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ABSTRACT

The min-max problem, also known as the saddle point problem, can
be used to formulate a wide range of applications in signal process-
ing and wireless communications. However, existing optimization
theory and methods, which mostly deal with problems with cer-
tain convex-concave structure, are not applicable for the aforemen-
tioned applications, which oftentimes involve non-convexity. In this
work, we consider a general block-wise one-sided non-convex min-
max problem, in which the minimization problem consists of mul-
tiple blocks and is non-convex, while the maximization problem is
(strongly) concave. We propose two simple algorithms, which alter-
natingly perform one gradient descent-type step for each minimiza-
tion block and one gradient ascent-type step for the maximization
problem. For the first time, we show that such simple alternating
min-max algorithms converge to first-order stationary solutions. We
conduct numerical tests on a robust learning problem, and a wireless
communication problem in the presence of jammers, to validate the
efficiency of the proposed algorithms.

1. INTRODUCTION

Consider the following min-max (a.k.a. saddle point) problem:

min
x

max
y

f(x1, x2, · · · , xK ; y) +

K∑
i=1

hi(xi)− g(y)

s.t. xi ∈ Xi, y ∈ Y, i = 1, · · · ,K

(1)

where f is a continuously differentiable function; hi and g are some
convex, not necessarily smooth functions; x := [x1; · · · ;xK ] and
y are the block optimization variables; Xi’s and Y are some convex
feasible sets. We call the problem one-sided non-convex problem be-
cause we assume that f(x, y) is non-convex w.r.t. x, and (strongly)
concave w.r.t. y. The challenge is to design effective algorithms that
can deal with the non-convexity in the problem.

Problem (1) is quite general. It arises in many signal processing,
communication and networking applications, as listed below.

1.1. Motivating Examples

Distributed non-convex optimization: Consider a network of K
agents defined by a connected graph G , {V, E}, where each agent
i can communicate with its neighbors. The agents solve the follow-
ing problem, miny∈Rd

∑K
i=1 (fi(y) + hi(y)), where each fi(y) :

Rd → R is a non-convex, smooth function, and hi(y) : Rd → R
is a convex, not necessarily smooth function that plays the role of
the regularizer. Each agent i has access only to fi, hi. Denote xi
as agent i’s local copy of y, then we have the following equivalent
formulation

min
x∈RKd

f(x) + h(x) =

K∑
i=1

(fi(xi) + hi(xi)) s.t. (A⊗ Id)x = 0,

where x = [x1; . . . ;xK ] ∈ RKd and A ∈ R|E|×K is the incidence
matrix, i.e., assuming that the edge e is incident on vertices i and j,
with i > j we have that Aei , 1, Aej , −1 and Ae· = 0 for all
other vertices; ⊗ denotes the Kronecker product. This task captures
the formulation of many problems that appear in distributed machine
learning and signal processing (e.g., [1–4]).

Using duality theory we can rewrite the above problem as

min
x∈RKd

max
λ∈R|E|d

f(x) + h(x) + 〈λ, (A⊗ Id)x〉 (2)

where λ are the multipliers. Clearly (2) is in the form of (1).
Robust learning over multiple domains: In [5] the authors intro-
duce a robust optimization framework, in which training sets from
K different domains are used to train a machine learning model.
Let Sk , {(xki , yki )}, 1 ≤ k ≤ K be the individual training
sets with xki ∈ Rn, yki ∈ R; w be the parameter of the model
we intent to learn, l(·) a non-negative loss function and fk(w) =

1
|Sk|

∑|Sk|
i=1 l(x

k
i , y

k
i , w) the non-convex (in general) empirical risk

in the k-th domain. The following problem formulates the task of
finding the parameterw that minimizes the empirical risk, while tak-
ing into account the worst possible distribution over the K different
domains:

min
w

max
p∈∆

pTF (w), (3)

where F (w) := [f1(w), . . . , fK(w)]T , p describes the adversarial
distribution over the different domains and ∆ := {p ∈ RK | 0 ≤
pi ≤ 1, i = 1, . . . ,K,

∑K
i=1 pi = 1} is the standard simplex.

Furthermore, it is also common to add a regularizer that imposes
structures on the adversarial distribution (λ > 0 is some parameter):

min
w

max
p∈∆

pTF (w)− λ

2
D(p||q) (4)

where D is some distance between probability distributions and q is
some prior probability distribution. The objective function consists
of a linear coupling between p and the non-convex function F (w),
and a convex or strongly convex regularizer.
Power control problem: Consider a problem in wireless transceiver
design, where K transmitter-receiver pairs transmit over N chan-
nels aiming to maximize their minimum rates. User k trans-
mits with power pk := [p1

k; · · · ; pNk ], and its rate is given by:

Rk(p1, . . . , pK) =
∑N
n=1 log

(
1 +

ankkp
n
k

σ2 +
∑K
`=1,` 6=k a

n
`kp

n
`

)
(as-

suming Gaussian signaling), which is a non-convex function on
p := [p1; · · · ; pK ]. Here an`k’s denote the channel gain between
pair (`, k) on nth channel, and σ2 is the noise power. The classical
max-min fairness power control problem is: maxp∈P min

k
Rk(p),

where P := {p | 0 ≤ pk ≤ p̄,∀ k} denotes the feasible power
allocations. The above max-min rate problem can be equivalently



formulated as: (1):

min
p∈P

max
y∈∆

N∑
k=1

−Rk(p1, · · · , pK)× yk, (5)

where the set ∆ is again the standard simplex. Note that Rk(p) is a
non-convex function in p, and there is a linear coupling between y
and the set of functions {Rk(p)}Kk=1 in the objective function.
Power control in the presence of a jammer: Consider an exten-
sion of the above scenario (which is first described in [6]), where
a jammer participates in a K-user N -channel interference channel
transmission. Differently from a regular user, the jammer’s objective
is to reduce the total sum-rate of the other users by properly trans-
mitting noises. Because there are N channels, we use pnk to denote
k user’s transmission on nth channel. The corresponding sum-rate
maximization-minimization problem can be formulated as:

min
p∈P

max
p0∈P0

K,N∑
(k,n)=(1,1)

− log

(
1 +

ankkp
n
k

σ2 +
∑K
j=1,j 6=k a

n
jkp

n
j + an0kp

n
0

)
,

(6)

where pk and p0 are the power allocation of user k and the jammer,
respectively; the set P := P1 × . . . × PK , where Pk are defined
similarly as before.

1.2. Related Work
Motivated by these applications, it is of interest to develop efficient
algorithms for solving these problems with theoretical convergence
guarantees. There has been a long history of studying the min-max
optimization problems. When the problem is convex-concave, previ-
ous works [7–10] and the references therein have shown that certain
primal-dual type algorithms, which alternate between the update of
x and y variables, can solve the convex-concave saddle problem op-
timally. However, when the problem is non-convex, the convergence
behavior of the primal-dual algorithm has not been well understood.
One challenge is that the primal and dual variables are coupled in a
general nonlinear way, therefore it is difficult to to characterize the
progress of the iterates as the algorithm proceeds.

Although there are lots of recent works on the non-convex min-
imization problems [11], only few works focus on the non-convex
min-max problems. For example, a robust optimization problem
from multiple distributions is proposed recently in [5], where the
coupling between the iterates in the minimization and maximiza-
tion problems is linear and the variable of the minimization prob-
lem is unconstrained. A simple min-max algorithm in the stochastic
settings is also considered, which updates the iterates of the both
problems independently and converges to the stationary point of the
min-max problems; please see [5, Theorem 1] for details about the
convergence rate. In [12], a proximally guided stochastic mirror de-
scent method (PG-SMD) is proposed, which also optimizes the min-
imization and maximization components separately and updates the
corresponding iterates at the same time. From the convergence anal-
ysis, it turns out that PG-SMD converges provably to an approximate
stationary point of the minimization problem. Finally, an oracle
based non-convex stochastic gradient descent for generative adver-
sarial networks was proposed in [13], where the algorithm assumes
that the maximization subproblem can be solved up to some small
error. None of the above works are of the alternating type we con-
sider in this work, and none of them are for deterministic problems.
1.3. Contribution of this work

In this work, we consider the min-max problem from an alternating
minimization/maximization perspective. The studied problems are

general, allowing non-convexity and non-smoothness in the objec-
tive, non-convex coupling between variables as well. The proposed
algorithm solves the maximization and minimization problems in an
alternating way. The main contributions of this paper are listed as
follows:
1) A class of machine learning and resource allocations problems is
formulated in the framework of non-convex min-max problems.
2) Two types of min-max problems are studied, and two simple algo-
rithms which alternate between the minimization and maximization
steps, are presented with provable convergence guarantees.
3) To the best of our knowledge, it is the first time that the conver-
gence rate of the alternating min-max algorithm is quantified for the
(one-sided) non-convex min-max problem (1).

2. THE PROPOSED ALGORITHMS
In this section, we formulate the problems into two cases according
to the structure of the coupling between variable x and y.

2.1. Maximization problem is strongly concave
First, we consider the following min-max problem,

min
xi∈Xi,∀i

max
y∈Y

f(x1, . . . , xK , y) (7)

where xi ∈ Xi with Xi,Y convex compact feasible sets and X =
X1 × . . .×XK . Moreover, x and y are coupled in a general way by
function f(x, y), the objective function f(x, y) is non-convex with
respect to x and it has Lipschitz continuous gradient w.r.t to xi with
constants Lxi ,∀i. Finally, f(x, y) is strongly concave with respect
to y with modulus θ > 0, that is

f(x, y)− f(x, z) ≤ 〈∇f(x, z), y − z〉 − θ

2
‖y − z‖2, ∀ y ∈ Y.

For the above problem, we propose the following algorithm:

xr+1
i = arg min

xi∈Xi

〈∇xif(wri , y
r), xi − xri 〉+

β

2
‖xi − xri ‖2,

i = 1, · · · ,K, (8a)

yr+1 = arg max
y∈Y
〈∇yf(xr+1, yr), y − yr〉 − 1

2ρ
‖y − yr‖2 (8b)

where r is the iterate’s index,wri := [xr+1
1 ; · · ·xr+1

i−1 ;xri ; · · · ], β and
ρ are the regularization parameters and will be discussed further in
Lemma 2.

2.2. Maximization problem is linear
Second, we consider the following min-max problem,

max
y∈Y

min
x∈X

〈f(x), y〉 (9)

where X ,Y are still convex compact sets, the objective function
f(x) is non-convex, and it is Lipschitz and has Lipschitz gradient,
with constants Lx and L′x. Because the maximization problem over
variable y is linear rather than strongly concave, we propose a novel
algorithm which adds some (diminishing) perturbation term in the
maximization problem and uses adaptive regularization parameters
(i.e., βr and γr shown in the following section):

xr+1 = arg min
x∈X
〈∇x〈f(xr), yr〉, x− xr〉+

βr

2
‖x− xr‖2, (10a)

yr+1 = argmax
y∈Y

〈
f(xr+1), y − yr

〉
−

1

2ρ
‖y − yr‖2 −

γr

2
‖y‖2, (10b)

where βr is the regularizer of the minimization problem, while ρ
and γr are the regularizers of the maximization problem, with γr

being a decreasing sequence.



3. THEORETICAL PROPERTIES AND DISCUSSIONS

In this section, we present our main convergence results for the pro-
posed algorithms. Due to space limitations, we will omit the proof
details and instead will be presenting a few key lemmas leading to
the main results. The detailed proofs are provided in [14].
Lemma 1 (Descent lemma) Assume that f(x, y) has Lipschitz con-
tinuous gradient w.r.t y with constant Ly and is strongly concave
with respect to y with modulus θ > 0. Let (xr, yr) be a sequence
generated by (8). Then we have the following descent estimate

f(xr+1, yr+1)− f(xr+1, yr) ≤ 1

ρ
‖yr+1 − yr‖2

−
(
θ − (

1

2ρ
+
ρL2

y

2
)
)
‖yr − yr−1‖2 +

ρL2
y

2
‖xr+1 − xr‖2.

From Lemma 1, it is not clear whether the objective function is de-
creasing or not, since the minimization step will consistently de-
crease the objective value while the maximization step will increase
the objective value. The key in our analysis is to identify a proper
potential function, which can capture the essential dynamics of the
algorithm.
Lemma 2 Let (xr, yr) be a sequence generated by (8). When the
following conditions are satisfied,

ρ <
θ

4L2
y

, β ≥ max

{
L2
y

(
4

θ2ρ
+ ρ

)
, Lxmax

}
, (11)

then there exist c1, c2 > 0 such that the potential function will mono-
tonically decrease, i.e.,

Pr+1 − Pr ≤ −c1‖yr+1 − yr‖2 − c2‖xr+1 − xr‖2, (12)

where Pr+1 := f(xr+1, yr+1)+
(

2
ρ2θ

+ 1
2ρ
−4( 1

ρ
− L2

y

2θ2
)
)
‖yr+1−

yr‖2 and Lxmax = max
i=1,...,K

Lxi .

3.1. Convergence rate of algorithm (8)

To state our main result, let us define the proximal gradient of the
objective function as

∇L(x, y) ,

[
x− PX [x−∇xf(x, y)]
y − PY [y +∇yf(x, y)]

]
(13)

where PX denotes the projection operator on convex set X . Clearly,
when ∇L(x, y) = 0, then a first-order stationary solution of the
problem (1) is obtained. We have the following convergence rate for
the proposed algorithm.
Theorem 1 Suppose that the sequence (xr, yr) is generated by (8)
and ρ, β satisfy the conditions (11). For a given small constant ε, let
T (ε) denote the first iteration index, such that the following inequal-
ity is satisfied: T (ε) , min{r | ‖∇L(xr, yr)‖2 ≤ ε, r ≥ 1}. Then
there exists some constant C > 0 such that ε ≤ C(P1 − P)/T (ε)
where P denotes the lower bound of Pr .

3.2. Convergence rate of perturbed algorithm (10)
We have the following convergence analysis for the algorithm (10).
Lemma 3 (Descent lemma) Assume that f(x, y) is Lipschitz con-
tinuous with respect to x, with constant Lx. Assume that it is also
linear with respect to y. Let (xr, yr) be a sequence generated by
(10). Then we have

f(xr+1, yr+1)− f(xr+1, yr) ≤
(

1

ρ
− γr−1

2

)
‖yr+1 − yr‖2

+
γr−1

2
‖yr+1‖2+

1

2ρ
‖yr−yr−1‖2+

ρL2
x

2
‖xr+1−xr‖2−γ

r−1

2
‖yr‖2.

Lemma 4 Suppose (xr, yr) is generated by (10) and we choose

βr ≥ ρL2
x + 6αr , where αr =

L2
x

ρ(γr)2
. Then if the following condi-

tions are satisfied,

1

γr+1
− 1

γr
≤ ρ

5
,

∞∑
r=1

1

αr
= ∞, αr − αr+1 ≤ 0,

1

αr
→ 0,

(14)

then there exits a sequence {cr} bounded away from zero, such that
the potential function will monotonically decrease, i.e.,

P̃
r+1
− P̃

r
≤ − 1

10ρ
‖yr+1 − yr‖2 − cr‖xr+1 − xr‖2

+
1

2
(γr−1 − γr)‖yr+1‖2 +

2

ρ
(
γr−2

γr−1
− γr−1

γr
)‖yr‖2,

where P̃
r+1

:= f(xr+1, yr+1)−
(
γr

2
+ 2

ρ
( γ

r−1

γr
− 1)

)
‖yr+1‖2 +(

2
ρ2γr

+ 1
2ρ

+ 2
ρ2

( 1
γr+1 − 1

γr
))‖yr+1 − yr‖2.

Then, let us define the proximal gradient of the objective function
(9) as the following to quantify the optimality gap of the algorithm.

∇L̃(x, y) ,

[
x− PX [x−∇x〈f(x), y〉]

y − PY [y + f(x)]

]
. (15)

After applying the telescope sum and boundedness assumption on y,
we have the following convergence analysis result.

Theorem 2 Suppose that the sequence (xr, yr) is generated by (10)
and γr, βr satisfy the conditions (14). For a given small constant
ε, let T (ε) denote the first iteration index, such that the follow-
ing inequality is satisfied: T (ε) , min{r | ‖∇L̃(xr, yr)‖2 ≤
ε, r ≥ 1}. Then there exists some constant C̃ > 0 such that ε ≤
C̃ log(T (ε))/

√
T (ε).

Remark 1. Note that the two min-max problems have different struc-
tures, e.g., the coupling between x and y and convexity assumptions
on the maximization problem over y, resulting in the different algo-
rithms and corresponding convergence rates.

4. NUMERICAL RESULTS

We test our algorithms on two applications: the robust learning prob-
lem and the rate maximization problem in the presence of a jammer.
Robust learning over multiple domains. Consider a learning sce-
nario where we have datasets from two different domains and adopt
a regularized (non-convex) logistic regression model in order to
solve a binary classification problem. We aim to learn the model
parameters using the following two approaches:
1) Robust Learning : Apply the robust learning model (4) and opti-
mize the cost function using the algorithm (8).
2) Mutltitask Learning : Apply a multitask learning model, where
the weights associated with each loss function/task are fixed to 1/2.
The problem is optimized using gradient descent.

We evaluate the accuracy of the above algorithms as the worst
hit rate across the two domains, i.e.,

accuracy = min{ hit rate on domain 1, hit rate on domain 2 }.
We run two sets of experiments. In the first we generate ran-

domly two datasets using the Gaussian and the Laplacian distribu-
tion respectively. The first dataset contains 200 training and 40 test-
ing data points, while in the second one the number is 1000 and 200
respectively. At each dataset the data points are generated in a way
that the two classes are approximately linearly separable. In Fig. 1
the accuracy of the two algorithms is illustrated.
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Fig. 1. The results on the experiments performed on synthetic data. The 1st
figure depicts the accuracy of the two algorithms for both training and testing
sets, while in the 2nd one the convergence behavior is shown.

alter. Min-Max (eq. 8)
perturbed alter. Min-Max (eq. 10)

Fig. 2. Convergence comparison with alter-min algorithm (8) and perturbed
algorithm (10) for the min-max problem where the maximization problem is
concave rather than strongly concave.

In the second set of experiments we use two different parts of the
MNIST dataset [15] as the two different domains. For the 1st domain
we use 200 images for training and 50 for testing, and in the second
800 and 200 images respectively Also, we contaminate the second
dataset with Gaussian noise, in order to differentiate it from the first
one. We train the two aforementioned models on those datasets to
classify correctly the digit ’1’ from the rest of them. The results
are presented in Fig. 3. It is apparent that the performance of the
robust model is comparable to that of the multitask learning model,
which shows that the proposed algorithm is capable of attaining good
solutions of min-max optimization problems.
Power control in the presence of a jammer. We consider the multi-
channel and multi-user formulation (6) where there are N parallel
channels available, and there are K normal users and one jammer
in the system. For this problem it is easy to verify that the jammer
problem has a strongly concave objective function, therefore we can
directly apply Algorithm (8).

In our test we will compare the proposed method with the well-
known interference pricing method [16, 17], and the WMMSE al-
gorithm [18], both of which are designed to solve the K-user N -
channel sum-rate optimization problem without the jammer. Our
problem is tested using the following setting. Consider a network
with K = 10, and the interference channel among the users and the
jammer is generated using uncorrelated fading channel model with
channel coefficients generated from the complex CN (0, 1) [18]. The
users’ power budget is assumed to be P for all transmitters, where
P = 10SNR/10. For test cases without a jammer, we set σ2

k = 1 for
all k. For test cases with a jammer, we set σ2

k = 1/2 for all k, and let
the jammer has the rest of the noise power, i.e., p0,max = N/2. Note
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Fig. 3. The results on the experiments performed on the MNIST dataset [15].
The top figure depicts training and testing accuracies, while the bottom figure
depicts the convergence behaviors of the two algorithms.
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Fig. 4. The convergence curves and total averaged system performance com-
paring three algorithms: WMMSE, Interference Pricing and the proposed
algorithm with Jammer. The first figure shows a single realization of the al-
gorithms, and in the second figure, each point represents an average of 50
realizations. The total number of users is 10, and SNR = 1. The rest of the
parameters are described in the main text.

that the consideration behind splitting the noise power is mostly for
fairness comparison between the cases with and without the jammer.
However, we do note that it is not possible to be completely fair be-
cause even though the total noise budgets are the same, the noise
power transmitted by the jammer also has to go through the channel,
therefore the total received noise power could still be different.

From the Fig. 4 (top), we see that the pricing algorithm mono-
tonically increases the sum rate (as is predicted by theory), while our
proposed algorithm behaves very differently. Further in Fig. 4 (bot-
tom), we do see that by using the proposed algorithm, the jammer is
able to effectively reduce the total sum rate of the system.
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