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]
The Main Content of the Talk

@ Question: What is the iteration complexity of the BCD (with
deterministic update rules) for convex problems?

@ Answer: Scales sublinearly as O(1/r) [H.-Wang-Razaviyayn-Luo 14]
@ Covers popular algorithms like BCPG, BCM, etc

@ Covers popular block selection rule like cyclic, Gauss-Southwell,
Essentially cyclic

© Does not require per-block strong convexity
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]
The Main Content of the Talk

@ Question: How does the rate depend on the problem dimension?

@ Answer: Scales (almost) independently, linearly, etc, requires
case-by-case study [Sun-H. 15]
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Outline

@ Introduction of BCD
@ The Algorithm and Applications
@ The Prior Art

© Analyzing the BCD-type Algorithm
@ The BCPG and its iteration complexity analysis
@ The BCM and its complexity analysis

© Sharpening the Bounds on K
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The Problem

@ We consider the following problem (with K block variables)

K
minimize  f(x):=g(xy, -+, xx) +kzzlhk(xk) (P)

subjectto x, € Xy, k=1,..,K

@ g(-) smooth convex function; hi(-) nonsmooth convex function;

o x = (xf,..,xk)T € R" is a partition of x; X; C R™
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Applications

@ Lots of applications in practice

@ One of the most well-known application is the LASSO problem
min < || Ax — |2 + Al|x|l
x 2

@ Each scalar xx € R is a block variable

2

K K
min 5 I;Akxk —b +)\k§1 ||
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Applications (cont.)

@ Rate maximization in uplink wireless communication network
K users, a single base station (BS)
Each user has 7; (1n,) transmit (receive) antennas

°
°

o Let C, € R"*" denote user k's transmit covariance matrix
@ H; € R™*™ the channel matrix between user k and the BS
°

Then the uplink channel capacity optimization problem is

K
min —logdet|) HyCyHY + I,
{Che k=1

st. Ci=0, Tr[Cy] <P, k=1,--- ,K

@ The celebrated iterative water-filling algorithm (IWFA) [Yu-Cioffi 04]
is simply BCD with cyclic update rule
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The Problem

@ Let us assume that the gradient of g(-) is block-wise Lipschitz
continuous

IVig([x i xk]) = Vig([x g DI < Myllxx — %ll, VxeX, Vk
[Vg(x) = Vg(z)|| < Mllx —z[, VxzeX

o Let Muin = min My, M. = max M

Mingyi Hong (lowa State University) 9 /43



The Algorithm

@ Consider the cyclic block coordinate minimization (BCM)
© At iteration r + 1, block k updated by

1 1
€ arg mel}r(l g X X xk) A (k)
k

r+1

© Sweep over all blocks in cyclic order (a.k.a Gauss-Seidel rule)

@ Popular for solving modern large-scale problems
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Variants: Block Selection Rule

@ Lots of block selection rules

@ Cyclic, randomized, parallel, greedy (Gauss-Southwell), randomly
permutated

@ Interested in analyzing deterministic rules

© Provides worse case analysis

@ Sheds lights on the randomly permutated variants
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Variants: Block Update Rule

@ Block coordinate proximal gradient (BCPG)
© At iteration r + 1, block k updated by

r+1 _ ; Al 1 r+1 . r
xp —argxrkrg}r(lkl,zk(xk,x1 S X X, X ) ()

@ 1(xx;y): a quadratic approximation of g(+) w.r.t. xi

L
u (x5 y) = 8(¥) + (Vg (), % — yi) + = |0 — >

@ L is the penalty parameter; 1/L; is the stepsize
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Prior Art: BCPG

o A large literature on analyzing BCPG-type algorithm
@ Randomized BCPG: blocks picked randomly
@ Strongly convex problems, linear rate [Richtarik-Taka¢ 12]

@ Convex problems with O(1/r) rate

© Smooth [Nesterov 12]
© Smooth + L1 penalization [Shalev-Shwartz-Tewari 11]
© General nonsmooth (P) [Richtdrik-Takat 12][Lu-Xiao 13]
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Prior Art: BCPG (cont.)

@ How about cyclic BCPG? Less is known

@ For strongly convex problems, linear rate
@ For general convex problems, O(l/r) rate?

@ LASSO, when satisfies the so-called “isotonicity assumption”
(assumption on the data matrix) [Saha-Tewari 13]

© Smooth [Beck-Tetruashvili 13]

© General nonsmooth, i.e., (P)?
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Prior Art: BCM

@ How about cyclic BCM? Even less is known

@ For strongly convex problems, linear rate

@ For convex problem O(1/r) rate

© Smooth unconstrained problem with K = 2 (two-block variables)
[Beck-Tetruashvili 13]

@ Other cases?

@ Other coordinate update rules (e.g., Gauss-Southwell)?
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Introduction of BCD The Prior Art

The Summary of Results

@ A summary of existing results on sublinear rate for BCD-type

@ NS=NonSmooth, S=Smooth, C=Constrained, U=Unconstrained,

K=K-block, 2=2-Block

o GS=Gauss-Seidel, GSo=Gauss-Southwell, EC=Essentially-Cyclic

Table: Summary of Prior Art

Method Problem | O(1/r) Rate
GS-BCPG SCK J
GS/GSo/EC-BCPG | NS-CK ?
GS-BCM SU-2 ;
GS/EC-BCM NS-C-K ?
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Introduction of BCD The Prior Art

This Work

@ This work shows the following results [H.-Wang-Razaviyayn-Luo 14]

@ NS=NonSmooth, S=Smooth, C=Constrained, U=Unconstrained,

K=K-block, 2=2-Block

o GS=Gauss-Seidel, GSo=Gauss-Southwell, EC=Essentially-Cyclic

Table: Summary of Prior Art 4+ This Work

Method Problem | O(1/r) Rate
GS-BCPG SCK J
GS/GSo/EC-BCPG | NS-CK YV
GS-BCM SU-2 ;
GS/EC-BCM NS-CK YV
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Outline

@ Introduction of BCD
@ The Algorithm and Applications
@ The Prior Art

© Analyzing the BCD-type Algorithm
@ The BCPG and its iteration complexity analysis
@ The BCM and its complexity analysis

© Sharpening the Bounds on K
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The BCPG and its iteration complexity analysis
Iteration Complexity Analysis for BCPG

@ Define X* as the optimal solution set, and let x* € X* be one of the
optimal solutions

@ Define the optimality gap as

@ Main proof steps

© Sufficient Descent: A" — A"t large enough
© Estimate Cost-To-Go: A1 small enough
© Estimate The Rate: Show (A™1)2 < ¢ (A" — A™H1)
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Bound for BCPG

o Define R := maxyex maxy-ex- {[[x —x*|| : f(x) < f(x!)}
@ For BCPG, pick Ly = My for all k, the bound final bound is

cKM MR?2

ANT<8——
- mink Mk r

@ The bound is in the same order as the one stated in
[Beck-Tetruashvili 13, Theorem 6.1]

@ In the worst case M/ Mmpin = O(K), so the red part scales with K2
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Analyzing the BCD-type Algorithm The BCPG and its iteration complexity analysis
Remark

@ The analysis extends to other popular update rules
@ Gauss-Southwell (i.e., greedy coordinate selection)

© Maximum Block Improvement (MBI) [Chen-Li-He-Zhang 13]
© Essentially cyclic

@ Random permutation

@ Same analysis for GS-BCM with per-block strongly convexity (BSC)

@ Key challenge. Complexity without BSC?
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Motivating Examples

@ Example 1. Consider the group-LASSO problem
2

K
+A Y [xl2
=1

min
X

K
z Akxk —b
k=1

@ Xx; subproblem (semi)closed-form solution; Ay's can be rank-deficient

@ Example 2. Consider a rate maximization problem in wireless
networks (K user, multiple antenna, etc)

min — logdet

2 HiCeHE + I,
{Ck}k 1

=1

P s.t. Ck t 0, Tr[Ck} S Pk,v k

o If Hy is not full row rank, each Cj subproblem is not strongly convex

Our previous results do not apply!
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Iteration Complexity for BCM?

@ The Algorithm. At iteration r 4+ 1, update:

r+1 : r+1 r+1 r r
bORINS ;’l’g}l’(l g (xl s X Xk Xjp1s /-xK) + hk(xk)
k k

o Key challenges.

@ No BSC anymore
@ Multiple optimal solutions

© The sufficient descent estimate is lost
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Rate Analysis for GS-BCM (no BSC)

@ Key idea. Using a different measure to gauge progress.
o Key steps: Still three-step approach

o Sufficient descent

K
AT — AT > Z IVg(wi ) — Vg(wi ).
where
wi = g x g X

o Cost-to-go estimate
K
(A2 <2K2R?Y " || Vg(wty) — Vg(wp ™|, va* € X*.
k=1
@ Matching the previous two and obtain...
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Analyzing the BCD-type Algorithm The BCM and its complexity analysis

Rate Analysis for cyclic BSUM (no BSC)

Theorem

(H.-Wang-Razaviyayn-Luo 14) Let {x"} be the sequence generated by the
BCM algorithm with G-S rule. Then we have

N =f) - < Sl v, (2.1)
(%4

where the constants are given below

cs = max{4os — 2, f(x!) — f*,2},
1

1 2.2
% = JMKIRZ (2.2)
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Analyzing the BCD-type Algorithm The BCM and its complexity analysis
Outline

@ Introduction of BCD
@ The Algorithm and Applications
@ The Prior Art

© Analyzing the BCD-type Algorithm
@ The BCPG and its iteration complexity analysis
@ The BCM and its complexity analysis

© Sharpening the Bounds on K
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What's Missing?

@ Why we care about iteration complexity?

@ Characterize how fast the algorithms progresses
@ Estimate practical performance for big data problems

@ For large scale problems, the scaling with respect to K matters!

@ When K = 10°, two algorithms with O(K/r) and O(K?/7?)...
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The State-of-the-Art

(]

The classical gradient method scales O(M/r) (independent of K)

In [Saha-Tewari 13], GS-BCPG for LASSO with “isotonicity
assumption” scales O(M/r)

The GS-BCPG for smooth problems [Beck-Tetruashvili 13] scales
O(K?>M /) in the worst case

The analysis in [H.-Wang-Razaviyayn-Luo 14] scales similarly

Better bounds?

(]
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Sharpening the Bounds on K7

@ All the rates scale quadratically in K (in worst case)

@ Next we sharpen the bound for the following quadratic problem

2

+
k

hk(xk), s.t. x € Xk/ vV k (Q)

K
=1

min f(x) := %

K
2 Akxk —-b
k=1
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Sharpening the Bounds on K7

@ Consider the BCPG algorithm
@ Remove a K factor in the worst case

@ Matches the complexity of gradient descent (almost independent of
K) for some special cases
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The Result

@ Question: How does the rate bound depend on K?

@ Result 1: BCPG+quadratic g. If Ly = My, then the rate scales
M M
O (log*(K < max >MR2>
(tog2x) (Mo 2

@ Result 2: BCPG+quadratic g. If Ly = M, then the rate scales

o (1og2(1<)MR2)

@ Result 3: For problems with %Lnj; = O(1), the above rates are tight
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Rate Analysis for GS-BCPG

Theorem (Sun-H. 15)

The iteration complexity of using BCPG to solve (Q) is given below
© Suppose the stepsizes are chosen as Ly = M, V k, then

(r+1) 0 2 R?
r
< —_—.
A _3max{A,4log (ZK)M}r—I—l
© Suppose the stepsizes are chosen according to:
Ly = Amax(AL Ay) = My, Y k.

Then we have

Mnin r+1

2 2
AU+ < 3max {AO,Zlogz(ZK) <Mmax + L) } R
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Sharpening the Bounds on K

Tightness of the Bounds

@ We briefly discuss the tightness of the bound over K
@ Question: Can we improve the bounds further in the order of K?

@ Construct a simple quadratic problem

min  g(x

with

—_

0
0

@ Consider scalar blocks, then M; =1 for all k

—_

0
0

0
0

@ We also have (Note: M /M =

Mingyi Hong (lowa State University)

0
0

(1))
M = Amax(A) =1+ 2cos(irt/(K+ 1)),

1
0

2

k=1, K

33 /43



Tightness of the Bounds (cont.)

@ We can show that after running a single pass of GS-BCD/BCPG

AY >

9(K —3)
= 4K—1

)

@ Specialized our bound to this problem predicts that the gap is at most
1

M — Min 1
AL < (22— Vmin 2 - ©0) _ 120 < (0) _ *2.
< ( Moo 2+4) || x x*||*M < 36||x x|

[x©@ — x*|]2, V K > 3.

@ As K — o0, the previous two bounds match, up to a constant
dimensionless factor 1/16

@ Conclusion. The derived bound is tight for the case
M/ Mpin = O(1)
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Sharpening the Bounds on K

Numerical Comparison

@ We compare the performance of GD and BCD over the constructed

problem
10* 10*
-4-gradient descent| . -¥-gradient descent|
< bed &, < bed
10°}\@ 10° ; 1
E: Q‘Q E
3 ]
) . ® 100
210 ¢ ~ =10
3 Q. 3
2 o
k=) =)
o o

107 9., 107
N %o
600"‘”9‘%0000 °°°‘>‘>'<><><>o<><>e>
4| i i i 4] i i i i
10 0 5 10 15 20 25 10 0 5 10 15 20 25
number of iterations number of iterations

Figure: Comparison of the gradient method and GS-BCD method to solve the
constructed. Left, K = 100. Right, K = 1000
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Sharpening the Bounds on K

Extensions

The proposed technique also applies to the following scenarios
@ Quadratic strongly convex problems (reduces a K factor)

@ General nonlinear convex smooth problems
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Comparisons

Table: Comparison of Various lteration Complexity Results

Lip-constant Diag. Hess. M; = M | Full Hess. M; = 15 Full Hess. M; = %
1/Stepsize Li=M Large step L; = % | Smallstep L; = M
GD M/r N/A M/r
R BCGD M/r M/ (Kr) M/r
GS BCGD KM/r K*M/r KM/r
GS BCGD (QP) log”(2K)M/r log”(2K)KM/r log”(2K)M/r
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Conclusion

@ We show the O(1/r) sublinear rate of convergence for a few
BCD-type methods

@ We also manage to reduce the dependency of the rates on the
problem dimension

o Observation. conservative stepsize obtains better theoretical rate
bound (but worse practical performance)
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Future Work

@ Still a gap in the rate bound

@ Question. Can the GS-BCD/BCPG matches the bound of GD for
general convex K-block problems (i.e., independent of problem
dimension)? If not, construct an example?

@ Question. Does random permutation help?
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Sharpening the Bounds on K

Thank You!
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