Hong-Luo 12]

Extension to multiple-blocks [Sun-Luo-Ye 14] [Chen et al 13] [Ma 12]
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Literature Review

Solving Nonconvex Problems?

All the works mentioned before are for convex problems

Recently, widely (and wildly) applied to nonconvex problems as well
1 Distributed clustering [Forero-Cano-Giannakis 11]
2 Matrix separation/completion [Xu-Yin-Wen-Zhang 11]
3 Phase retrieval [Wen-Yang-Liu-Marchesini 12]
4 Distributed matrix factorization [Ling-Yin-Wen 12]
5 Manifold optimization [Lai-Osher 12]
6 Asset allocation [Wen-Peng-Liu-Bai-Sun 13]
7 Nonnegative matrix factorization [Sun-Fevotte 14]
8 Polynomial optimization/tensor decomposition [Jiang-Ma-Zhang 13,

Livavas-Sidiropoulos 14]
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Literature Review

Application 1: Nonnegative Tensor Factorization

Figure: ADMM for solving tensor factorization problem [Liavas-Sidiropoulos 14]
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Literature Review

Issues and Challenges

Pros: Nonconvex ADMM achieves excellent numerical performance

Cons: A general lack of global performance analysis

Convergence claim

1 IF the successive differences of all the primal and dual variables go to zero
(e.g., xt+1 − xt → 0, yt+1 − yt → 0)

2 Then any limit point is a stationary solution

But this is a big "IF"!
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Literature Review

Issues and Challenges

The assumption on iterates is uncheckable a priori

"Assume" (without proving) that feasibility holds in the limit

An exception [Zhang 10]: convergence for certain special QP

1 The AL is strongly convex

2 Only has the linear constraint

3 The dual stepsize is very small
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Literature Review

Issues and Challenges

Rigorously analyzing nonconvex ADMM is challenging

Cases I: Without the linear constraint, reduces to the classic BCD

Can diverge for general nonconvex g(·) with K ≥ 3 [Powell 73]

Cases II: With the linear constraint and K = 1

Can diverge for any fixed ρ > 0 [Wang-Yin-Zeng 16]
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A New Analysis Framework A Toy Example

A Toy Example

First consider the following toy nonconvex example

min
x,z

1
2

xT Ax + bz, s.t. z ∈ [1, 2], z = x

where A is a symmetric matrix; x ∈ RN

ADMM Convergent?
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A New Analysis Framework A Toy Example

A Toy Example (cont.)

Randomly generate the data matrices A and b with N = 10

Plot the following

1 Primal feasibility gap: ‖z− x‖
2 The optimality measure: ‖x− proj [x− (Ax + b)] ‖
3 The x-feasibility gap: ‖x− proj(x)‖

All three quantities go to zero iff a stationary solution has been reached

Mingyi Hong (Iowa State University) 16 / 38



A New Analysis Framework A Toy Example

First Try: ρ = 20
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Figure: N = 10, ρ = 20
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Second Try: ρ = 200
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A New Analysis Framework A Toy Example

A Toy Example (cont.)
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A New Analysis Framework A Toy Example

A Toy Example (cont.)

The convergence is ρ-dependent

When ρ is small, the algorithm fails to converge

Different from the convex case, where any ρ > 0 should work

Reminiscent to the AL method, careful choice of ρ in nonconvex case

Mingyi Hong (Iowa State University) 17 / 38
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A New Analysis Framework Nonconvex Consensus Problem

Problem Setup: A Nonconvex Consensus Problem

Consider a nonconvex global consensus problem

A distributed optimization problem defined over a network of K agents

h(x0)

g1(x1)

g2(x2)

g3(x3)· · ·

gK(xK)
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Problem Setup: A Nonconvex Consensus Problem

Consider a nonconvex global consensus problem

A distributed optimization problem defined over a network of K agents

Formally, the problem is given by

min
K
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A New Analysis Framework Nonconvex Consensus Problem

Problem Setup: A Nonconvex Consensus Problem

Consider a nonconvex global consensus problem

A distributed optimization problem defined over a network of K agents

Formally, the problem is given by

min
K

∑
k=1

gk(xk)+

nonsmooth part

h(x0) , s.t. xk = x0, ∀ k = 1, · · · , K, x0 ∈ X.
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A New Analysis Framework Nonconvex Consensus Problem

Problem Setup: A Nonconvex Consensus Problem

Wide applications in distributed signal and information processing,
parallel optimization, etc [Boyd et al 11]

For example, in the distributed sparse PCA problem [H.-Luo-Razaviyayn 14]

1 gk(xk) = −xT
k AT

k Akxk: AT
k Ak is the covariance matrix for local data

2 h(·): some sparsity promoting nonsmooth regularizer
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A New Analysis Framework Algorithm and Analysis

The Algorithm
The AL function is given by

L({xk}, x0; y) =
K

∑
k=1

gk(xk) + h(x0) +
K

∑
k=1
〈yk, xk − x0〉+

K

∑
k=1

ρk
2
‖xk − x0‖2.

Algorithm 1. The Consensus ADMM
At each iteration t + 1, compute:

xt+1
0 = argmin

x0∈X
L({xt

k}, x0; yt).

Each node k computes xk by solving:

xt+1
k = arg min

xk
gk(xk) + 〈yt

k, xk − xt+1
0 〉+ ρk

2
‖xk − xt+1

0 ‖2.

Each node k updates the dual variable:

yt+1
k = yt

k + ρk

(
xt+1

k − xt+1
0

)
.

Mingyi Hong (Iowa State University) 20 / 38



A New Analysis Framework Algorithm and Analysis

Illustration: x0 update

x0 solves: xt+1
0 = argminx0∈X L({xt

k}, x0; yt) (often with closed-form)

x0

x1, y1

x2, y2

x3, y3x4, y4

xK, yK

Mingyi Hong (Iowa State University) 21 / 38



A New Analysis Framework Algorithm and Analysis

Illustration: broadcast

Broadcasts the most recent x0

x0

x1, y1

x2, y2

x3, y3x4, y4

xK, yK
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A New Analysis Framework Algorithm and Analysis

Illustration: (xk, λk) update

xk solves: xt+1
k = arg minxk gk(xk) + 〈yt

k, xk − xt+1
0 〉+ ρk

2 ‖xk − xt+1
0 ‖2.

x0

x1, y1

x2, y2

x3, y3x4, y4

xK, yK

Mingyi Hong (Iowa State University) 21 / 38



A New Analysis Framework Algorithm and Analysis

Illustration: aggregate

Aggregate (xk, yk) to the central node

x0

x1, y1

x2, y2

x3, y3x4, y4

xK, yK
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A New Analysis Framework Algorithm and Analysis

Main Assumptions

Assumption A
A1. Each gk has Lipschitz continuous gradient:

‖∇kgk(xk)−∇kgk(zk)‖ ≤ Lk‖xk − zk‖, ∀ xk, zk, k = 1, · · · , K.

Moreover, h is convex (possible nonsmooth); X is a closed convex set.

A2. ρk is large enough such that:

1 For all k, the xk subproblem is strongly convex with modulus γk(ρk);

2 For all k, the following is satisfied

ρk > max

{
2L2

k
γk(ρk)

, Lk

}
.

A3. f (x) is bounded from below over X.

Mingyi Hong (Iowa State University) 22 / 38



A New Analysis Framework Algorithm and Analysis

Main Assumptions

Assumption A
A1. Each gk has Lipschitz continuous gradient:

‖∇kgk(xk)−∇kgk(zk)‖ ≤ Lk‖xk − zk‖, ∀ xk, zk, k = 1, · · · , K.

Moreover, h is convex (possible nonsmooth); X is a closed convex set.

A2. ρk is large enough such that:

1 For all k, the xk subproblem is strongly convex with modulus γk(ρk);

2 For all k, the following is satisfied

ρk > max

{
2L2

k
γk(ρk)

, Lk

}
.

A3. f (x) is bounded from below over X.

Mingyi Hong (Iowa State University) 22 / 38



A New Analysis Framework Algorithm and Analysis

Main Assumptions

Assumption A
A1. Each gk has Lipschitz continuous gradient:

‖∇kgk(xk)−∇kgk(zk)‖ ≤ Lk‖xk − zk‖, ∀ xk, zk, k = 1, · · · , K.

Moreover, h is convex (possible nonsmooth); X is a closed convex set.

A2. ρk is large enough such that:

1 For all k, the xk subproblem is strongly convex with modulus γk(ρk);

2 For all k, the following is satisfied

ρk > max

{
2L2

k
γk(ρk)

, Lk

}
.

A3. f (x) is bounded from below over X.

Mingyi Hong (Iowa State University) 22 / 38



A New Analysis Framework Algorithm and Analysis

Proof Ideas: Preliminary

Question: Can we leverage the existing analysis for the convex case?

Unfortunately no, because most existing analysis relies on showing

‖xt − x∗‖2 + ‖yt − y∗‖2 → 0

where (x∗, y∗) are the globally optimal primal-dual pair

How to measure the progress of the algorithm?
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A New Analysis Framework Algorithm and Analysis

Proof Ideas: A Key Step

Solution: Use L(x; y) as the merit function to guide the progress

Challenge: The behavior of L(x; y) is difficult to characterize

1 Decreases after each primal update

2 Increases after each dual update

Technique: Bound the change of the dual update by that of the primal
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A New Analysis Framework Algorithm and Analysis

Proof Steps

We develop a three-step analysis framework

Step 1: Show "sufficient descent"

L({xt+1
k }, xt+1

0 ; yt+1)− L({xt
k}, xt

0; yt)

≤
K

∑
k=1

(
L2

k
ρk
− γk(ρk)

2

)
‖xt+1

k − xt
k‖

2 − ∑K
k=1 ρk

2
‖xt+1

0 − xt
0‖2

Step 2: Show the following is "lower bounded"

L(xt+1
0 , {xt+1

k }; yt+1) ≥ −∞

Step 3: Show convergence to the set of stationary solutions
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A New Analysis Framework Algorithm and Analysis

The Convergence Claim

Convergence of ADMM for Nonconvex Global Consensus

Claim: Suppose Assumption A is satisfied. Then we have

1 The linear constraint is satisfied eventually:

lim
t→∞
‖xt+1

k − xt+1
0 ‖ = 0, ∀ k

2 Any limit point of the sequence generated by Algorithm 1 is a stationary
solution of the consensus problem

Mingyi Hong (Iowa State University) 26 / 38



A New Analysis Framework Algorithm and Analysis

The Iteration Complexity Analysis

Need new gap function to measure the gap to stationarity

P(xt, yt) :=

primal gap

‖∇̃L({xt
k}, xt

0, yt)‖2 +
K

∑
k=1

dual gap

‖xt
k − xt

0‖2

P(x, y) = 0⇔ (x, y) is a stationary solution

Claim: Suppose Assumption A is satisfied, ε > 0 be some constant.
Let T(ε) denote an iteration index which satisfies

T(ε) := min
{

t | P(xt, yt) ≤ ε, t ≥ 0
}

for some ε > 0. Then there exists some constant C > 0 such that

T(ε) ≤ C
ε

.
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A New Analysis Framework Algorithm and Analysis

Proximal Step and Flexible Updates

Use proximal gradient to update xk for cheap iterations

The xk step is replaced by

xt+1
k = argmin

xk
〈∇gk(xt+1

0 ), xk − xt+1
0 〉+ 〈yt

k, xk − xt+1
0 〉

+
ρk + Lk

2
‖xk − xt+1

0 ‖2.

Gradient evaluated at the most recent x0!

We can also use stochastic node sampling

Similar convergence guarantee as Algorithm 1
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A New Analysis Framework Algorithm and Analysis

Proximal Step and Flexible Updates

Use proximal gradient to update xk for cheap iterations

The xk step is replaced by

xt+1
k = argmin

xk
〈∇gk(xt+1

0 ), xk − xt+1
0 〉+ 〈yt

k, xk − xt+1
0 〉

+
ρk + Lk

2
‖xk − xt+1

0 ‖2.

Gradient evaluated at the most recent x0!

We can also use stochastic node sampling

Similar convergence guarantee as Algorithm 1

Mingyi Hong (Iowa State University) 28 / 38



A New Analysis Framework Algorithm and Analysis

Proximal Step and Flexible Updates

Use proximal gradient to update xk for cheap iterations

The xk step is replaced by

xt+1
k = argmin

xk
〈∇gk(xt+1

0 ), xk − xt+1
0 〉+ 〈yt

k, xk − xt+1
0 〉

+
ρk + Lk

2
‖xk − xt+1

0 ‖2.

Gradient evaluated at the most recent x0!

We can also use stochastic node sampling

Similar convergence guarantee as Algorithm 1

Mingyi Hong (Iowa State University) 28 / 38



A New Analysis Framework Algorithm and Analysis

Proximal Step and Flexible Updates

Use proximal gradient to update xk for cheap iterations

The xk step is replaced by

xt+1
k = argmin

xk
〈∇gk(xt+1

0 ), xk − xt+1
0 〉+ 〈yt

k, xk − xt+1
0 〉

+
ρk + Lk

2
‖xk − xt+1

0 ‖2.

Gradient evaluated at the most recent x0!

We can also use stochastic node sampling

Similar convergence guarantee as Algorithm 1

Mingyi Hong (Iowa State University) 28 / 38



A New Analysis Framework Algorithm and Analysis

Proximal Step and Flexible Updates

Use proximal gradient to update xk for cheap iterations

The xk step is replaced by

xt+1
k = argmin

xk
〈∇gk(xt+1

0 ), xk − xt+1
0 〉+ 〈yt

k, xk − xt+1
0 〉

+
ρk + Lk

2
‖xk − xt+1

0 ‖2.

Gradient evaluated at the most recent x0!

We can also use stochastic node sampling

Similar convergence guarantee as Algorithm 1

Mingyi Hong (Iowa State University) 28 / 38



A New Analysis Framework Algorithm and Analysis

The Nonconvex Sharing Problem

Our analysis also works for the well-known sharing problem
[Boyd-Parikh-Chu-Peleato-Eckstein 11]

min
K

∑
k=1

hk(xk) + g (x0)

s.t.
K

∑
k=1

Akxk = x0, xk ∈ Xk, k = 1, · · · , K.

xk ∈ RNk is the variable associated with agent k

(K + 1)-block problem, convergence unknown for the convex case

Apply our analysis to show convergence
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A New Analysis Framework Algorithm and Analysis

Remarks

The first analysis framework for iteration complexity of nonconvex ADMM

A major departure from the classic analysis for convex problems

The AL guides the convergence of the algorithm

The ρk’s should be large enough, with computable lower bounds

Mingyi Hong (Iowa State University) 30 / 38
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Recent Advances

Recent Advances

Many exciting recent works have been built upon our results

New analysis, new algorithms and new connections
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Recent Advances

New Analysis

New analysis for weaker conditions

Work [Li-Pong 14]: h, nonconvex, coercive; more general Ak; whole
sequence convergence under Kurdyka- Lojasiewicz (KL) property

Work [Kumar et al 16]: different update schedules

Work [Bai-Scheinberg 15]: different characterization of iteration complexity

Works [Jiang et al 16, Wang-Yin-Zeng 16]: both relax conditions for the K-agent
sharing problem

Work [Yang-Pong-Chen 15]: enlarges the dual stepsize by
√

5+1
2 ≈ 1.618...

...
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Recent Advances

New Applications

New applications in FE, SP, ML, Comm etc.

Risk parity portfolio selection [Bai-Scheinberg 15]

Solving certain Hamilton-Jacobi equations and differential games
[Chow-Darbon-Osher-Yin-16]

Distributed radio interference calibration [Yatawatta 16]

Non-convex background/foreground extraction [Yang-Pong-Chen 15]

Solving QCQP problems [Huang-Sidiropoulos 16]

Distributed and asynchronous optimization over networks [Chang et al 16]

Denoising using tight frame regularization [Parekh-Selesnick 15]

Beamforming design in wireless communications [Kaleva-Tolli-Juntti 15]

Penalized zero-variance discriminant analysis [Ames-H. 16]

...
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Recent Advances

New Connections

Connections of variants of ADMM with algorithm for convex problems

+

Nonconvex ADMM analysis

||

Generalize algorithm to nonconvex problems
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Recent Advances

New Connections

Connections of variants of ADMM with algorithm for convex problems

+

Nonconvex ADMM analysis

||

Generalize algorithm to nonconvex problems

Mingyi Hong (Iowa State University) 34 / 38



Recent Advances

New Connections

Connections of variants of ADMM with algorithm for convex problems

+

Nonconvex ADMM analysis

||

Generalize algorithm to nonconvex problems

Mingyi Hong (Iowa State University) 34 / 38



Recent Advances

New Connections

Connections of variants of ADMM with algorithm for convex problems

+

Nonconvex ADMM analysis

||

Generalize algorithm to nonconvex problems

Mingyi Hong (Iowa State University) 34 / 38



Recent Advances

New Connections

Connections of variants of ADMM with algorithm for convex problems

+

Nonconvex ADMM analysis

||

Generalize algorithm to nonconvex problems

Mingyi Hong (Iowa State University) 34 / 38



Recent Advances

Prox-ADMM = EXTRA

Apply the Prox-ADMM to consensus over a general network [H. 16],

min
x

f (x) :=
N

∑
i=1

fi(xi) s.t. xi = xj if i, j are neighbors

Mingyi Hong (Iowa State University) 35 / 38
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Recent Advances

Prox-ADMM = EXTRA

The resulting algorithm is equivalent to the following primal-only iteration

xt+1 = xt − 1
2ρ

D−1
(
∇ f (xt)−∇ f (xt−1)

)
+ Wxt − 1

2
(I + W)xt−1

where D, W are some network-related matrices

The above iteration is precisely the EXTRA algorithm [Shi-Ling-Wu-Yin 14] for
convex network consensus optimization

New Claim. EXTRA converges sublinearly for nonconvex problems
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Recent Advances

Prox-ADMM = SAG/IAG/SAGA

Consider the following convex finite sum problem:

min
x∈X

f (x) :=
1
N

N

∑
i=1

gi(x),

where gi, i = 1, · · ·N are cost functions; N is # of data points

Many popular fast learning algorithms, like SAG [Le Roux-Schmidt-Bach 12],
IAG [Blatt et al 07], SAGA [Defazio et al 14]:

1 Stochastically/deterministically pick one component function gi

2 Compute its gradient

3 Update xt+1 by using an average of the past gradients

Mingyi Hong (Iowa State University) 36 / 38
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Recent Advances

Prox-ADMM = SAG/IAG/SAGA

Sample one index i ∈ {1, · · · , N}, compute ∇gi(xr)

zr
i = xr, zr

j = zr−1
j , ∀ j 6= i

xr+1 = xr − 1
β

N

∑
j=1
∇gj(zr−1

j )︸ ︷︷ ︸
averaged past gradients

+
1
α

(
∇gi(zr−1

i )−∇gi(xr)
)

︸ ︷︷ ︸
new gradient info

Equivalent to some variants of prox-ADMM [Hajinezhad et al 16]

New Claim. SAG/IAG/SAGA converge sublinearly for nonconvex problems
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Conclusion

Summary

Quesiton: Whether ADMM converges for nonconvex problems?

Yes, for a class of consensus and sharing problems, and many more

Key insights

1 The penalty parameters are required to be large enough

2 The augmented Lagrangian measures the algorithm progress

Key technique: AL as merit function, leading to a three-step analysis
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Conclusion

Summary

This

Work

New
Analysis

New
Applications

New
Connections

SAG

[Defazio et al 14]

SAGA

[Le Roux et al 12]

IAG

[Blatt et al 07]

EXTRA

[Shi et al 14]

Finance

[Bai-Scheinberg 15]

Wireless

[Yatawatta 16]

Learning

[Ames-H. 16]

Signal Processing

[Parekh-Selesnick 15]

[Kumar et al 16]

[Jiang et al 16]

[Wang-Yin-Zeng 16]

[Bai-Scheinberg 15]

[Yang-Pong-Chen 15]
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Conclusion

Thank You!
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