Bilevel Optimization: Recent Algorithmic & Theoretical Advances,
and Emerging Applications in Training LLMs

Mingyi Hong
Department of Electrical and Computer Engineering,

University of Minnesota. Minneapolis

®
UNIVERSITY OF MINNESOTA
Driven to Discover®

1/68



-
Collaborators (Alphabetical Order)

Volkan Cevher Alfredo GarC|a Prashant Khanduri Sijia Liu
(EPFL) (TAMU) (WSU) (MSU)

Shoham Sabach Hoi-To Wai Zhaoran Wang  Zhuoran Yang Shuzhong Zhang
(Technion) (CUHK)  (Northwestern) (Yale) (UMN)

2/68



Collaborators (Alphabetical Order)

Xiaotian Jiang  Chenliang Li Jiaxiang Li Hadi Reisizadeh
(UMN) (TAMU) (UMN) (UMN)

o
-

Bingqing Song loannis Tsaknakis Quan Wei  Siliang Zeng
(UMN) (UMN) (UMN) (UMN)

3/68



|
Related Works (Optimization)

@ M. Hong, H.-T. Wai, Z. Wang, Z. Yang, “A Two-Timescale Stochastic Algorithm
Framework for Bilevel Optimization: Complexity Analysis and Application to Actor-Critic”,
SIOPT, 33 (1), 2023

@ P. Khanduri, S. Zeng, M. Hong, H.-T. Wai, Z. Wang, Z. Yang, “A near-optimal algorithm
for stochastic bilevel optimization via double-momentum”, NeurlPS 2021

@ P. Khanduri, I. Tsaknakis, Y. Zhang, J. Liu, S. Liu, J. Zhang, M. Hong, “Linearly
Constrained Bilevel Optimization: A Smoothed Implicit Gradient Approach”, ICML 2023

@ X. Jiang, J. Li, M. Hong, S. Zhang, "A Barrier Function Approach for Bilevel Optimization
with Coupled Lower-Level Constraints: Formulation, Approximation and Algorithms.”,
submitted, 2024

@ | Tsaknakis, M Hong, S Zhang, "Minimax problems with coupled linear constraints:
computational complexity, duality and solution methods”, SIOPT, 2023

4/68



|
Related Works (Applications)

@ S. Zeng, C. Li, A. Garcia and M. Hong, “Maximum-Likelihood Inverse Reinforcement
Learning with Finite-Time Guarantees”, NeurlPS, 2022

@ S Zeng, M. Hong, A Garcia, “Structural estimation of markov decision processes in
high-dimensional state space with finite-time guarantees, Operations Research, 2023

@ S. Zeng, C. Li, A. Garcia and M. Hong, “When Demonstrations Meet Generative World
Models: A Maximum Likelihood Framework for Offline Inverse Reinforcement Learning”,
NeurIPS, 2023, (Oral)

@ CLi, S Zeng, Z Liao, J Li, D Kang, A Garcia, M Hong, "Joint demonstration and preference
learning improves policy alignment with human feedback”, ICLR 2025 (Spotlight)

@ S. Zeng, Y. Liu, H. Rangwala, G. Karypis, M. Hong, R. Fakoor, “From demonstrations to
rewards: Alignment without explicit human preferences”, 2025

@ H Reisizadeh, J Jia, Z Bu, B Vinzamuri, A Ramakrishna, K Chang, V Cevher, S Liu, M
Hong, "BLUR: A Bi-Level Optimization Approach for LLM Unlearning”, 2025

5/68



What is a Bilevel Problem,

& Why Should You Care?



Ny rat and Why
Bilevel Optimization Problems (BLO)

@ Let us consider the following bilevel optimization (BLO) problem:

mind U(x) = f(x,y*(x))
xeXCRY

st. y*(x)earg min g(x,y), (B)
y€Y CR%

h(x,y*(x)) <0

f(-), g(-) and h(-) are smooth (possibly non-convex) functions

(-
h(x, y*(x)) < 0 coupled constraints
f(-) and g(-) are upper- and lower-level objective, respectively
(-

£(-) is the "outer” objective

A challenging class of problems with a long history and rich structures.
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oy
Stackelberg Games

@ In the 1934 book [Stackelberg, 1934] and the
1952 book [Stackelberg, 1952], Heinrich von
Stackelberg introduced what is now called the
Stackelberg game, a strategic game involving
two players:

Leader (L): Moves first, commits to a strategy
Follower (F): Observes L's decision and chooses
its optimal response

o L anticipates F's reaction, and optimizes its
outcome

@ This maps exactly to the structure of a BLO.
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Ny rat and Why

Bi-Level Optimization Problems

WORLD BANK

Bank Staff Working Paper No. 258

@ Later in 1970’'s BLO has been sy 1977
formulated in [BraCken—MCGI”, 1973], MULTI-LEVEL PROGRAMMING AND DEVELOPMENT POLICY

H h | H | Most economic policy problems can be decomposed into two related
with an application to military resource cubproblemes. the Toeheviorath rebiem of Forecasting. the ceonom s seactions
to policy changes, and the "policy" problem proper, of choosing among the al-
” H bl ternative possible outcomes. Traditionally, optimization models address one
allocation problem subproblem or the other, but not both. This paper presents a new algorithm
which enables the simultaneous of both subproblems; it is a modifi-
cation of the simplex algorithm which permits the simultaneous operation of
two distinct objective functions.

For il the is applied to a model of
Mexican agriculture. This demonstration application reveals that a) the tra-
Th f . I | . ditional technological (production possibilities) frontier may be quite irrel-
° e name of bi-level /multi-level T o o e Lt tomames dacentralises protereness snd
b) even without precise knowledge of the weights in the "policy objective
function," it is possible to use multi-level programming to significantly

optimization problem has been forma”y clarify the nature of the available policy choices.
coined in a World Bank report.

Prepared by:
Wilfred Candler, Agriculture Canada
and

Roger Nortom, Development Research Center
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N at and Why

Bilevel Optimization Problems

Starting 1980's BLO has received increased attention, due to applications in
transportation, economics, power systems, signal processing, machine learning, etc.

A large body of works
@ Hypergradient based methods [Kolstad and Lasdon, 1990, Savard and Gauvin, 1994,
Falk and Liu, 1995]
@ Penalty based methods [Aiyoshi and Shimizu, 1981, Ishizuka and Aiyoshi, 1992,
Case, 1998]
o Lower-level KKT systems (MPEC) [Luo et al., 1996, Outrata et al., 2013]

@ Methods for linear lower-level: BnB [Fortuny-Amat and McCarl, 1981];
Complimentary Pivoting [Ben-Ayed and Blair, 1990]; etc.
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Where Do Bilevel Problems

Show Up in the Wild Today?



N /r are BLOs i the Wi?
BLO Applications in machine learning (ML) and Al

@ As ML and Al problems getting more complex, many problems start to involve
multiple subproblems

@ “Empirical loss minimization” based modeling no longer sufficient

@ BLO becomes an ideal candidate to formulate these type of problems
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Reinforcement Learning and Policy Optimization

@ BLO is closely related to the policy optimization

problem in classical RL literature, particularly when ' Systemn Reward
combined with an actor-critic scheme [Konda and I e
Tsitsiklis, 1999]
Action
@ The optimization involved is to find an optimal AC
policy to maximize the expected (discounted) reward. Values
@ Leader = ‘actor’ optimizes the policy, Follower = Critic
——

‘critic’ evaluates the performance of the ‘actor’
(current policy).
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Al Learning from Experience

o A recent article “Era of Experience” [Silver and Sutton, 2025] envisions a new Al
learning paradigm — continued learning through interactive feedback rather than
static datasets.

@ This paradigm shift introduces nested learning dynamics:

o Upper level: learning a reward or preference model from human feedback.
o Lower level: adapting the model’s policy via RL under that reward.

Furthermore, users could provide feedback during the learning process, such as their satisfaction level,
which could be used to fine-tune the reward function. The reward function can then adapt over time, to
improve the way in which it selects or combines signals, and to identify and correct any misalignment. This
can also be understood as a bi-level optimisation process that optimises user feedback as the top-level goal,
and optimises grounded signals from the environment at the low level.* In this way, a small amount of human
data may facilitate a large amount of autonomous learning.

Silver-Sutton, “Welcome to the Era of Experience”, 2025
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Al Learning from Experience

@ BLO provides the algorithmic and theoretical backbone for this emerging paradigm
@ A rough BLO formulation can be written in the following form:

min UserSatisfaction(7* (Oreward)) S.t. 7" (Oreward) € argmaxRy,_,., (1)
s

reward

o Feedback is provided interactively during training Feedbac"@
(e.g., preferences, corrections, satisfaction scores).

@ Ry is a reward function, which adapts over time

based on streaming preferences &l
e 7*(0) is an Al model, re-optimized continuously to
maximize reward. Al Mode\

@ More to come soon.
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N .0 el
Other applications of BLO

Hyper-parameter Opt [Maclaurin et al., 2015, Franceschi et al., 2018]
Neural Architecture Search [Liu et al., 2018, Xue et al., 2021]

DNN Prunning [Sehwag et al., 2020, Zhang et al., 2022]

Deep Reinforcement Learning [Gao et al., 2019, Vahdat et al., 2020]
Wireless Telecommunications [Sun et al., 2021, Gao et al., 2020]
Data Re-weighting [Pan et al., 2024, Fan et al., 2024]

LLM unlearning [Reisizadeh et al., 2025]

A number of recent surveys on related topics [Sinha et al., 2017, Zhang et al., 2024].
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Why are BLO Problems Hard?



Y "> B.-0s are Hard?
Challenges of BLO: Theory

@ The outer-objective ¢(x) is generally nonconvex even when both levels are strongly
convex and unconstrained

@ Even if the problem appears to be well-defined (lower-problem is convex), ¢(x) can
be non-smooth, even discontinuous

o If the lower-level problem is non-convex, then even more challenging

@ BLO problem is ¥5-hard (harder than typical NP-hard problems in the polynomial
hierarchy) [Bolte et al., 2025b].
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Y "> B.-0s are Hard?
Challenges of BLO: Theory

Upper level problem: f(x,y) = y;, x € R}, y € R?;

Lower level problem: myin g(x,¥) :=xy1 + yo

sit. y2 >0
1>y >-1
(—1,0) if x>0
Vix) =< [-1,1] x {0} ifx=0
(1,0) if x<0

-1 ifx>0
Hyperfunction: /(x) = f(x,y"(x)) = -
yp (x) = f(x,y"(x)) {1 =0

which is not continuous when x = 0. 16/68



Key Challenges when g(-) is non-convex

lll-posedness of the Hyperfunction: /(x) practically not computable

Bifurcation phenomenon: Solutions may emerge or disappear abruptly
@ (Local) optimal set S(x) may change discontinuously

@ When bifurcation occurs, estimating ||y — y*(x)|| becomes difficult due to Hessian
degeneracy at y*(x)
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. [UipEoainy
Challenges of BLO: Computation

Classical BLO algorithms are typically complicated:
@ Requires Hessian computation [Kolstad and Lasdon, 1990]
e Can only handle deterministic problems [Falk and Liu, 1995]
e Many algorithms require multiple loops [Aiyoshi and Shimizu, 1981, Ghadimi and
Wang, 2018, Couellan and Wang, 2016].
Desired properties:
o Lightweight computation
@ Can deal with stochastic problems
o (sample/compute) efficient
@ Theoretical guarantees.
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Efficient Algorithms

& How to Design Them



N B Lol s
Getting Started

@ Let's get started with a family of tractable BLO problems
@ Understand design issues for an efficient algorithm

@ Then go over key developments that improve the state-of-the-art.
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N it Algorithms and Their Design
Algorithm Design for Problem (B)

@ Consider the following simplifications:

min  /(x) := f(x,y*(x))

d
min  f(x) <= XXCRY )
XEXCRA () st. y*(x)=arg min g(x,y),
y€ER%2

g(x,y) is strongly convex in y and unconstrained; no “coupling” constraints
e /(x) is differentiable.

@ We are interested in the stochastic setting where

f(X’y) IZEg[f(X,y;f)], g(va) ::EC[g(va;C)]‘
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Y i Algorithms and Their Design
The Hyper-Gradient

@ Since /(x) becomes differentiable, let's calculate its gradient

Vi (x,y* (%)) = Vi (6, y*(x) + Vay"(x) | Vyf(x,y*(x))
N——

Jacobian Matrix

Note for lower-level, V,g(x, y*(x)) = 0, by Implicit Function Theorem:
Vig(x, v (x)) + Viy* (x) Vi,g(x, y*(x)) = 0
We obtain:

Vaf (%, %) = Viuf (x, y*) — Vi, 8(x, y) V5,80, y) ' Vy F(x, y*) .

implicit gradient
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Fixed point of a system of two coupled equations

o Challenge: the above calculation needs y*(x), i.e., the lower-level problem has to
be solved to global min = generally not possible in practice

Idea: Consider the stationary condition of BLO as finding (x*, y*) s.t.
F(x,y) =0, G(x,y)=V,g(x,y)=0

where  F(x,y) = Vif(x,y) — Va,g(x,y)[V5,&(x,y)| 'V, f(x,y)

We will call the function F(x,y) the “surrogate” gradient.
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Stochastic Estimates

Let F(+;€), G(+;C) be the stochastic estimates of F, G

Then the simplest and single-loop algorithm is given by:

X1 = Xk — 0 F (X, Yie; Ek+1)
Yi+1 = Yk — B G(Xk, yi; Ck+1)

For this to work, we want unbiased estimates of F, G.

Challenge: it is easy to estimate G(-) = V,g(-), but how about F(-)?
Flx,y) = Vxf(x,y) = Viglxy)  [Vielxy] " V,flxy)
—_——
can't replace by V;z,yg(x,y; <)

Biased estimate?
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Stochastic Estimates

Subroutine: estimating F(x,y) — input: t

Step 1. Set p € {0, ...,t — 1} uniformly at random.
Step 2. Construct the gradient estimate by (i.e., Neumann series)

L,

p
t C
he = Vif (x,y;60) = V2 g(x, y; ¢6D) [ I1(r- L—Zviygu,y; gf”))] Yy f(x,y;€0),
i=1
where ¢, = g /(1 + 05yy)
o We have (1,/Lg is the condition number) [H.-Wai-Wang-Yang-23] !

IF(x,y) = Elhe]l| = O((1 = pg/Lg)"). Elllbr — Elhe][[*] = O(0*).

LA two-timescale stochastic algorithm framework for bilevel optimization: Complexity analysis and application
to actor-critic M Hong, HT Wai, Z Wang, Z Yang, SIOPT, 2023
25 /68



N i Algorithms and Their Design
The Two Time-Scale Approximation (TTSA) Algorithm

@ In [H.-Wai-Wang-Yang-23], a single-loop algorithm is proposed
e fix t to be of the order O(log(1/¢)).
TTSA Algorithm for BLO — input: t
Follow the recursion:
Xpr1 = Xk — ozkh’f‘

Ye+1 = Yk — BkVy 8 (X, ¥i; 1)
h¥ from the previous subroutine with t = O(log(1/e)).

o Takes at most t + 2 = O(log(1/¢)) samples at each iteration
o Sample efficient, single-loop, SGD-like, easy to implement
e A Two timescale stochastic approximation (TTSA) algorithm, since a/SBx — 0.
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General Assumptions (Informal)

Assumption 1 (upper-level function)
Consider the upper-level function f(x,y) and £(x) = f(x, y*(x)):
@ V,f(x,y) is Lipschitz in (x,y) + bounded; V,f(x,y) is Lipschitz in y.

Assumption 2 (lower-level function)
Consider the lower-level function g(x, y):
@ For any x € X, g(x,y) is strongly convex in y.

@ The Jacobian/Hessian V?(yg(x,y),v}%yg(x,y) are Lipschitz in (x,y). Moreover,
V2,8(x,y) is bounded.
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How to measure convergence?

Tracking Error

For lower-level problem, we care about if y* tracks y*(x*~1) well:

AS =E[lly* = y*(<* 1%

Optimality Gap (£(-) strongly convex)

For upper-level problem, we care about: AX = E[|[x* — x*||?]

Stationarity (¢(-) convex/non-convex)
When the upper-level problem is possibly non-convex, we care about:
E[| Ve(x )]

If X # R, our result extends to the case with nearly stationary solution defined via the
Moreau envelope [Davis and Drusvyatskiy, 2018].
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Summary of Main Results: Complexity

Main Results

We characterize the rate of convergence for TTSA when:

(1) the inner objective g(x, y) is strongly convex in y, and

(2) the outer objective £(x) is strongly convex, convex, weakly convex in x.
(3) K is the total iteration we run

¢(x) CONSTRAINT  STEP SIZE (ax, k) = RATE (OUTER) RATE (INNER)

sC X CR™ O(k™Y), O(k=2/3) O(K=2/3) O(K=2/3)
C X CR% O(K=3/%), O(K=1/?) O(K~=%) O(K~1/?)
wWC X CR% O(K=3/%), O(K=%/%) O(K=2/%) O(K=2/%)
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Y i Algorithms and Their Design
Key Lemma

Lemma

Let K > 1 be an integer. Consider sequences of non-negative scalars {QQ}K_  {YkKIK_ |
{@k}szo- Let ¢y, Cq,Co, do,d1, dy be some positive constants. If the recursion holds

Qk+1 < Qk _ C09k+1 + clTkJrl + €, Tk+1 < (1 . do)Tk + d1@k + d2’
for any k > 0. Then provided that ¢y — c1d1(dg)~* > 0,do — dyci(co)~! > 0, it holds

EK: QO E(10+d10° +dy) ks c1dy(dg)t
o — €1di(do) 1)K Co — €1d1(dg)~?
ZK: T0+d1@0+d2+ 400 dy + dyca(co)

o do = d1C1(C0) l)K do = d1C1(C0)_1

X \

X \
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Summary of Main Results: Sample Complexity

@ Consider the sample complexity for TTSA, compare with BSA proposed Ghadimi
and Wang [2018]

@ TTSA draws O(1) samples from the lower-level problem; BSA requires solving the
lower-level problem to high accuracy

Table: Comparison of total samples needed between BSA [Ghadimi and Wang, 2018] and TTSA

Method SC C WC

BSA O 0™ 0
TTSA O %) 0O(e?) O ?)

31/68



N B Lol s
Discussion: TTSA for Fixed Point Systems

@ TTSA ideas can be applied to solve generic systems of two equations

o Classical work Borkar [1997] showed asymptotic convergence requiring

@ Only asymptotic almost sure results available; function class is much restricted (e.g.,
the mapping is smooth), additional assumptions of bounded iterates

e Mokkadem et al. [2006] consider restricted form of nonlinear and smooth mappings;
Dalal et al. [2018] considers linear TTSA.
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. EEimooduliio
Discussion: TTSA for policy optimization

@ TTSA can be easily adopted to solve the policy optimization problem in RL

o It will result in an Actor-Critic-type algorithm
o Actor (upper-level): policy optimization
o Critic (lower-level): policy evaluation

@ In [H.-Wai-Wang-Yang-23] it has been shown that TTSA specializes to a
two-timescale natural actor critic (TT-NAC) algorithm

@ Applying TTSA analysis to this setting, we obtain

E[|l6(x") — %] = O(K /)
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. More RecentResults
What's Next

The TTSA work so far only scratches the surface; many important theoretical /practical
questions remain:

@ How good is it in practical applications?
@ How to specialize these algorithms under special problem structure?
o Can we make it faster?

@ Can we weaken the assumptions?
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I ool ool ol
Faster Algorithms

Let Xes1 = Xk — ihy, Yierr = yi — Bich
o Let nf,n,’i € [0,1]. Replace the gradient estimates by
g = 1% G(xi, yi; Ce) + (L =) (M5, + G(xie, vk Ck) — G(Xk—1, Yie—1: Ck))
———
SGD estimate SARAH estimate Nguyen et al. [2017]

hle = i F (i yis ) + (1= nf) (M1 + F (e yis &) — F (-1, Y15 &)
—————

SGD estimate SARAH estimate Nguyen et al. [2017]

e Convex combination of SGD & SARAH Cutkosky and Orabona [2019] = the
SUSTAIN algorithm [Khanduri-Zeng-H.-Wai- Wang-Yang 21].
o With step size ax = Bk < k=13, nf =nf < k=%/3,
E[AX] = O(K~%/%) = ‘an optimal rate’
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I ool ool ol
Other ways to compute Hyper-gradient

@ To approximate the Hessian inverse, one can solve the following quadratic equation:
vi(x) = mﬂi{g VTV}Q,yg(X,y*(X))V +V,f(x,y*(x))"v (QD)
veR?2
e Hyper-gradient: F(x, y*(x)) := V,f(x,y*(x)) + V)%yg(x,y*(x))v*
e Algorithms: Solve (QD) using: Conjugate gradient (CG) [Ji et al., 2021], SGD

Dagréou et al. [2022], Arbel and Mairal [2022].
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- SEodiAsRoumuey
Can Hessian computations be avoided?

e Value function (VF) based approach: Pose the LL problem as a constraint

min_ f(x,y) st g(x,y)-g"(x)<0  (VF)
xERY ycR2
where g*(x) := g(x, y*(x))
@ Avoids the computation of second-order derivatives

o Fully first-order algorithms, but with weaker convergence guarantees

e Algorithms: First baseline Kwon et al. [2023], lower bounds and improved
algorithms Kwon et al. [2024], Chen et al. [2023a].
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Sample complexity of SOTA Algorithms

@ Many stochastic algorithms have been proposed for bilevel optimization since 2021

(under similar assumptions as TTSA):

Algorithm Approach Implementation Batch Size Convergence
BSA! [Ghadimi and Wang, 2018] AID Double loop o(1) O(e72), O(e™?)

TTSA [H. et al 2023] AID Single loop o(1) O(e/?)
F2SA Kwon et al. [2023] VF Double loop O(e™h O(e/?)
F2BA Chen et al. [2023a], Kwon et al. [2024] VF Double loop O(e™h) O(e3)
stocBiO [Yang et al., 2021] QD Double loop O(e™h O(e7?)
AmIGO [Arbel and Mairal, 2022] QD Double loop O(e 1) O(e?)
SOBA [Dagréou et al., 2022] QD Single loop o) O(e7?)
ALSET [Chen et al., 2021] AID Single loop o(1) O(e7?)
SVRB [Guo and Yang, 2021] AID Single loop o) O(e=3/?)

SUSTAIN [Khanduri et al., 2021] AID Single loop o(1) O(e3/?)

1 BSA achieves separate convergence guarantees for UL and LL as illustrated on the left and right, resp.

2 AID refers to the standard approach to compute the Hessian inverse.
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Weaken the Assumptions: Lower Level Constraints

Adding constraints to the lower-level? Then ¢(x) becomes non-smooth
e Smoothing technique [Khanduri et al 23, 25]2

Original Problem

min 4(x) := f(x,y*(x))

x€XCRYA 0.84
st. y*(x) € arg min g(x,y) +q'y -
yER2 Ay<b ~—~ X 0.82
random x
perturbation >
0.80
@ The resulting perturbed loss becomes 0.78
smooth and can be analyzed 0.70 0.75 0.80 0.85

X

2A Doubly Stochastically Perturbed Algorithm for Linearly Constrained Bilevel Optimization, P

Khanduri, | Tsaknakis, Y Zhang, S Liu, M Hong, arXiv 2025.
39/68



Weaken the Assumptions: Lower Level Constraints

Table: Algorithms for linearly constrained LL problems. Stationarity: ||Vf|| < ¢, Goldstein:
(e, 9)-Goldstein stationarity condition, Moreau env.: the gradient of the Moreau envelope. LE:
Linear equality constraints, LI: Linear inequality constraints.

‘ Algorithm ‘ Constraint Setting Measure Convergence ‘
AiPOD Xiao et al. [2023] LE Stochastic Stationarity O(e™%)
[Lu and Mei, 2024, Algorithm 4] LI Deterministic | Stationarity | O(e=7) / O(e—4)
Perturbed Inexact GD Kornowski et al. [2024] LI Deterministic Goldstein 0(6743_1)
[Kornowski et al., 2024, Algorithm 3] LI Deterministic Goldstein O(dlefsg_l)
[D]SIGD Khanduri et al. [2023] LI Deterministic | Stationarity Asymptotic
[SISIGD! Khanduri et al. [2023] LI Stochastic Moreau env. O(e™%)
DS-BLO Khanduri et al. [2025] Ll Stochastic Goldstein O 4 1)

1 Under weak convexity assumption.
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Weaken the Assumptions: Remove Strong Convexity

@ When g(x,y) is not strongly convex in y, £(x) can be discontinuous

@ In a recent work [Jiang-Li-H.-Zhang ,
25], we consider the case where the )
lower-level problem is an LP lu(x

min £(x) := f(x, y"(x)),

sit. y*(x) € ar min X,
y () ye{yg:hf(x,y)SO: izl,ggk} )

@ Solution: A log-barrier based smooth approximation

k
vi(x) € arg min g(x,y)=t ) log(—hi(x.y))
i=1

Jiang, X., Li, J., Hong, M., & Zhang, S. (2024). A Barrier Function Approach for Bilevel Optimization

with Coupled Lower-Level Constraints: Formulation, Approximation and Algorithms. arXiv:2410.10670.
41/68



Bilevel with LP Lower-level Problem (Approximation)

@ Overall problem

min 7 (x) = f(x,y"(x))

k
st. yi(x) €argming(x,y)—t Y log(—h(x,y))
i=1

e If £(x) is continuous at x, then lim;_;o e(x) = €(x); If £(x) is differentiable at x,
then lim;_,o V,l:(x) = V,l(x)

o Designed an adaptive algorithm that guarantees [Vxle(x)|| < €; iteration complexity
of O(e 2t=49)

@ Overcomes the non-Lipschitz smoothness issue of penalized LL
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Weaken the Assumptions: Remove Strong Convexity

Method Main Assumption on LL Rate

IGFM [Chen et al., 2023b] Convex O(poly(1/e))
[Lu and Mei, 2024, Alg. 4] Convex O(e %)
V-PBGD [Shen and Chen, 2023] PL condition O(e2)
[Chen et al., 2025, Algorithm 1]  PL condition O(e %)
PSGD [Masiha et al., 2025] Local PL condition O(poly(1/e))
SMBG [Bolte et al., 2025a] Morse type Asymptotic
TPHSD [Xiao et al., 2025] No strong assumption Asymptotic

@ Rates are not comparable due to different way of measure optimality, and different

assumptions

@ Local PL: PL condition holds near the stationary point

o Morse: every stationary point in y is nondegenerate
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Case Study: Aligning LLMs

via BLO and TTSA



N Al o o
The LLM Alignment Problem

@ Recall our previous discussion about improving Al
through experience [Silver and Sutton, 2025]

Feedback@
@ Human feedback is provided interactively and

continuously during training

Al

@ A reward model (modeling human preference) is

learned over time
Al Mode\
@ The policy (the Al model parameter) is updated
continuously to optimize the reward
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R ©-O for Large Language Model (LLM) Alignment
The LLM Alignment Problem

A Special Case: The Large Language Model
(LLM) Alignment problem [Ouyang et al 22]

Ensure that LLM generates texts that
conforms human preference and values

Fixed and offline dataset available, in forms
of human demonstrations, preferences, etc.

Can be modeled by BLO

Good News: Efficient computation of
hyper-gradient due to problem structure;
Improved alignment results

0@® 0O® 09

How should | respond to an email from my
professor asking for a delayed assignment?

Demonstration (Clear+Specific)

Apologies for the delay, due to [brief reason], I'll submit
the assignment by [date]. Please let me know if that
works.

Preferred Response (Clear+Specific)
Sorry for the delay, some personal matters came up, I'll

submit it by [date].

Vague Response

Sorry for the delay. | will send the assignment soon.
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_ BLO for Large Language Model (LLM) Alignment
The RLHF Approach [Ouyang et al 22]

One popular LLM alignment strategy is the Reinforcement Learning with Human
Feedback (RLHF); Three main steps (s: state/prompt; a: action/answer):

@ Supervised Fine-tuning (SFT): Collect demonstration data {(s, a)} and then train a
supervised model from the pre-train model.

@ Reward Model (RM) Training: Collect preference data {(s, aw, a;)} where a,, > aj;
train a reward model to classify the preferred response from the non-preferred.

© Policy Optimization by RL: Given the reward model, optimize the policy by RL.
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What's next: BLO for learning from demonstration

Next we plan to:

@ Formulate the alignment problem into a BLO
@ Explore algorithm design choices

@ Results and possible extensions

To simplify things assume for now that only expert demonstration data is available.

47/68



Notations

Data sample 7 = (s, a): a state (prompt) and action (response) pair

Policy 7(a | s): the probability of choosing an action under state
@ Reward r(s, a;0): a parameterized function scores a data sample (s, a)

Expert policy 75(a | s): the SFT data is generated from this policy

@ Note: all results below are applicable to the full MDP setting with multiple stages
and interaction with stochastic environment.
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R ©-O for Ie2rnin from demonsiration
BLO for Alignment

e Task 1 policy optimization: For a given reward r(s, a; ), find the best policy 7y

e Task 2 reward estimation: Find the reward r(s, a; #), whose optimal policy
matches the expert policy

@ The Maximum Likelihood principle: The actions generated by the desired policy
should be most likely if the ground truth is the expert policy 7E.

e Use BLO to integrate them into a single problem ([Zeng-Li-Garcia-H. 22]3
[Zeng-Garcia-H. 24]) *

3s. Zeng, C. Li, A. Garcia, & M. Hong. Maximum-likelihood inverse reinforcement learning with
finite-time guarantees. NeurlPS, 2022.
*S. Zeng, M. Hong, A. Garcia, Structural estimation of markov decision processes in high-dimensional
state space with finite-time guarantees, Operations Research, 2024.
49/68



R ©-O for Ie2rnin from demonsiration
BLO for Alignment

@ We consider the following formulation:
mglx LO) :=E ¢ [logwg(a | s)] (ML-BLO)
s.t. mp:=argmax E._. {r(s7 a;0) +H(m(- | s))]

@ H(m(-|s)) is either a entropy regularizer or KL regularizer
e 7, denotes the optimal policy when the reward parameter is 6

@ Challenge: Is the lower-level problem even convex? How to compute the gradient
VL(0)? Hessian computation? Online expert interaction?
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R ©-O for Ie2rnin from demonsiration
Resolve the Challenge: Online to Offline Data

e To avoid online interaction with the expert 7 ~ 7£, observe the following
L(O) =F._ ¢ [r(st, ar; 9)] — Egymp | Vo50)]

where Vj(sp) denotes the value function for a given reward r(-;8).
@ Consider the following surrogate loss

16;D):=E ¢, [r(st, ar: 9)} — Eepp [vg(so)}

where D is a set of offline demonstration data
@ |t turns out that we have the following:

G In(2/6)

[L(O) — L(0;D)| < T\ 2] with probability 1 — §

where C, is a bound on the reward function.
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N B0l e
Resolve the Challenge: Property of the problem

@ The policy optimization problem is generally non-convex

@ The optimal policy 7} is unique under each reward function r(-,-; 6):

exp Q@(sa a)
> 5eA €XP Qy(s, a)

mj(als) =
where @y is the soft Q-function under the optimal policy 7}
Qo(s,a) :=r(s,a;0) + E(s’,a’)wwg r(5/7 P 0) + 7‘[(71'5(‘5/))

@ Need to iteratively compute 7 and @ to converge to optimal solutions

@ But this structure will help us finding closed-form solution for gradients.
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N B0l e
Resolve the Challenge: Property of the problem

@ Taking the gradient we obtain

VQL(Q) = ]ETENT‘.F_ [V@f(st, at, 9):| - ESONP |:V9 \/9(50):|

=E &£
=E ¢ ¢
=E ¢

~rE

Vor(st, at;0)
Vor(st, at;0)

Vor(st, at;0)

— Espmp [Ve log ( > exp Qu(so, 5))]

aeA

. [ Z 7o(a|s0) Ve Qa(s0, 3)}

acA

—Ereny [Vgr(st, ag; 9)] .

Where the property of the Q function is used

vifs) = tog ( - exp u(s.3))

a~A
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Approximate Gradient Computation

Replace the original loss with the surrogate loss, leverage the optimality condition,
we obtain a simple gradient expression:

VL) ~E_« p [V(;r(s, a; 9)] —Err; [Vgr(s, a; 9)]

Surprisingly simple form! No Hessian computation needed

Observation: The gradient contrasts the reward obtained, by following the experts
and moving away from the model's current policy my

A recent work Yang et al. [2024] has a derivation with more generic loss function

@ Note, the second term still depends on the optimal lower-level policy
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N B0l e
TTSA-Type Algorithm: A single-step policy optimization

(Policy Optimization Step.) Following TTSA, a single-step soft-policy iteration

Estimate the soft-Q function (AQ(S, a)

Update the policy by soft policy iteration [Cen et al 21]:

mi1(als) o exp (Q(s,a)), VseS,ac A

One step update; 7 1(a | s) will track the global optimal solution 77(a | s)
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N B0l e
TTSA-Type Algorithm: A single-step policy optimization

o (Reward Optimization Step.) Recall the gradient expression:
VL(O) =E e [Vgr(st, ar; 6’)] —Ern; [Vgr(st, ar; 6)} )
Under the current policy 741, (biased) stochastic gradient update:
Okt1 = Ok + 04<h(9k7 i) — h(ekﬂ'k))

where 7E ~ D, 74 ~ 7441 and h(0,T) := Vyr(se, ar; 0).
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Non-asymptotic Analysis

Theorem (1)

[Zeng-Garcia-H., 2022] By choosing the stepsize & = o - K =2, it holds:

=X
—

E[|| log mis1 — log s, lloo] = O(K~2) + Ofeapp)

X[~
~
i}

X
=

E[|VLE)]?] = O(K™2) + Ocapp)

x|~
x
Il
o

@ Under linear reward parameterization, guarantee of global optimality.
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Remarks

@ The above work is closely related to a line of research called imitation learning, and
inverse reinforcement learning (IRL) [Ziebart et al., 2008, Ross et al., 2011,
Pomerleau, 1988]

@ How to better learn from expert demonstrations?

@ Learning a reward function and a policy together is more generalizable than
supervised learning [Ross et al., 2011]

@ The above result is first non-asymptotic analysis for IRL algorithm under nonlinear
reward parameterization
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N B0l e
Application to Fine-Tuning of LLM

@ In typical RLHF, SFT step learn from demonstration data using the following:
mTEn lspr(m) == —Erepg, [log(m(a ] s))]
“Clone” the behavior of the expert demonstrator
@ Learn more generalizable policy? Apply (ML-BLO):
m@in Lspr = —Erepg [log(mh(a | 5))]

st. mp, =arg max E(a)mr(|s)[r(s, a;0) + H(n(-]s))]

@ Algorithm: Alternating between reward update (contrastive learning) and policy
update (proximal policy optimization).
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Numerical Results °

@ Train LLM for text summarization tasks using the TL;DR dataset

@ Initialize the model by performing SFT on a pretrained 1B parameter Pythia model

@ Apply the proposed algorithm (denoted as IRL below), where the RL is done using
Proximal Policy Optimization (PPO)

150 Accuracy of IRL Reward Models Reward Score of IRL Checkpoints . Win Rate Agai D ations
B s e
= |RL Iterations 0315, === IRL Checkpoints
g SBE% L SBTR o s o0 £ 50| == SFT Model
& ! ! £ &
3 ose G 238 535 2.4 246 249 o
g 3 ZM .
Tos G20 -3
S H —— IRL Checkpoints hi
& 0555 15| == SFT Model & oo
— = Demonstration 0225
IR e S ettt
Rt 2 3 a4 s 6 7 1 2 3 4 5 6 7 ! 1 2 3 4 5 & 1
IRL Iterates IRL Iterates IRL Iterations
(a) Reward Accuracy (b) Reward Score (c) Win Rate

Zeng, S., Liu, Y., Rangwala, H., Karypis, G., Hong, M., & Fakoor, R. (2025). From demonstrations

to rewards: Alignment without explicit human preferences.
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Numerical Results

e We compare with a few SOTA methods such as SPIN [Chen et al 24] using the
UltraChat dataset

@ Initial policy Mistral-7b-SFT-Beta 5

@ Evaluate both reward models and policy models.

61/68



Numerical Results: Reward Bench

Reward Model Performance Across Different Tasks

100
—~ 809
2
> :
@ 60 Mistral-7B-SFT-Beta
S SPIN-Iterl
Ld [ SPIN-Iter2
< M |RL-Iterl-Reward
© 40 Il |RL-lter2-Reward
©
2
&
20

Chat ChatHard Saety Reasning Ag
Tasks
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Numerical Results: MT-Bench

o Evaluate different LLM policy models using the Open LLM Leaderboard and

MT-Bench
Tasks ‘ First turn  Second turn  Average
mistral-7b-sft-beta ‘ 5.66 5.09 5.37
SPIN-Iterl 6.75 5.56 6.16
SPIN-Iter2 3.18 3.41 3.29
IRL-Iterl-Policy 6.71 5.96 6.33
IRL-Iter2-Policy 7.01 6.19 6.60
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N L o) e
Numerical Results: OpenLLM Leaderboard

Mistral-7B-SFT-Beta
SPIN-Iteration-1
SPIN-Iteration-2
IRL-lteration-1
IRL-Iteration-2

Arc TruthfulQA Winogrande GSM8k  HellaSwag MMLU Average
Tasks

64/68



Extension
@ We can further leverage this approach to integrate the three stages of RLHF (SFT,
RM, RL) into a single unified stage [Li-Zeng-Li-Garcia-H. 2025] °

m@in Lser(0;Dg) + Lrm(6; Dp)
st. mp:=argmax E,, [(r(s, a;0) + 7—[(77(|s))>]

@ The reward and policy learning leverages all the available data

@ The algorithm is similar to the two-step bilevel optimization algorithm, alternates
between policy optimization and reward optimization.

5C Li, S Zeng, Z Liao, J Li, D Kang, A Garcia, M Hong “Learning Reward and Policy Jointly from

Demonstration and Preference Improves Alignment”, ICLR (spotlight), 2025
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R 5O for learning from demonstration
Numerical Results: 1B Model for HH dataset

@ Policy model: EleutherAl/pythia-1B Reward model: EleutherAl/pythia-1.4B
e Dataset: Anthropic/hh-rlhf; Evaluation: PKU-Alignment/beaver-7b-v3.0-reward

1.5-

1.0-

s
05- \/‘/\/\/\/

0.0 -

Average Score

—— RLHF (start from demonstration-sft model)
=05 - —— AIHF (start from demonstration-sft model)
AIHF (start from full-sft model)
SFT on top 10k demonstration
-0 —— SFTon full dataset =

6 2600 40‘00 60‘00 80‘00 10600 12600 14600
The Number of Policy Optimization Step
Figure: Helpfulness-controlled Generation on Pythia-1B policy models, where the reward model is

trained from Pythia-1.4B models.
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Experiment: Alignment with Demonstration & Preference

@ Demonstration Dataset: UltraChat_200k

@ Preference Dataset: Ultrafeedback_Binarized

Tasks | Arc Challenge TruthfulQA MC2 Winogrande GSM8k HellaSwag MMLU Avg
mistral-7b-sft-beta 54.69% 42.96% 77.27% 39.88% 82.23% 59.72%  59.46%
zephyr-7b-beta 59.64% 55.18% 77.82% 33.51% 84.19% 59.76%  61.68%
SPIN 58.45% 43.66% 78.30% 39.50% 83.59% 58.60% 60.35%
DPO 62.80% 53.17% 79.40% 39.20% 85.13% 59.41%  63.19%
IPO 58.02% 48.29% 79.24% 42.91% 83.93% 60.07%  62.08%
AIHF-DPO 61.17% 60.03 % 79.00% 39.80% 85.71% 60.02% 64.29%
Self-play AIHF 61.77% 58.29% 78.53% 44.20 % 85.53% 58.66% 64.50%
AIHF 63.90% 58.38% 79.24% 40.56% 86.23% 60.18% 64.75%
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More Experiments and Discussions

@ A tutorial paper for details about
applying BLO to LLM alignment [Zeng
et al 25] @

@ An NSF podcast discussing high-level
ideas on how to use demonstration data
to improve Al

aS. Zeng, L. Viano, C. Li, J. Li, V. Cevher, M.
Waulfmeier, S. Ermon, A. Garcia, M. Hong, “Aligning
Large Language Models with Human Feedback:
Mathematical Foundations and Algorithm Design",
submitted IEEE Signal Processing Magazine, 2025

Innovation Anywhere,
Opportunity Everywhere

NSt

What's new
NSF Graduate Research Fellow
fight coul

- “ Idm
m

NsE
Ever-changing universe revealed in first

imagery from NSF-DOE Vera C. Rubin

Observatory
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Conclusions and Future Works



Conclusions and Future Works

Bilevel optimization is a very exciting and vibrant research area, lots of open theoretical
and practical problems

@ “Universal” algorithms for BLO?

@ What kind of generic problem structure we can leverage to simplify implicit gradient
computation?

@ Finer grained modeling of LLM alignment problems (e.g., multi-turn generation);
Enable autonomous self-learning.
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