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method for dealing with large-scale optimization problems

@ Applications to classical problems
@ LP [Boyd 11], [Ye 15]
@ SDP [Wen-Goldfarb-Yin 10], [Sun-Toh-Yang 15]
© QCQP [Huang-Sidiropoulos 16]

@ Applications to emerging areas
@ Social network inference/computing [Baingana et al 15]
@ Training neural networks [Taylor et al 16]
© Smart grid [Dall’Anese et al 13], [Peng-Low 15]

© Bioinformatics [Forouzan-lhler 13]
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Research Question

@ Q: Is ADMM convergent for nonconvex problems?

@ A: Yes, for global consensus and sharing problems, and many more
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Contribution

@ Develop a new framework for analyzing the nonconvex ADMM

@ Obtain key insights on the behavior of the algorithm

@ Motivate new research in theory and applications
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The Basic Setup

Consider the following problem with K blocks of variables {xk},llez

K
min f(x) := I;hk(xk) +g(x1, -+, xx) (P)

K
st ) A =g, % €Xp, Vhk=1,--- K
k=1
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The Basic Setup

Consider the following problem with K blocks of variables {xk},lle

min f(x th xp) +g(x1, -, xk) (P)

s.t. ZA/(X/<i(], x€X, Vk=1,--- K
k=1

@ 1;.(-): a convex nonsmooth function

@ g(-): a smooth, possibly nonconvex function

@ Ax = g: linearly coupling constraint, Ay € RM*Ne, g € RM

@ X; C RM: aclosed convex set
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The Basic Setup

@ The augmented Lagrangian (AL) is given by
- P 2
L(xy) = ) hx(x) +8(x1, -, xx) + (4,9 — Ax) + D llg — Ax|?,
k=1

where p > 0 is the penalty parameter; y is the dual variable
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The Basic Setup

@ The ADMM performs a block coordinate descent (BCD) on the AL,

followed by an (approximate) dual ascent

@ Inexactly optimizing the AL often yields closed-form solutions

The ADMM Algorithm

At each iteration t + 1:
Update the primal variables:

t+1

t+1 t+1
Xk

— arg min L(x
gxkEXk ( 1

Update the dual variable:

yt-i-l — yt +P(‘7 _ AxH_l).

t t.ot
S X X X XY ), Yk
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The Convex Case

@ ADMM works for convex, separable, 2-block problems

@ The g(-) and I (-)'s convex; g(x1, -+, x¢) = Y gr(xp); K =2
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The Convex Case

@ ADMM works for convex, separable, 2-block problems
@ The g(-) and I (-)'s convex; g(x1, -+, x¢) = Y gr(xp); K =2

@ Many classic works on the analysis [Glowinski-Marroco 75], [Gabay-Mercier 76]
[Glowinski 83]...

@ Equivalence to Douglas-Rachford Splitting and PPA [Gabay 83],
[Eckstein-Bertsekas 92]

@ Convergence rates and iteration complexity analysis [Eckstein 89] [He-Yuan
12] [Deng-Yin 12] [Hong-Luo 12]

@ Extension to multiple-blocks [Sun-Luo-Ye 14] [Chen et al 13] [Ma 12]
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Solving Nonconvex Problems?

@ All the works mentioned before are for convex problems

@ Recently, widely (and wildly) applied to nonconvex problems as well
Distributed clustering [Forero-Cano-Giannakis 11]

Matrix separation/completion [Xu-Yin-Wen-Zhang 11]

Phase retrieval [Wen-Yang-Liu-Marchesini 12]

Distributed matrix factorization [Ling-Yin-Wen 12]

Manifold optimization [Lai-Osher 12]

Asset allocation [Wen-Peng-Liu-Bai-Sun 13]

Nonnegative matrix factorization [Sun-Fevotte 14]

00000000

Polynomial optimization/tensor decomposition [Jiang-Ma-Zhang 13,
Livavas-Sidiropoulos 14]
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Application 1: Nonnegative Tensor Factorization

cputime

0 5 10 15 20 25 30 35 40 45 50
Realization r

Figure: ADMM for solving tensor factorization problem [Liavas-Sidiropoulos 14]
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Issues and Challenges

@ Pros: Nonconvex ADMM achieves excellent numerical performance
@ Cons: A general lack of global performance analysis
@ Convergence claim

@ IF the successive differences of all the primal and dual variables go to zero
(e.g., x't1 —xt — 0,41 —yf = 0)

@ Then any limit point is a stationary solution

But this is a big "IF""!
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Issues and Challenges

@ The assumption on iterates is uncheckable a priori
@ "Assume" (without proving) that feasibility holds in the limit

@ An exception [Zhang 10]: convergence for certain special QP

@ The AL is strongly convex
@ Only has the linear constraint

© The dual stepsize is very small
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Issues and Challenges

Rigorously analyzing nonconvex ADMM is challenging
@ Cases I: Without the linear constraint, reduces to the classic BCD

@ Can diverge for general nonconvex g(-) with K > 3 [Powell 73]

@ Cases lI: With the linear constraintand K = 1

@ Can diverge for any fixed p > 0 [Wang-Yin-Zeng 16]
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@ A Toy Example
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A Toy Example

@ First consider the following toy nonconvex example
N
min Ex Ax+bz, st z€][l,2],z=x

X,z

where A is a symmetric matrix; x € RN
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A Toy Example

@ First consider the following toy nonconvex example
N
min -x Ax+bz, st z€[l,2],z=x
X,z 2

where A is a symmetric matrix; x € RN

ADMM Convergent?
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A Toy Example (cont.)

@ Randomly generate the data matrices A and b with N = 10

@ Plot the following
@ Primal feasibility gap: ||z — x|
@ The optimality measure: ||x — proj[x — (Ax +b)] ||
© The x-feasibility gap: ||x — proj(x)||

@ All three quantities go to zero iff a stationary solution has been reached

Mingyi Hong (lowa State University) 16/38



First Try: p =20
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Figure: N =10, p =20

Mingyi Hong (lowa State University)

60

16/38



Second Try: p = 200
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A Toy Example (cont.)
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A Toy Example (cont.)

@ The convergence is p-dependent
@ When p is small, the algorithm fails to converge
@ Different from the convex case, where any p > 0 should work

@ Reminiscent to the AL method, careful choice of p in nonconvex case
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Nonconvex Consensus Problem
Problem Setup: A Nonconvex Consensus Problem

@ Consider a nonconvex global consensus problem

@ A distributed optimization problem defined over a network of K agents

h(xo) @
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Nonconvex Consensus Problem
Problem Setup: A Nonconvex Consensus Problem

@ Consider a nonconvex global consensus problem
@ A distributed optimization problem defined over a network of K agents

@ Formally, the problem is given by

consensus constraint

K
min Z ek(xk) +h(xg), st x=x, Vk=1,--- K x € X.
k=1
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Nonconvex Consensus Problem
Problem Setup: A Nonconvex Consensus Problem

@ Consider a nonconvex global consensus problem

@ A distributed optimization problem defined over a network of K agents

@ Formally, the problem is given by

nonconvex part
K
min Y g(x) +h(xo), st x=x,Vk=1---,K x€X.
k=1
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Nonconvex Consensus Problem
Problem Setup: A Nonconvex Consensus Problem

@ Consider a nonconvex global consensus problem

@ A distributed optimization problem defined over a network of K agents

@ Formally, the problem is given by

nonsmooth part
K I
min Z gk(xk)—l- h(xo), st. xp=x0,Vk=1,---,K, xp € X.
k=1
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Nonconvex Consensus Problem
Problem Setup: A Nonconvex Consensus Problem

@ Wide applications in distributed signal and information processing,
parallel optimization, etc [Boyd et al 11]
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Nonconvex Consensus Problem
Problem Setup: A Nonconvex Consensus Problem

@ Wide applications in distributed signal and information processing,
parallel optimization, etc [Boyd et al 11]

@ For example, in the distributed sparse PCA problem [H.-Luo-Razaviyayn 14]
Q 5 (x0) = —x] Al Apxi: AL Ay is the covariance matrix for local data

@ /(-): some sparsity promoting nonsmooth regularizer

@ | | -
v— —v
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.
The Algorithm

@ The AL function is given by

K
L({xx}, x0;y) ng xx) + h(xg) Z Yk, Xk — Xo) + ZF [l — xol|%.
= =1

k=1

Algorithm 1. The Consensus ADMM
At each iteration ¢ + 1, compute:

t+1 —_ . L t oot .
¥ = argmin ({x} x0iy)

Each node k computes x; by solving:

. k
x™! = argmin gy (xp) + (v, 1 —xp ") + 5 i~ x

Each node k updates the dual variable:

y]t<+1 =yt +pr (x ( t+1 6+1) '

Mingyi Hong (lowa State University)
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lllustration: xy update

xo solves: x{t!

= argminyex L({x}}, xo;¥") (often with closed-form)

X4,¥4 X3,¥3

X0

XK, YK X2,¥2

X1,¥1
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[llustration: broadcast

Broadcasts the most recent xg

X4,¥4 X3,¥3

X0

XK, YK X2,y2

X1,¥1
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A New Analysis Framework Algorithm and Analysis

lllustration: (xx, Ax) update

t+1

xy solves: xit! = argminy, g(xx) + (yh, xp — xbTh) + & |2 — b2

. ; .
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A New Analysis Framework Algorithm and Analysis

lllustration: aggregate

Aggregate (xx, yx) to the central node

X0
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Main Assumptions

Assumption A
A1. Each g has Lipschitz continuous gradient:

Vg (xk) — Vigk(z)ll < Lillxx — zell, ¥V x¢, 21, k=1,--- K.

Moreover, & is convex (possible nonsmooth); X is a closed convex set.
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Main Assumptions

Assumption A
A1. Each g has Lipschitz continuous gradient:

Vg (xk) — Vigk(z)ll < Lillxx — zell, ¥V x¢, 21, k=1,--- K.

Moreover, & is convex (possible nonsmooth); X is a closed convex set.

A2. py is large enough such that:

@ For all k, the x; subproblem is strongly convex with modulus (o );

@ For all k, the following is satisfied

max{ — =~ .
P Telor)”

A3. f(x) is bounded from below over X.

Mingyi Hong (lowa State University)
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Proof Ideas: Preliminary

@ Question: Can we leverage the existing analysis for the convex case?

@ Unfortunately no, because most existing analysis relies on showing
Ix" =12+ [ly* — y*[|I> =0

where (x*,y*) are the globally optimal primal-dual pair

How to measure the progress of the algorithm?
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Proof Ideas: A Key Step

@ Solution: Use L(x;y) as the merit function to guide the progress
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Proof Ideas: A Key Step

@ Solution: Use L(x;y) as the merit function to guide the progress

@ Challenge: The behavior of L(x;y) is difficult to characterize

@ Decreases after each primal update

@ |Increases after each dual update

@ Technique: Bound the change of the dual update by that of the primal
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Proof Steps

@ We develop a three-step analysis framework
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Proof Steps

@ We develop a three-step analysis framework
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{xt“} Xyt = L}, <6 v')

K
Z ( r)/k )) H +1 _ t||2 _ Zkzzl Pk ||xt+1 t||2

Mingyi Hong (lowa State University) 25/38



Proof Steps

@ We develop a three-step analysis framework
@ Step 1: Show "sufficient descent"
{xt+1} xt+l, t+1> o L({xli},xé;yt)

Z ( kK Yk Pk)> [E5 t+1 _ ”2 _ ):115_21 Pk||xt+1

@ Step 2: Show the following is "lower bounded"

( t+1 {xt+1} yt+1) > o0
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Proof Steps

@ We develop a three-step analysis framework

@ Step 1: Show "sufficient descent”

A0 L )

Z ( kK Tk Pk)> B4 t+1 _ ”2 _ ):115_21 Pk”xt+1

@ Step 2: Show the following is "lower bounded"

L( t+1 {xt+1} yt-i-l) > o0

@ Step 3: Show convergence to the set of stationary solutions

Mingyi Hong (lowa State University)
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The Convergence Claim

Convergence of ADMM for Nonconvex Global Consensus

Claim: Suppose Assumption A is satisfied. Then we have
@ The linear constraint is satisfied eventually:
: I e T
thﬁrgﬂxk x, l=0,Vk

@ Any limit point of the sequence generated by Algorithm 1 is a stationary
solution of the consensus problem

Mingyi Hong (lowa State University) 26/38



The lteration Complexity Analysis

@ Need new gap function to measure the gap to stationarity

primal gap dual gap

K
P, y') = IIVL({xh 26, )12 + ) [l = %62
k=1
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The lteration Complexity Analysis

@ Need new gap function to measure the gap to stationarity
primal gap dual gap

K
P, y') = IIVL({xh 26, )12 + ) [l = %62
k=1

@ P(x,y) =0« (x,y) is a stationary solution

Claim: Suppose Assumption A is satisfied, e > 0 be some constant.
Let T(e) denote an iteration index which satisfies

T(e) :=min {t | P(x",y") <t >0}

for some € > 0. Then there exists some constant C > 0 such that
C

T(e) < =
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Proximal Step and Flexible Updates

@ Use proximal gradient to update x; for cheap iterations
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Proximal Step and Flexible Updates

@ Use proximal gradient to update x; for cheap iterations

@ The x; step is replaced by

t+1

xe" = argmin (Vgi(x o)k — gt +

t+1
ykf Xp—Xp )

k + Lk
I

@ Gradient evaluated at the most recent x!
@ We can also use stochastic node sampling

@ Similar convergence guarantee as Algorithm 1

Mingyi Hong (lowa State University)

28/38



The Nonconvex Sharing Problem

@ Our analysis also works for the well-known sharing problem
[Boyd-Parikh-Chu-Peleato-Eckstein 11]

K
min ) I (xi) + g (x0)
k=1

K
st. ) Axg=x0, x€Xp k=1, ,K
k=1

@ x, € RM is the variable associated with agent k
@ (K + 1)-block problem, convergence unknown for the convex case

@ Apply our analysis to show convergence
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K
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K
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k=1

@ x, € RM is the variable associated with agent k
@ (K + 1)-block problem, convergence unknown for the convex case

@ Apply our analysis to show convergence
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Remarks

@ The first analysis framework for iteration complexity of nonconvex ADMM

@ A major departure from the classic analysis for convex problems

@ The AL guides the convergence of the algorithm

@ The py’s should be large enough, with computable lower bounds

Mingyi Hong (lowa State University) 30/38
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Recent Advances

@ Many exciting recent works have been built upon our results

@ New analysis, new algorithms and new connections

Mingyi Hong (lowa State University)
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New Analysis

New analysis for weaker conditions

@ Work [Li-Pong 14]: i, nonconvex, coercive; more general Ay; whole
sequence convergence under Kurdyka- Lojasiewicz (KL) property

@ Work [Kumar et al 16]: different update schedules
@ Work [Bai-Scheinberg 15]: different characterization of iteration complexity

@ Works [Jiang et al 16, Wang-Yin-Zeng 16]: both relax conditions for the K-agent
sharing problem

@ Work [Yang-Pong-Chen 15]: enlarges the dual stepsize by @ ~ 1.618...
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New Analysis

New analysis for weaker conditions

@ Work [Li-Pong 14]: h, nonconvex, coercive, A;’s full row rank; whole
sequence convergence under Kurdyka- Lojasiewicz (KL) property

@ Work [Kumar et al 16]: different update schedules
@ Work [Bai-Scheinberg 15]: different characterization of iteration complexity

@ Works [Jiang et al 16, Wang-Yin-Zeng 16]: both relax conditions for the K-agent
sharing problem

@ Work [Yang-Pong-Chen 15] : enlarges the dual stepsize by @ ~ 1.618...

All based upon our analysis framework

Mingyi Hong (lowa State University) 32/38



New Applications

New applications in FE, SP, ML, Comm etc.

@ Risk parity portfolio selection [Bai-Scheinberg 15]

@ Solving certain Hamilton-Jacobi equations and differential games
[Chow-Darbon-Osher-Yin-16]

@ Distributed radio interference calibration [Yatawatta 16]

@ Non-convex background/foreground extraction [Yang-Pong-Chen 15]

@ Solving QCQP problems [Huang-Sidiropoulos 16]

@ Distributed and asynchronous optimization over networks [Chang et al 16]
@ Denoising using tight frame regularization [Parekh-Selesnick 15]

@ Beamforming design in wireless communications [Kaleva-Tolli-Juntti 15]

@ Penalized zero-variance discriminant analysis [Ames-H. 16]

° ..
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New Connections

Connections of variants of ADMM with algorithm for convex problems
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New Connections

Connections of variants of ADMM with algorithm for convex problems

Nonconvex ADMM analysis

Generalize algorithm to nonconvex problems

Mingyi Hong (lowa State University) 34/38



Prox-ADMM = EXTRA

@ Apply the Prox-ADMM to consensus over a general network [H. 16],

mm f(x) Zfl st. x;=ux; if i,j are neighbors

35/38
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Recent Advances

Prox-ADMM = EXTRA

@ Apply the Prox-ADMM to consensus over a general network [H. 16],

N
i 100 Ecc) o1 R
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Prox-ADMM = EXTRA

@ The resulting algorithm is equivalent to the following primal-only iteration

xth = xt _ED (Vf( x') — Vf(xtfl))—i-Wxt—%(I—i-W)xt*l

where D, W are some network-related matrices
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@ The resulting algorithm is equivalent to the following primal-only iteration

xth = xt _ED (Vf( x') — Vf(xtfl))—i-Wxt—%(I—i-W)xt*l

where D, W are some network-related matrices

@ The above iteration is precisely the EXTRA algorithm [Shi-Ling-Wu-Yin 14] for
convex network consensus optimization

New Claim. EXTRA converges sublinearly for nonconvex problems
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Prox-ADMM = SAG/IAG/SAGA

@ Consider the following convex finite sum problem:

min  f(x *—Zgl

xeX

where g;, i = 1,--- N are cost functions; N is # of data points
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Prox-ADMM = SAG/IAG/SAGA

@ Consider the following convex finite sum problem:

. 1Y
min  f(x) ::N;gi(x),

where g;, i = 1,--- N are cost functions; N is # of data points

@ Many popular fast learning algorithms, like SAG [Le Roux-Schmidt-Bach 12],
IAG [Blatt et al 07], SAGA [Defazio et al 14]:

@ Stochastically/deterministically pick one component function g;
@ Compute its gradient

© Update x!*1 by using an average of the past gradients

Mingyi Hong (lowa State University) 36/38



Prox-ADMM = SAG/IAG/SAGA

Sample one index i € {1,---, N}, compute Vg;(x")

ro__ T r_ r—1 : :
zi =%, z; =7z S, Vij#Ei

rH_r_le.rﬂ lv,rfl_v, r
X X Z g](z- ) + 8:(2,- ) gi(x")
.Bj:1 / x

— new gradient info
averaged past gradients
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Sample one index i € {1,---, N}, compute Vg;(x")

z; =x', z]’-:z]’fl,Vj;éi

xr+1 — 5 — l%v ,(erl) _‘_1 (V 4(Zr71) v v(xr)>
= B ‘ 8j\Z; X 8ilZ; Si
]:

— new gradient info
averaged past gradients

@ Equivalent to some variants of prox-ADMM [Hajinezhad et al 16]

Mingyi Hong (lowa State University) 37/38



Prox-ADMM = SAG/IAG/SAGA

Sample one index i € {1,---, N}, compute Vg;(x")

ro__ T r _ r—1 . .
zi =%, z; =7z S, Vij#Ei

r+1 _ r_lNV, r—1 1 Vo r—1 — Vo (x"
X =X Z g](z- ) + gi(z] ) gi(x")
.Bj:1 / &

— new gradient info
averaged past gradients

@ Equivalent to some variants of prox-ADMM [Hajinezhad et al 16]

New Claim. SAG/IAG/SAGA converge sublinearly for nonconvex problems
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Summary

@ Quesiton: Whether ADMM converges for nonconvex problems?
@ Yes, for a class of consensus and sharing problems, and many more

@ Key insights
@ The penalty parameters are required to be large enough

@ The augmented Lagrangian measures the algorithm progress

@ Key technique: AL as merit function, leading to a three-step analysis

Mingyi Hong (lowa State University)
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Summary

SAG
[Defazio et al 14]

Signal Processing
[Parekh-Selesnick 15]

SAGA Learning
[Le Roux et al 12] New New [Ames-H. 16]
IAG Connections Applications Wireless
[Blatt et al 07] [Yatawatta 16]
This
EXTRA Work Finance
[Shi et al 14] i [Bai-Scheinberg 15]
New
Analysis

[Kumar et al 16]

[Jiang et al 16]

[Yang-Pong-Chen 15]
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[Wang-Yin-Zeng 16]
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Conclusion

Thank You!
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