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Abstract

In this note, we consider two recent algorithms developed for Federated Learning – FedDyn
and FedPD. Each algorithm is designed for settings in which users are heterogeneous, and each
tries to reduce the communication burdens of the system (in different manners). Specifically,
FedPD reduces communication by skipping some interaction between the server and users
whenever possible, while FedDyn allows the users to perform partial participation. In this
note, we provide a short discussion about the connections of these two algorithms – without
communication reduction, these two algorithms are identical. In particular, the so-called
“dynamic regularization” step in FedDyn is precisely the dual update step in FedPD.

1 Setting

Let us consider the following standard federated learning problem:

argminx

f (x) ,
1
N

N∑
i=1

fi(x)


where N is the total number of users, and fi(x) : Rm → R is a smooth and possibly non-convex
local objective function. Other notations used in this note is listed in the table below.

Table 1: Summary of notation used in the paper

N,i The total number, and the index, of clients
N The set of all clients

M,B,b The total number, batch size and index of samples
T ,t The total number and index of communication rounds
Q,q The total number and index of local updates
x0,xi The global and local model parameters
λ0,λi The global and local auxiliary variables
·t,q The variable index at qth local iteration of tth global iteration

2 The FedPD and FedDyn Algorithms

The Federated Primal-Dual (FedPD) algorithm is proposed in [2]. The idea is to use a set of linear
constraints to indicate that the global variable is shared among the local clients. Each iteration t,
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the local client updates its local variable xt+1
i based on (inexactly) optimizing a local Lagrangian

function, parameterized by the previous model xt0,i , followed by a dual variable update. Then the
local nodes with either (with probability p − 1) send xt+1

i + ηλt+1
i to the server, or will continue

update. In the former update, the server will perform an averaging and broadcast the results to
the users as a set of new xt+1

0,i ’s; in the latter case, the server will do nothing, and the clients will
continue their local updates. Please see the table below.

Algorithm 1 Federated Primal-Dual Algorithm
Input: x0,λ0,η,p,T
Initialize: x0

0 = x0,
for t = 0, . . . ,T − 1 do

for i = 1, . . . ,N in parallel do

xt+1
i = (inexact)argminx fi(x) +

〈
λti ,x− x

t
0,i

〉
+

1
2η

∥∥∥x− xt0,i∥∥∥2
(1)

λt+1
i = λti +

1
η

(xt+1
i − xt0,i) (2)

end for
With probability 1− p, do global communication:

xt+1
0 =

1
N

N∑
i=1

(xt+1
i + ηλt+1

i ) (3)

xt+1
0,i = xt+1

0 , i = 1, . . . ,N (4)

With probability p, skip global communication:
Local Update: xt+1

0,i , xt+1
i + ηλt+1

i
end for

The Federated Dynamic Regularization Algorithm (FedDyn) proposes “a dynamic regularizer
for each device at each round, so that in the limit the global and device solutions are aligned” [1].
Further, in each iteration t, only a subset of users Pt ⊆ U is selected, out of a total of N users. The
FedDyn algorithm is given below.
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Algorithm 2 Federated Dynamic Regularizer
Input: x0,η,T ,
Initialize: x0

0 = x0, h0

for t = 0, . . . ,T − 1 do
for i ∈ Pt in parallel do local updates do

xt+1
i = argminx fi(x) +

〈
∇fi(xti ),x− x

t
0

〉
+

1
2η

∥∥∥x− xt0∥∥∥2
(5)

∇fi(xt+1
i ) = ∇fi(xti ) +

1
η

(xt+1
i − xt0) (6)

end for
for i < Pt in parallel do local updates do

xt+1
i = xti , ∇fi(x

t+1
i ) = ∇fi(xti ) (7)

end for
Global Communicate:

ht+1 = ht +
1
ηN

∑
i∈Pt

(xt+1
i − xt0) (8)

xt+1
0 =

1
|Pt |

∑
i∈Pt

xt+1
i + ηht+1 (9)

end for

3 Comparisons

To see the relation between these two algorithms, let us assume the following:

• Let Pt = N for FedDyn, that is, all clients will participate in communication in all the
iterations;

• Consider p = 0 for FedPD, that is, communication will take place in all the iterations;

• Consider a simplified version of FedPD where the local problem (1) is solved exactly.

• FedPD and FedDyn are initialized such that their initial x0 are the same, and that the
following holds:

λ0
i = λ0

j = h0 = ∇fi(x0), ∀ i, j. (10)

Further, we will show that the {xti } and {xt0} iterates generated by the two algorithms are the same.
Below, we will show that the following two relations hold:

∇fi(xti ) = λti , ht =
1
N

N∑
i=1

λri t = 0,1, · · · ,T . (11)
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First, at t = 0, the two relations holds trivially because of the initialization.
Let us consider the update in t = 0. Clearly, the x1

i updates in (5) and (1) are exactly the
same, since they are both minimizing the local augmented Lagrangian function, and that ∇fi(x0

i ) =
λ0
i , ∀ i. Therefore, the two algorithms generate the same x1

i . It follows that for the FedDyn, the
following hold:

∇fi(x1
i ) = ∇fi(x0

i ) +
1
η

(x1
i − x

0
0)

(i)
= λ0

i +
1
η

(x1
i − x

0
0)

(ii)
= λ1

i , ∀ i, (12)

where in (i) we used the initialization (10), and in (ii) we used (2), and the fact that the x1
i

generated by the two algorithms are exactly the same.
Next, we note that the following relations hold for FedDyn:

ht+1 = ht +
1
ηN

N∑
i=1

(xt+1
i − x

t
0)

(6)
= ht +

1
N

N∑
i=1

(
∇fi(xt+1

i )−∇fi(xti )
)
. (13)

And in particular

h1 = h0 +
1
N

N∑
i=1

(
∇fi(x1

i )−∇fi(x0
i )
)

=
1
N

N∑
i=1

∇fi(x1
i ) =

1
N

N∑
i=1

λ1
i , ∀ i, (14)

where the last equality comes from (12).
Utilizing the fact that h1 = 1

N

∑N
i=1λ

1
i , and the two algorithms have the same x1

i , by a direct
comparison of (9) and (3), we obtain that x1

0 generated by the two algorithms are the same.
The case for all t ≥ 1 can be similarly derived.
In conclusion, under the initialization (10), and assuming that p = 1 for FedPD and Pt =N for

all t, and the FedPD solves local problem exactly, then the FedPD and FedDyn are identical. The
key observation from the above analysis is that, the so-called “dynamic regularization” updates in
FedDyn are the dual variable updates in FedPD.
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