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The Main Content of the Talk

Question: What is the iteration complexity of the BCD (with
deterministic update rules) for convex problems?

Answer: Scales sublinearly as O(1/r) [H.-Wang-Razaviyayn-Luo 14]

1 Covers popular algorithms like BCPG, BCM, etc

2 Covers popular block selection rule like cyclic, Gauss-Southwell,
Essentially cyclic

3 Does not require per-block strong convexity
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The Main Content of the Talk

Question: How does the rate depend on the problem dimension?

Answer: Scales (almost) independently, linearly, etc, requires
case-by-case study [Sun-H. 15]
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Introduction of BCD The Algorithm and Applications

The Problem

We consider the following problem (with K block variables)

minimize f (x) := g (x1, · · · , xK) +
K

∑
k=1

hk(xk)

subject to xk ∈ Xk, k = 1, ..., K

(P)

g(·) smooth convex function; hk(·) nonsmooth convex function;

x = (xT
1 , ..., xT

K)
T ∈ ℜn is a partition of x; Xk ⊆ R

nk
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Introduction of BCD The Algorithm and Applications

Applications

Lots of applications in practice

One of the most well-known application is the LASSO problem

min
x

1

2
‖Ax − b‖2 + λ‖x‖1

Each scalar xk ∈ R is a block variable

min
x

1

2

∥

∥

∥

∥

∥

K

∑
k=1

Akxk − b

∥

∥

∥

∥

∥

2

+ λ

K

∑
k=1

|xk|
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Introduction of BCD The Algorithm and Applications

Applications (cont.)

Rate maximization in uplink wireless communication network

K users, a single base station (BS)

Each user has nt (nr) transmit (receive) antennas

Let Ck ∈ R
nt×nt denote user k’s transmit covariance matrix

Hk ∈ R
nr×nt the channel matrix between user k and the BS

Then the uplink channel capacity optimization problem is

min
{Ck}K

k=1

− log det

∣

∣

∣

∣

∣

K

∑
k=1

HkCkHT
k + Inr

∣

∣

∣

∣

∣

s.t. Ck � 0, Tr[Ck] ≤ Pk, k = 1, · · · , K

The celebrated iterative water-filling algorithm (IWFA) [Yu-Cioffi 04]
is simply BCD with cyclic update rule
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Introduction of BCD The Algorithm and Applications

The Problem

Let us assume that the gradient of g(·) is block-wise Lipschitz
continuous

‖∇kg([x−k, xk])−∇kg([x−k, x̂k])‖ ≤ Mk‖xk − x̂k‖, ∀ x ∈ X, ∀ k

‖∇g(x)−∇g(z)‖ ≤ M‖x − z‖, ∀ x, z ∈ X

Let Mmin = min Mk, Mmax = max Mk
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Introduction of BCD The Algorithm and Applications

The Algorithm

Consider the cyclic block coordinate minimization (BCM)
1 At iteration r + 1, block k updated by

xr+1
k ∈ arg min

xk∈Xk

g(xr+1
1 , . . . , xr+1

k−1, xk, xr
k+1, . . . , xr

K) + hk(xk)

2 Sweep over all blocks in cyclic order (a.k.a Gauss-Seidel rule)

Popular for solving modern large-scale problems
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Introduction of BCD The Algorithm and Applications

Variants: Block Selection Rule

Lots of block selection rules

Cyclic, randomized, parallel, greedy (Gauss-Southwell), randomly
permutated

Interested in analyzing deterministic rules

1 Provides worse case analysis

2 Sheds lights on the randomly permutated variants
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Introduction of BCD The Algorithm and Applications

Variants: Block Update Rule

Block coordinate proximal gradient (BCPG)
1 At iteration r + 1, block k updated by

xr+1
k = arg min

xk∈Xk

uk(xk; xr+1
1 , . . . , xr+1

k−1, xr
k, . . . , xr

K) + hk(xk)

uk(xk; y): a quadratic approximation of g(·) w.r.t. xk

uk(xk; y) = g(y) + 〈∇kg(y), xk − yk〉+
Lk

2
‖xk − yk‖2.

Lk is the penalty parameter; 1/Lk is the stepsize
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Introduction of BCD The Prior Art

Prior Art: BCPG

A large literature on analyzing BCPG-type algorithm

Randomized BCPG: blocks picked randomly

Strongly convex problems, linear rate [Richtárik-Takáč 12]

Convex problems with O(1/r) rate

1 Smooth [Nesterov 12]

2 Smooth + L1 penalization [Shalev-Shwartz-Tewari 11]

3 General nonsmooth (P) [Richtárik-Takáč 12][Lu-Xiao 13]
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Introduction of BCD The Prior Art

Prior Art: BCPG (cont.)

How about cyclic BCPG? Less is known

For strongly convex problems, linear rate

For general convex problems, O(1/r) rate?

1 LASSO, when satisfies the so-called “isotonicity assumption”
(assumption on the data matrix) [Saha-Tewari 13]

2 Smooth [Beck-Tetruashvili 13]

3 General nonsmooth, i.e., (P)?
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Introduction of BCD The Prior Art

Prior Art: BCM

How about cyclic BCM? Even less is known

For strongly convex problems, linear rate

For convex problem O(1/r) rate
1 Smooth unconstrained problem with K = 2 (two-block variables)

[Beck-Tetruashvili 13]

2 Other cases?

Other coordinate update rules (e.g., Gauss-Southwell)?
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Introduction of BCD The Prior Art

The Summary of Results

A summary of existing results on sublinear rate for BCD-type

NS=NonSmooth, S=Smooth, C=Constrained, U=Unconstrained,
K=K-block, 2=2-Block

GS=Gauss-Seidel, GSo=Gauss-Southwell, EC=Essentially-Cyclic

Table: Summary of Prior Art

Method Problem O(1/r) Rate

GS-BCPG S-C-K
√

GS/GSo/EC-BCPG NS-C-K ?

GS-BCM S-U-2
√

GS/EC-BCM NS-C-K ?
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Introduction of BCD The Prior Art

This Work

This work shows the following results [H.-Wang-Razaviyayn-Luo 14]

NS=NonSmooth, S=Smooth, C=Constrained, U=Unconstrained,
K=K-block, 2=2-Block

GS=Gauss-Seidel, GSo=Gauss-Southwell, EC=Essentially-Cyclic

Table: Summary of Prior Art + This Work

Method Problem O(1/r) Rate

GS-BCPG S-C-K
√

GS/GSo/EC-BCPG NS-C-K
√

GS-BCM S-U-2
√

GS/EC-BCM NS-C-K
√
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Introduction of BCD The Prior Art

Outline
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Analyzing the BCD-type Algorithm The BCPG and its iteration complexity analysis

Iteration Complexity Analysis for BCPG

Define X∗ as the optimal solution set, and let x∗ ∈ X∗ be one of the
optimal solutions

Define the optimality gap as

∆r : = f (xr)− f (x∗)

Main proof steps

1 Sufficient Descent: ∆r − ∆r+1 large enough

2 Estimate Cost-To-Go: ∆r+1 small enough

3 Estimate The Rate: Show (∆r+1)2 ≤ c
(

∆r − ∆r+1
)
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Analyzing the BCD-type Algorithm The BCPG and its iteration complexity analysis

Bound for BCPG

Define R := maxx∈X maxx∗∈X∗
{

‖x − x∗‖ : f (x) ≤ f (x1)
}

For BCPG, pick Lk = Mk for all k, the bound final bound is

∆r ≤ 8
cKM

mink Mk

MR2

r

The bound is in the same order as the one stated in
[Beck-Tetruashvili 13, Theorem 6.1]

In the worst case M/Mmin = O(K), so the red part scales with K2
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Analyzing the BCD-type Algorithm The BCPG and its iteration complexity analysis

Remark

The analysis extends to other popular update rules
1 Gauss-Southwell (i.e., greedy coordinate selection)

2 Maximum Block Improvement (MBI) [Chen-Li-He-Zhang 13]

3 Essentially cyclic

4 Random permutation

Same analysis for GS-BCM with per-block strongly convexity (BSC)

Key challenge. Complexity without BSC?
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Analyzing the BCD-type Algorithm The BCM and its complexity analysis

Motivating Examples

Example 1. Consider the group-LASSO problem

min
x

∥

∥

∥

∥

∥

K

∑
k=1

Akxk − b

∥

∥

∥

∥

∥

2

+ λ

K

∑
k=1

‖xk‖2

xk subproblem (semi)closed-form solution; Ak’s can be rank-deficient

Example 2. Consider a rate maximization problem in wireless
networks (K user, multiple antenna, etc)

min
{Ck}K

k=1

− log det

∣

∣

∣

∣

∣

K

∑
k=1

HkCkHT
k + Inr

∣

∣

∣

∣

∣

, s.t. Ck � 0, Tr[Ck] ≤ Pk, ∀ k

If Hk is not full row rank, each Ck subproblem is not strongly convex

Our previous results do not apply!
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Analyzing the BCD-type Algorithm The BCM and its complexity analysis

Iteration Complexity for BCM?

The Algorithm. At iteration r + 1, update:

xr+1
k ∈ min

xk∈Xk

g
(

xr+1
1 , · · · , xr+1

k−1, xk, xr
k+1, · · · , xr

K

)

+ hk(xk)

Key challenges.

1 No BSC anymore

2 Multiple optimal solutions

3 The sufficient descent estimate is lost
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Analyzing the BCD-type Algorithm The BCM and its complexity analysis

Rate Analysis for GS-BCM (no BSC)

Key idea. Using a different measure to gauge progress.

Key steps: Still three-step approach

Sufficient descent

∆r − ∆r+1 ≥ 1

2M

K

∑
k=1

‖∇g(wr+1
k )−∇g(wr+1

k+1)‖
2.

where

wr+1
k := [xr+1

1 , · · · , xr+1
k−1, xr

k, xr
k+1, · · · , xr

K].

Cost-to-go estimate

(∆r+1)2 ≤ 2K2R2
K

∑
k=1

‖∇g(wr+1
k+1)−∇g(wr+1

k )‖2, ∀x∗ ∈ X∗.

Matching the previous two and obtain...
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Analyzing the BCD-type Algorithm The BCM and its complexity analysis

Rate Analysis for cyclic BSUM (no BSC)

Theorem

(H.-Wang-Razaviyayn-Luo 14) Let {xr} be the sequence generated by the
BCM algorithm with G-S rule. Then we have

∆r = f (xr)− f ∗ ≤ c5

σ5

1

r
, ∀ r ≥ 1, (2.1)

where the constants are given below

c5 = max{4σ5 − 2, f (x1)− f ∗, 2},

σ5 =
1

2MK2R2
, (2.2)
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Analyzing the BCD-type Algorithm The BCM and its complexity analysis
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Sharpening the Bounds on K

What’s Missing?

Why we care about iteration complexity?

1 Characterize how fast the algorithms progresses

2 Estimate practical performance for big data problems

For large scale problems, the scaling with respect to K matters!

When K = 106, two algorithms with O(K/r) and O(K2/r2)...
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Sharpening the Bounds on K

The State-of-the-Art

The classical gradient method scales O(M/r) (independent of K)

In [Saha-Tewari 13], GS-BCPG for LASSO with “isotonicity
assumption” scales O(M/r)

The GS-BCPG for smooth problems [Beck-Tetruashvili 13] scales
O(K2M/r) in the worst case

The analysis in [H.-Wang-Razaviyayn-Luo 14] scales similarly

Better bounds?
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Sharpening the Bounds on K

Sharpening the Bounds on K?

All the rates scale quadratically in K (in worst case)

Next we sharpen the bound for the following quadratic problem

min f (x) :=
1

2

∥

∥

∥

∥

∥

K

∑
k=1

Akxk − b

∥

∥

∥

∥

∥

2

+
K

∑
k=1

hk(xk), s.t. xk ∈ Xk, ∀ k (Q)
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Sharpening the Bounds on K

Sharpening the Bounds on K?

Consider the BCPG algorithm

Remove a K factor in the worst case

Matches the complexity of gradient descent (almost independent of
K) for some special cases
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Sharpening the Bounds on K

The Result

Question: How does the rate bound depend on K?

Result 1: BCPG+quadratic g. If Lk = Mk, then the rate scales

O
(

log2(K)

(

Mmax

M
+

M

Mmin

)

MR2

)

Result 2: BCPG+quadratic g. If Lk = M, then the rate scales

O
(

log2(K)MR2
)

Result 3: For problems with Mmax
Mmin

= O(1), the above rates are tight
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Sharpening the Bounds on K

Rate Analysis for GS-BCPG

Theorem (Sun-H. 15)

The iteration complexity of using BCPG to solve (Q) is given below
1 Suppose the stepsizes are chosen as Lk = M, ∀ k, then

∆(r+1) ≤ 3 max
{

∆0, 4 log2(2K)M
} R2

r + 1
.

2 Suppose the stepsizes are chosen according to:

Lk = λmax(AT
k Ak) = Mk, ∀ k.

Then we have

∆(r+1) ≤ 3 max

{

∆0, 2 log2(2K)

(

Mmax +
M2

Mmin

)}

R2

r + 1
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Sharpening the Bounds on K

Tightness of the Bounds

We briefly discuss the tightness of the bound over K
Question: Can we improve the bounds further in the order of K?
Construct a simple quadratic problem

min g(x) :=

∥

∥

∥

∥

∥

K

∑
k=1

Akxk

∥

∥

∥

∥

∥

2

with

A =



















1 1 0 0 · · · 0 0 0
1 1 1 0 · · · 0 0 0
0 1 1 1 · · · 0 0 0
...

...
...

... · · ·
...

...
...

0 0 0 0 · · · 1 1 1
0 0 0 0 · · · 0 1 1



















.

Consider scalar blocks, then Mk = 1 for all k

We also have (Note: M/Mk = O(1))

M = λmax(A) = 1 + 2 cos(iπ/(K + 1)), k = 1, · · · , K,
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Sharpening the Bounds on K

Tightness of the Bounds (cont.)

We can show that after running a single pass of GS-BCD/BCPG

∆(1) ≥ 9(K − 3)

4(K − 1)
‖x(0) − x∗‖2, ∀ K ≥ 3.

Specialized our bound to this problem predicts that the gap is at most

∆(1) ≤
(

M − Mmin

Mmin

1

2
+

1

4

)

‖x(0) − x∗‖2 M ≤ 36‖x(0) − x∗‖2.

As K → ∞, the previous two bounds match, up to a constant
dimensionless factor 1/16

Conclusion. The derived bound is tight for the case
M/Mmin = O(1)
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Sharpening the Bounds on K

Numerical Comparison

We compare the performance of GD and BCD over the constructed
problem
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Figure: Comparison of the gradient method and GS-BCD method to solve the
constructed. Left, K = 100. Right, K = 1000
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Sharpening the Bounds on K

Extensions

The proposed technique also applies to the following scenarios

Quadratic strongly convex problems (reduces a K factor)

General nonlinear convex smooth problems
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Sharpening the Bounds on K

Comparisons

—

Table: Comparison of Various Iteration Complexity Results

Lip-constant Diag. Hess. Mi = M Full Hess. Mi =
M
K Full Hess. Mi =

M
K

1/Stepsize Li = M Large step Li =
M
K Small step Li = M

GD M/r N/A M/r

R BCGD M/r M/(Kr) M/r

GS BCGD KM/r K2M/r KM/r

GS BCGD (QP) log2(2K)M/r log2(2K)KM/r log2(2K)M/r
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Sharpening the Bounds on K

Conclusion

We show the O(1/r) sublinear rate of convergence for a few
BCD-type methods

We also manage to reduce the dependency of the rates on the
problem dimension

Observation. conservative stepsize obtains better theoretical rate
bound (but worse practical performance)
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Sharpening the Bounds on K

Future Work

Still a gap in the rate bound

Question. Can the GS-BCD/BCPG matches the bound of GD for
general convex K-block problems (i.e., independent of problem
dimension)? If not, construct an example?

Question. Does random permutation help?
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Sharpening the Bounds on K

Thank You!
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Sharpening the Bounds on K
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