
Bespoke Processors for Applications with Ultra-low Area and
Power Constraints

Hari Cherupalli
University of Minnesota

cheru007@umn.edu

Henry Duwe
University of Illinois

duweiii2@illinois.edu

Weidong Ye
University of Illinois
wye5@illinois.edu

Rakesh Kumar
University of Illinois
rakeshk@illinois.edu

John Sartori
University of Minnesota

jsartori@umn.edu

ABSTRACT
A large number of emerging applications such as implantables, wear-
ables, printed electronics, and IoT have ultra-low area and power
constraints. These applications rely on ultra-low-power general pur-
pose microcontrollers and microprocessors, making them the most
abundant type of processor produced and used today. While gen-
eral purpose processors have several advantages, such as amortized
development cost across many applications, they are significantly
over-provisioned for many area- and power-constrained systems,
which tend to run only one or a small number of applications over
their lifetime. In this paper, we make a case for bespoke processor
design, an automated approach that tailors a general purpose proces-
sor IP to a target application by removing all gates from the design
that can never be used by the application. Since removed gates are
never used by an application, bespoke processors can achieve signif-
icantly lower area and power than their general purpose counterparts
without any performance degradation. Also, gate removal can ex-
pose additional timing slack that can be exploited to increase area
and power savings or performance of a bespoke design. Bespoke
processor design reduces area and power by 62% and 50%, on aver-
age, while exploiting exposed timing slack improves average power
savings to 65%.

CCS CONCEPTS
• Computer systems organization → Special purpose systems;
Embedded systems; • Hardware→ Application specific proces-
sors;

KEYWORDS
ultra-low-power processors, application-specific processors, bespoke
processors, hardware-software co-analysis, Internet of Things

ACM Reference format:
Hari Cherupalli, Henry Duwe, Weidong Ye, Rakesh Kumar, and John Sartori.
2017. Bespoke Processors for Applications with Ultra-low Area and Power
Constraints. In Proceedings of ISCA ’17, Toronto, ON, Canada, June 24-28,
2017, 14 pages. https://doi.org/10.1145/3079856.3080247

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISCA ’17, June 24-28, 2017, Toronto, ON, Canada
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4892-8/17/06. . . $15.00
https://doi.org/10.1145/3079856.3080247

1 INTRODUCTION
A large class of emerging applications is characterized by severe
area and power constraints. For example, wearables [46, 51] and
implantables [25, 50] are extremely area- and power-constrained.
Several IoT applications, such as stick-on electronic labels [48],
RFIDs [54], and sensors [30, 72], are also extremely area- and power-
constrained. Area constraints are expected to be severe also for
printed plastic [49] and organic [41] applications.

Cost concerns drive many of the above applications to use general
purpose microprocessors and microcontrollers instead of much more
area- and power-efficient ASICs, since, among other benefits, de-
velopment cost of microprocessor IP cores can be amortized by the
IP core licensor over a large number of chip makers and licensees.
In fact, ultra-low-area- and power-constrained microprocessors and
microcontrollers powering these applications are already the most
widely used type of processing hardware in terms of production
and usage [5, 23, 53], in spite of their well-known inefficiency com-
pared to ASIC and FPGA-based solutions [31]. Given this mismatch
between the extreme area and power constraints of emerging applica-
tions and the relative inefficiency of general purpose microprocessors
and microcontrollers compared to their ASIC counterparts, there
exists a considerable opportunity to make microprocessor-based so-
lutions for these applications much more area- and power-efficient.

One big source of area inefficiency in a microprocessor is that
a general purpose microprocessor is designed to target an arbitrary
application and thus contains many more gates than what a specific
application needs (Section 2). Also, these unused gates continue to
consume power, resulting in significant power inefficiency. While
adaptive power management techniques (e.g., power gating [58, 60])
help to reduce power consumed by unused gates, the effectiveness of
such techniques is limited due to the coarse granularity at which they
must be applied, as well as significant implementation overheads
such as domain isolation and state retention (Section 7). These
techniques also worsen area inefficiency.

One approach to significantly increase the area and power effi-
ciency of a microprocessor for a given application is to eliminate
all logic in the microprocessor IP core that will not be used by the
application. Eliminating logic that is guaranteed to not be used by
an application can produce a design tailored to the application – a
bespoke processor – that has significantly lower area and power than
the original microprocessor IP that targets an arbitrary application.
As long as the approach to create a bespoke processor is automated,
the resulting design retains the cost benefits of a microprocessor
IP, since no additional hardware or software needs to be developed.

https://doi.org/10.1145/3079856.3080247
https://doi.org/10.1145/3079856.3080247

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada H. Cherupalli et al.

Figure 1: General purpose processors are overdesigned for a
specific application (top). A bespoke processor design method-
ology allows a microprocessor IP licensor or licensee to target
different applications efficiently without additional software or
hardware development cost (bottom).

Also, since no logic used by the application is eliminated, area and
power benefits come at no performance cost. The resulting bespoke
processor does not require programmer intervention or hardware sup-
port either, since the software application can still run, unmodified,
on the bespoke processor.

In this paper, we present a methodology to automatically generate
a bespoke processor for an application out of a general purpose
processor / microcontroller IP core. Our methodology relies on gate-
level symbolic simulation to identify gates in the microprocessor IP
that cannot be toggled by the application, irrespective of the appli-
cation inputs, and automatically eliminates them from the design
to produce a significantly smaller and lower power design with the
same performance. In many cases, reduction in the number of gates
also introduces timing slack that can be exploited to improve perfor-
mance or further reduce power and area. Since the original design
is pruned at the granularity of gates, the resulting methodology is
much more effective than any approach that relies on coarse-grained
application-specific customization. The proposed methodology can
be used either by IP licensors or IP licensees to produce bespoke
designs for the application of interest (Figure 1). Simple extensions
to our methodology can be used to generate bespoke processors that
can support multiple applications or different degrees of in-field
software programmability, debuggability, and updates (Section 3.5).

This paper makes the following contributions.
•We propose bespoke processors – a novel approach to reducing
area and power by tailoring a processor to an application, such that
a processor consists of only those gates that the application needs
for any possible execution with any possible inputs. A bespoke
processor still runs the unmodified application binary without any
performance degradation.
• We present an automated methodology for generating bespoke
processors. Our symbolic gate-level simulation-based methodology
takes the original microprocessor IP and application binary as input
to produce a design that is functionally-equivalent to the original pro-
cessor from the perspective of the target application while consisting
of the minimum number of gates needed for execution.
•We quantify the area and power benefits of bespoke processors for
a suite of sensor and embedded benchmarks. Area reductions are

up to 92% (46% minimum, 62% on average) and power reductions
are up to 74% (37% minimum, 50% on average) compared to a
general purpose microprocessor. When timing slack resulting from
gate removal is exploited, power reductions increase to up to 91%
(50% minimum, 65% on average).
• Finally, we present and analyze design approaches that can be used
to support bespoke processors throughout the product life-cycle.
These design approaches include procedures for verifying bespoke
processors, techniques to design bespoke processors that support
multiple known applications, and strategies to allow in-field updates
in bespoke processors.

2 MOTIVATION
Area- and power-constrained microprocessors and microcontrollers
are the most abundant type of processor produced and used today,
with projected deployment growing exponentially in the near fu-
ture [5, 23, 34, 53]. This explosive growth is fueled by emerging
area- and power-constrained applications, such as the internet-of-
things (IoT), wearables, implantables, and sensor networks. The
microprocessors and microcontrollers used in these applications
are designed to include a wide variety of functionalities in order to
support a large number of diverse applications with different require-
ments. On the other hand, the embedded systems designed for these
applications typically consist of one application or a small number of
applications, running over and over on a general purpose processor
for the lifetime of the system [1]. Given that a particular application
may only use a small subset of the functionalities provided by a
general purpose processor, there may be a considerable amount of
logic in a general purpose processor that is not used by an applica-
tion. Figure 2 illustrates this point, showing the fraction of gates in
an openMSP430 [27] processor that are not toggled when a variety
of applications (Table 1) are executed on the processor with many
different input sets. The bar in the figure shows the intersection of
all gates that were not exercised (toggled) by the application for any
input, and the interval shows the range in fraction of unexercised
gates across different inputs. For each application, a significant frac-
tion (around 30% - 60%) of the processor’s gates were not toggled
during any execution of the application. These results indicate that
there may be an opportunity to reduce area and power significantly
in area- and power-constrained systems by removing logic from the
processor that cannot be exercised by the application(s) running on
the processor, if it can be guaranteed that removed logic will never
be needed for any possible execution of the application(s).

However, identifying all the logic that is guaranteed to never be
used by an application is not straightforward. One possible approach
is profiling, wherein an application is executed for many inputs and
the set of gates that were never exercised is recorded, as in Figure 2.
However, profiling cannot guarantee that the set of gates used by
an application will not be different for a different input set. Indeed,
profiling results in Figure 2 show considerable variations in exercised
gates (up to 13%) for different executions of the same application
with different inputs. Thus, an application might require different
gates and execute incorrectly for an unprofiled input.

Static application analysis represents another approach for de-
termining unusable logic for an application. However, application
analysis may not identify the maximum amount of logic that can be

Bespoke Processors for Applications with Ultra-low Area and Power Constraints ISCA ’17, June 24-28, 2017, Toronto, ON, Canada
bi

nS
ea

rc
h

di
v

in
So

rt
in

tA
VG

in
tF

ilt
m

ul
t

rle
tH

ol
d

te
a8 FF

T
Vi

te
rb

i
co

nv
En

au
to

co
rr irq db
g

20

30

40

50

60

U
n

u
se

d
 g

at
es

 (
%

)

Figure 2: A significant fraction of gates in an openMSP430 pro-
cessor are not toggled when an application executes on the pro-
cessor. Each bar represents gates not toggled by any input for an
application; the interval shows the range of unexercised gates
for different inputs.

MULT

DBG

WDG

SFR

RF

FRONTEND

ALU

CLK

MEM_BB EXEC

common
unique

(a) FFT
MULT

DBG

WDG

SFR

RF

FRONTEND

ALU

CLK

MEM_BB EXEC

common
unique

(b) binSearch
Figure 3: Gates not toggled by two applications – (a) FFT and
(b) binSearch – for profiling inputs. Gray gates are not toggled
by either application. Red gates are unique untoggled gates for
each application.

removed, since unused logic does not correspond only to software-
visible architectural functionalities (e.g., arithmetic units), but also
to fine-grained and software-invisible microarchitectural functional-
ities (e.g., pipeline registers). For example, consider two different
applications – FFT and binSearch. Figure 3 shows the gates in the
processor that were not exercised during any profiling execution of
the applications. Since the applications use different subsets of the
functionalities provided by the processor, the parts of the processor
that they do not exercise are different. However, a closer look reveals
that while some of the differences correspond to coarse-grained
software-visible functionalities (e.g., the multiplier is used by FFT
but not by binSearch), other differences are fine-grained, software-
invisible, and cannot be determined through application analysis
(e.g., different gate-level activity profiles in modules like the proces-
sor frontend). As another example, Figure 4 shows the breakdown
of instructions used by intFilt and scrambled-intFilt. The two
applications use exactly the same instructions (scrambled-intFilt
is a synthetic benchmark generated by scrambling instructions in
intFilt); however, the die graphs in Figure 4 show that the sets of
unexercised gates for the applications are different. This is due to the
fact that even the sequence of instructions executed by an application
can influence which logic the application can exercise in a proces-
sor depending on the microarchitectural details. Such interactions
cannot be determined simply through application analysis.

MULT

DBG

WDG

SFR

RF

FRONTEND

ALU

CLK

MEM_BB EXEC

common
unique

(a) intFilt
MULT

DBG

WDG

SFR

RF

FRONTEND

ALU

CLK

MEM_BB EXEC

common
unique

(b) Scrambled intFilt
Figure 4: Gates not toggled by (a) intFilt and (b) scrambled
intFilt for the same input set. Gray gates are not toggled by ei-
ther application. Red gates are unique untoggled gates for each
application. Even though the applications use the same set of
instructions and control flow, the gates that they exercise are
different.

Given that the fraction of logic in a processor that is not used by
a given application can be substantial, and many area- and power-
constrained systems only execute one or few applications for their
entire lifetime, it may be possible to significantly reduce area and
power in such systems by removing logic from the processor that
cannot be used by the application(s). However, since different ap-
plications can exercise substantially different parts of a processor,
and simply profiling or statically analyzing an application cannot
guarantee which parts of the processor can and cannot be used by an
application, tailoring a processor to an application requires a tech-
nique that can identify all the logic in a processor that is guaranteed
to never be used by the application and remove unusable logic in
a way that leaves the functionality of the processor unchanged for
the application. In the next section, we describe a methodology that
meets these requirements. We call general purpose processors that
have been tailored to an individual application bespoke processors,
reminiscent of bespoke clothing, in which a generic clothing item is
tailored for an individual person.

3 TAILORING A BESPOKE PROCESSOR
A bespoke processor, tailored to a target application, must be func-
tionally-equivalent to the original processor when executing the
application. As such, the bespoke implementation of a processor
design should retain all the gates from the original processor design
that might be needed to execute the application. Any gate that could
be toggled by the application and propagate its toggle to a state
element or output port performs a necessary function and must be
retained to maintain functional equivalence. Conversely, any gate
that can never be toggled by the application can safely be removed,
as long as each fanout location for the gate is fed with the gate’s
constant output value for the application. Removing constant (un-
toggled) gates for an application could result in significant area and
power savings and, unlike conventional energy saving techniques,
will introduce no performance degradation (indeed, no change at all
in application behavior).

Figure 5 shows our process for tailoring a bespoke processor to a
target application. The first step – input-independent gate activity
analysis – performs a type of symbolic simulation, where unknown
input values are represented as Xs, and gate-level activity of the

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada H. Cherupalli et al.

Gate-level	
Netlist	

Gate	Ac.vity	
Analysis	

Cu3ng	&	
S.tching	

Applica.on	
Binary	

List	of	Unused	
(Untoggled)	Gates		

Bespoke	Processor	
Tailored	to	
Applica.on	

Figure 5: Our technique performs input-independent gate ac-
tivity analysis to determine which gates of a processor cannot
be toggled in any execution of the application. These gates are
then cut from the design to form a custom, bespoke processor
with reduced area and power.

processor is characterized for all possible executions of the applica-
tion, for any possible inputs to the application. The second phase of
our bespoke processor design technique – gate cutting and stitching
– uses gate-level activity information gathered during gate activity
analysis to prune away unnecessary gates and reconnect the cut
connections between gates to maintain functional equivalence to the
original design for the target application.

3.1 Input-independent Gate Activity Analysis
The set of gates that an application toggles during execution can
vary depending on application inputs. This is because inputs can
change the control flow of execution through the code as well as the
data paths exercised by the instructions. Since exhaustive profiling
for all possible inputs is infeasible, and limited profiling may not
identify all exercisable gates in a processor, we have implemented
an analysis technique based on symbolic simulation [7], that is able
to characterize the gate-level activity of a processor executing an
application for all possible inputs with a single gate-level simulation.
During this simulation, inputs are represented as unknown logic
values (Xs), which are treated as both 1s and 0s when recording
possible toggled gates.

Symbolic simulation has been applied in circuits for logic and
timing verification, as well as sequential test generation [8, 24, 37,
42, 44]. More recently, it has been applied to determine application-
specific Vmin [18]. Symbolic simulation has also been applied for
software verification [74]. However, to the best of our knowledge, no
existing technique has applied symbolic simulation to create bespoke
processors tailored to the requirements of an application.

Algorithm 1 describes input-independent gate activity analysis.
Initially, the values of all memory cells and gates are set to Xs. The
application binary is loaded into program memory, providing the
values that effectively constrain which gates can be toggled during
execution. During simulation, our simulator sets all inputs to Xs,
which propagate through the gate-level netlist during simulation.1

1Any data or signals that can be written by external events (e.g., interrupt signals or
DMA writes) are also considered unknown values (Xs) during our analysis. Firmware
components of interrupt handling, e.g., the jump table and interrupt service handling
routine, are considered to be part of the application binary (i.e., known values) during
symbolic simulation. If an interrupt is enabled during an instruction’s execution, then
that instruction is considered as possibly modifying the PC.

After each cycle is simulated, the toggled gates are removed from
the list of unexercisable gates. Gates where an X propagated are
considered as toggled, since some input assignment could cause
the gates to toggle. If an X propagates to the PC, indicating input-
dependent control flow, our simulator branches the execution tree
and simulates execution for all possible branch paths, following a
depth-first ordering of the control flow graph. Since this naive simu-
lation approach does not scale well for complex or infinite control
structures which result in a large number of branches to explore,
we employ a conservative approximation that allows our analysis
to scale for arbitrarily-complex control structures while conserva-
tively maintaining correctness in identifying exercisable gates. Our
approximation works by tracking the most conservative gate-level
state that has been observed for each PC-changing instruction (e.g.,
conditional branch). The most conservative state is the one where
the most variables are assumed to be unknown (X). When a branch
is re-encountered while simulating on a control flow path, simula-
tion down that path can be terminated if the symbolic state being
simulated is a substate of the most conservative state previously ob-
served at the branch (i.e., the states match or the more conservative
state has Xs in all differing variables), since the state (or a more
conservative version) has already been explored. If the simulated
state is not a substate of the most conservative observed state, the
two states are merged to create a new conservative symbolic state by
replacing differing state variables with Xs, and simulation continues
from the conservative state. This conservative approximation tech-
nique allows gate activity analysis to complete in a small number of
passes through the application code, even for applications with an
exponentially-large or infinite number of execution paths.2

The result of input-independent gate activity analysis for an ap-
plication is a list of all gates that cannot be toggled in any execution
of the application, along with their constant values. Since the logic
functions performed by these gates are not necessary for the correct
execution of the binary for any input, they may safely be cut from
the netlist, as long as their constant output values are preserved. The
following section describes how unusable gates can be cut from the
processor without affecting the functionality of the processor for the
target application.

3.2 Cutting and Stitching
Once gates that the target application cannot toggle have been iden-
tified, they are cut from the processor netlist for the bespoke design.
After cutting out a gate, the netlist must be stitched back together to
generate the final netlist and laid-out design for the bespoke proces-
sor. Figure 6 shows our method for cutting and stitching a bespoke
processor. First, each gate on the list of unusable (untoggled) gates is
removed from the gate-level netlist. After removing a gate, all fanout
locations that were connected to the output net of the removed gate
are tied to a static voltage (‘1’ or ‘0’) corresponding to the constant
output value of the gate observed during simulation. Since the logi-
cal structure of the netlist has changed, the netlist is re-synthesized
after cutting all unusable gates to allow additional optimizations that

2Some complex applications and processors might still require heuristics for explo-
ration of a large number of execution paths [10, 32]; however, our approach is adequate
for ULP systems, representative of an increasing number of future applications which
tend to have simple processors and applications [36, 53]. For example, complete analysis
of our most complex benchmark takes 3 hours.

Bespoke Processors for Applications with Ultra-low Area and Power Constraints ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

Gate-level	
Netlist	

Cut		
Unused	Gates		

Set	Unconnected	
Gate	Inputs	to	
Constant	Values	

Bespoke	Gate-
level	Netlist	

Place		
&	Route	

Synthesis	
Bespoke	GDSII	

File	

List	of	Unused	
Gates	

List	of	Constant	
Gate	Values	

Figure 6: Tool flow for cutting and stitching.

Algorithm 1 Input-independent Gate Activity Analysis
1. Procedure Annotate Gate-Level Netlist(app_binary, design_netlist)
2. Initialize all memory cells and all gates in design_netlist to X
3. Load app_binary into program memory
4. Propagate reset signal
5. s← State at start of app_binary
6. Table of previously observed symbolic states, T .insert(s)
7. Stack of un-processed execution points, U .push(s)
8. mark_all_gates_untoggled(design_netlist)
9. while U != /0 do

10. e←U .pop()
11. while e.PC_next != X and !e.END do
12. e.set_inputs_X() // set all peripheral port inputs to Xs
13. e′ ← propagate_gate_values(e) // simulate this cycle
14. annotate_gate_activity(design_netlist,e,e′) // unmark every gate toggled (or possibly tog-

gled)
15. if e′ .modifies_PC then
16. c← T .get_conservative_state(e)
17. if e′ 1 c then
18. T .make_conservative_superstate(c,e′)
19. else
20. break
21. end if
22. end if
23. e← e′ // advance cycle state
24. end while
25. if e.PC_next == X then
26. c← T .get_conservative_state(e)
27. if e 1 c then
28. e′ ← T .make_conservative_superstate(c,e)
29. for all a ∈ possible_PC_next_vals(e′) do
30. e′′ ← e.update_PC_next(a)
31. U .push(e′′)
32. end for
33. end if
34. end if
35. end while
36. for all g ∈ design_netlist do
37. if g.untoggled then
38. annotate_constant_value(g,s) // record the gate’s initial (and final) value
39. end if
40. end for

reduce area and power. Since some gates have constant inputs after
cutting and stitching, they can be replaced by simpler gates. Also,
toggled gates left with floating outputs after cutting can be removed,
since their outputs can never propagate to a state element or output
port. Since cutting can reduce the depth of logic paths, some paths
may have extra timing slack after cutting, allowing faster, higher
power cells to be replaced with smaller, lower power versions of the
cells. Finally, the re-synthesized netlist is placed and routed to pro-
duce the bespoke processor layout, as well as a final gate-level netlist
with necessary buffers, etc. introduced to meet timing constraints.

3.3 Illustrative Example
This section illustrates how bespoke processor design tailors a proces-
sor design to a particular application, as described in Sections 3.1 and 3.2.
Figure 7 illustrates the bespoke design process. The left part of Fig-
ure 7 shows input-independent gate activity analysis for a simple
example circuit (top right). During symbolic simulation of the target

application, logical 1s, 0s, and unknown symbols (Xs) are propa-
gated throughout the netlist. In cycle 0, A and B have known values
that are propagated through gates a and b, driving tmp0 and tmp1 to
‘0’. The controlling value at gate c drives tmp2 to ‘1’, despite input
C being an unknown value (X). Inputs A and B are not changed by
the simulation of the binary until after cycle 2, when an X was prop-
agated to the PC (not shown) that requires two different execution
paths to be explored. In the left path, input B becomes X in cycle 3,
causing tmp1 to become X as well. However, since input C is a ‘0’,
tmp2 is still a ‘1’. In the right execution path, inputs A and B both
have Xs and logic values that may toggle tmp1 in cycles 5-7, but for
each of these cycles, input C is a ‘0’, keeping tmp2 constant at ‘1’.
Since tmp2 is never toggled during any of the possible executions of
the application, gate c is marked for cutting, and its constant output
value (‘1’) is stored for stitching. Although gate d is never toggled
in cycles 0-2 or down the left execution path, it does toggle in the
right execution path and thus cannot be marked for cutting. Gates a
and b also toggle and thus are not marked for cutting.

Once gate activity analysis has generated a list of cuttable gates
and their constant values, cutting and stitching begins. Since gate c
was marked for cutting, it is removed from the netlist, leaving the
input to its fanout (d) unconnected. During stitching, d’s floating
input is connected to c’s known constant output value for the appli-
cation (‘1’). After stitching, the gate-level netlist is re-synthesized.
Synthesis removes gates that are not driving any other gates (gates a
and b), even though they toggled during symbolic simulation, since
their work does not affect the state or output function of the pro-
cessor for the application. Synthesis also performs optimizations,
such as constant propagation, which replaces gate d with an inverter,
since the constant controlling input of ‘1’ to the XOR gate makes
it function as an inverter. Finally, place and route produces a fully
laid-out bespoke design.

3.4 Correctness
In this section, we show that the transformations we perform to
create a bespoke processor implementation produce a design that is
functionally equivalent to the original processor design for the target
application. I.e., the bespoke design implements the same function
and produces the same output as the original design for all possible
executions of the application.

Theorem: A bespoke processor implementation ℬ𝒜 of processor
𝒫 tailored to an application 𝒜 is functionally-equivalent to processor
𝒫 with respect to application 𝒜; ℬ𝒜 produces the same output as 𝒫
for any possible execution of 𝒜.

Proof : The first step in creating ℬ𝒜 – input-independent gate
activity analysis (Section 3.1) – identifies the subset ℰ of all gates in

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada H. Cherupalli et al.

Cycle	 A	 B	 C	 D	 tmp0	 tmp1	 tmp2	 OUT	

0	 1	 0	 X	 1	 0	 0	 1	 0	

1	 1	 0	 1	 1	 0	 0	 1	 0	

2	 1	 0	 0	 1	 0	 0	 1	 0	

A	
B	
C	
D	

OUT	

a	
b	

c	
d	

Original	Circuit:	

D	
OUT	d	

A<er	S>tching:	

1	

D	
OUT	

A<er	Synthesis:	
e	

A<er	Place	&	Route:	

D	

OUT	

Cycle	 A	 B	 C	 D	 tmp0	 tmp1	 tmp2	 OUT	

3	 1	 X	 0	 1	 0	 X	 1	 0	

4	 1	 0	 X	 1	 0	 0	 1	 0	

5	 0	 X	 0	 1	 1	 X	 1	 0	

Cycle	 A	 B	 C	 D	 tmp0	 tmp1	 tmp2	 OUT	

3	 1	 0	 1	 0	 0	 0	 1	 1	

4	 1	 0	 X	 1	 0	 0	 1	 0	

5	 0	 X	 0	 1	 1	 X	 1	 0	

6	 X	 0	 0	 1	 X	 X	 1	 0	

7	 X	 0	 0	 0	 X	 X	 1	 1	

Gate	Ac>vity	Analysis:	
tmp0	

tmp1	
tmp2	

A	
B	
C	
D	

OUT	

a	
b	

d	

A<er	CuGng:	

A	
B	
C	

a	
b	

Figure 7: An example of gate activity analysis and cutting and stitching.

the processor that can possibly be exercised by 𝒜, for all possible
inputs. The analysis also identifies the constant output values for all
gates 𝒰 that can never be exercised by 𝒜. It follows that ℰ ∩𝒰 = /0
and ℰ ∪𝒰 = 𝒢, where 𝒢 is the set of all gates in 𝒫 . Cutting and
stitching (Section 3.2) removes all gates in the set 𝒰 and ties their
output nets to their known constant values, such that the functionality
of all gates in 𝒰 is maintained in ℬ𝒜. All gates in ℰ remain in the
bespoke design, so all gates in ℰ have the same functionality and
produce the same outputs in ℬ𝒜 and 𝒫 . Since ℰ ∪𝒰 = 𝒢, it follows
that ℬ𝒜 is functionally equivalent to 𝒫 for 𝒜 and produces the same
output as 𝒫 for all possible inputs to 𝒜. ■

We also verified correctness through input-independent gate ac-
tivity analysis and input-based simulations on both the original and
bespoke processor for every application (Section 5.1), confirming
that outputs of both processors were the same in each case.3

3.5 Supporting Multiple Applications
While bespoke processor design involves tailoring a general purpose
processor into an application-specific processor implementation,
bespoke processors, which are descended from general purpose
processors, still retain some programmability. In this section, we
describe several approaches for creating bespoke processors that
support multiple applications.

The first and most straightforward case is when the multiple target
applications are known a priori at design time. For example, a licen-
sor or licensee (see Figure 1) that wants to amortize the expense of
designing and manufacturing a chip may choose to tailor a bespoke
processor to support multiple applications. In this case, the bespoke
processor design methodology (Figure 5) is simply expanded to
support multiple target applications, as shown in Figure 8. Given a
known set of binaries that need to be supported, gate activity analysis

3Industrial equivalence checking tools (e.g., Formality [63]) check static equiva-
lence (i.e., their analysis is application-independent); however, the bespoke and original
designs are only equivalent for the target application, not in general. Therefore, we rely
on gate-level analysis and input-based simulations for verification.

Applica'on	
Binary	

Gate	Ac'vity	
Analysis	

Gate	Ac'vity	
Analysis	

Applica'on	
Binary	

List	of	Unused	
(Untoggled)	Gates		

List	of	Unused	
(Untoggled)	Gates		

Cu<ng	&	
S'tching	

Gate-level	
Netlist	

Bespoke	Processor	
Tailored	to	
Applica'ons	

�

Applica'on	
Binary	

Gate	Ac'vity	
Analysis	

List	of	Unused	
(Untoggled)	Gates		

Figure 8: To support multiple programs, our bespoke design
technique performs input-independent gate activity analysis on
each program. Cutting and stitching is performed using the in-
tersection of the untoggled gates lists from all supported pro-
grams.

is performed for each application, and cutting and stitching is per-
formed for the intersection of unused gates for the applications. The
intersection of unused gates represents all the gates that are not used
by any of the target applications. The resulting bespoke processor
contains all the gates necessary to run any of the target applications.
While there may be some area and power cost compared to a bespoke
design for a single application due to having more gates, Section 5
shows that a bespoke processor supporting multiple applications still
affords significant area and power benefits.

There may also be cases where it is desirable for a bespoke
processor to support an application that is not known at design time.
For example, one advantage of using a programmable processor
is the ability to update the target application in the field to roll
out a new software version or to fix a software bug. Tailoring a
bespoke processor to a specific application invariably reduces its
ability to support in-field updates. However, even in the case when
an application was unknown at design time, it may be possible for

Bespoke Processors for Applications with Ultra-low Area and Power Constraints ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

PC Instruction

0 sub &a &b

1 XXXX XXXX XXXX XXXX

2 XXXX XXXX XXXX XXXX

3 jn X XXXX X010

4 sub &a &b

5 xxxx xxxx xxxx xxxx

6 xxxx xxxx xxxx xxxx

7 jn x xxxx x010

Functionality

Mem[b] = Mem[b] - Mem[a];
if (Mem[b] < 0) goto c

a
b
c

Implementation

Figure 9: Functionality and MSP430 implementation of Turing-
complete subneg pseudo-instruction.

a bespoke processor to support the application. For instance, it is
always possible to check whether a new software version can be
supported by a bespoke processor by checking whether the gates
required by the new software version are a subset of the gates in
the bespoke processor. It may be possible to increase coverage for
in-field updates by anticipating them and explicitly designing the
processor to support them. As an example, this may be used to
support common bug fixes by automatically creating mutants of the
original software by injecting common bugs [38], then creating a
bespoke design that supports all the mutant versions of the program.
This approach may increase the probability that a debugged version
of the software is supported by the bespoke design.

Sometimes an in-field update represents a significant change
that is beyond the scope of a simple code mutation. To support
such updates, a bespoke processor may need to provide support
for a small number of ISA features that can be used to implement
arbitrary computations - e.g., a Turing-complete instruction (or set of
instructions), in addition to the target application(s). Consider adding
support for subneg, an example Turing-complete instruction [26].
Figure 9 shows the functionality and code implementation of a
subneg pseudo-instruction created for MSP430. Since the memory
operand addresses and the branch target are assumed to be unknown
values (Xs), a binary that characterizes the behavior of subneg can
be co-analyzed with the target application binary to tailor a Turing-
complete bespoke processor that supports the target application
natively and can handle arbitrary updates, possibly with some area,
power, and performance overhead.

4 METHODOLOGY
4.1 Simulation Infrastructure and Benchmarks
We verify our technique on a silicon-proven processor – open-
MSP430 [27], an open-source version of one of the most popular
ULP processors [6, 70]. The processor is synthesized, placed, and
routed in TSMC 65GP technology (65nm) for an operating point of
1V and 100 MHz using Synopsys Design Compiler [62] and Cadence
EDI System [11]. Gate-level simulations are performed by running
full benchmark applications on the placed and routed processor us-
ing a custom gate-level simulator that efficiently traverses the control
flow graph of an application and captures input-independent activity
profiles (Section 3.1). Table 1 lists our benchmark applications. We
show results for all benchmarks from [73] and all EEMBC bench-
marks [22] that fit in the program memory of the processor. We also

Table 1: Benchmarks

Benchmark Description Max Execution
Length (cycles)

E
m

be
dd

ed
Se

ns
or

s

binSearch Binary search 2037
div Unsigned integer division 402

inSort In-place insertion sort 4781
intAVG Signed integer average 14512
intFilt 4-tap signed FIR filter 113791
mult Unsigned multiplication 210
rle Run-length encoder 8283

tHold Digital threshold detector 18511
tea8 TEA encryption algorithm 2228

E
E

M
B

C FFT Fast Fourier transform 406006
Viterbi Viterbi decoder 1167298
convEn Convolutional encoder 117789
autocorr Autocorrelation 8092

U
ni

t irq Interrupt test 210
dbg Debug interface 14166

added unit test benchmarks [27] corresponding to some functionali-
ties in the processor that were not exercised by the other benchmarks.
In addition to evaluating a bare-metal environment common in area-
and power-constrained embedded systems [17, 56, 61, 66], we also
evaluate bespoke processors that support our applications running
on the processor with an operating system (FreeRTOS [55]). Bench-
marks are chosen to be representative of emerging ultra-low-power
application domains such as wearables, internet of things, and sen-
sor networks [73]. Also, benchmarks were selected to represent a
range of complexity in terms of control flow and execution length.
Power analysis is performed using Synopsys Primetime [64]. Exper-
iments were performed on a server housing two Intel Xeon E-2640
processors (8-cores each, 2GHz operating frequency, 64GB RAM).

4.2 Baselines
For evaluations, we compare bespoke designs against two base-
line processors. The first baseline is the openMSP430 processor,
optimized to minimize area and power for operation at 100 MHz
and 1V. For the second baseline, we create aggressively-optimized
application-specific versions of openMSP430 for each benchmark
application by rewriting the RTL to remove modules that are unused
by the benchmark, before performing synthesis, placement, and rout-
ing. Such an approach is representative of an Xtensa-like approach
[13], where the processor configuration is customized for a partic-
ular application. Note, however, that our baseline is significantly
more aggressive than an Xtensa-like approach, since it requires our
input-independent gate activity analysis technique (Section 3.1) to
identify the modules that cannot be used by an application. Such
module identification may not be possible through static analysis of
application code alone.

5 RESULTS
In this section, we evaluate bespoke processors. We first consider
area and power benefits of tailoring a processor to an application,
then evaluate design approaches that can be used to support bespoke
processors throughout the product life-cycle, including procedures
for verifying bespoke processors, techniques to design bespoke pro-
cessors that support multiple known applications, and strategies to
allow in-field updates in bespoke processors.

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada H. Cherupalli et al.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Fr

ac
ti

o
n

 U
sa

b
le

 G
at

e
s

 alu

 multiplier

 watchdog

 clock tree

 mem backbone

 sfr

 register file

 frontend

 execution unit glue

 dbg

 clock module

 glue

Figure 10: The height of a bar represents the fraction of gates that can be toggled by a benchmark. Components within each bar
represent each module’s contribution to the fraction of gates toggled by the benchmark.

Figure 10 shows the fraction of gates in the original processor
design that could be toggled by each benchmark.4 The components
within each bar represent each module’s contribution to the fraction
of gates that can be toggled by the benchmark. The first bar in the
figure shows each module’s contribution to the total gates in the
baseline design. We observe that each benchmark can toggle only
a relatively small fraction of the gates in the baseline design. At
most, 57% of the gates in the baseline design can be toggled, and
11 benchmarks toggle less than half the gates. Even though a large
fraction of the gates of the baseline processor cannot be toggled by
each benchmark, each benchmark can toggle a different set of gates.
For example, autocorr1, which uses the largest fraction of the gates
in the baseline processor, does not exercise the clock_module, while
tHold, which toggles the smallest fraction of the baseline gates, does
exercise gates in the clock_module.

Some modules, such as the multiplier, are used by some bench-
marks and not others. However, module usage differs by application.
For example, intFilt can never toggle about half of the multi-
plier gates due to constraints the binary places on filter coefficients,
whereas mult toggles almost all the gates in the multiplier. Other
modules, such as the frontend, are toggled by all applications, but
each application can toggle a different subset of frontend gates.
While these results show that a bespoke processor can have a sig-
nificantly lower gate count than the general purpose processor it is
derived from, they also confirm that hardware-software co-analysis
is necessary to identify all the gates that can be eliminated in a
bespoke design. Elimination of gates based on techniques such as
profiling or static analysis will either fail to guarantee correctness
or will miss opportunities to eliminate gates that an application can
never use.

Bespoke processors have fewer gates, lower area, and lower power
than their general purpose counterparts. Figure 11 shows the reduc-
tion in gates, area, and power afforded by bespoke processors tailored
to each benchmark. FFT, which has the smallest gate count reduction
(44%)5, still reduces area by 47% and power by 37%, relative to

4Unlike Figure 2, which presents results from profiling, Figure 10 shows results
from input-independent gate analysis.

5Note that gate count reduction reported in Figure 11 is different than fraction of
toggled gates in Figure 10, since bespoke design also removes some toggled gates that
cannot propagate their toggles to state elements or output ports.

0
10
20
30
40
50
60
70
80
90

100

Pe
rc
en

ta
ge
	Sa

vi
ng
s

Gate	Savings Area	Savings Power	Savings

Figure 11: Reduction (%) in gate count, area, and power for a
bespoke design, compared to the baseline processor.

0
10
20
30
40
50
60
70
80
90

100

Pe
rc
en

ta
ge
	Sa

vi
ng
s

Gate	Savings Area	Savings Power	Savings

Figure 12: Reduction (%) in gate count, area, and power for be-
spoke designs, compared to application-specific coarse-grained
module-level bespoke design.

the baseline design. Area savings are up to 92% (dbg), while power
savings are up to 74% (dbg).

Figure 10 shows that some modules could be wholly removed
for specific benchmarks (e.g., the multiplier can be removed for
binSearch, since it cannot use any gates in the multiplier). For such
modules, it is possible to use an Xtensa-like approach [13], enabled
by our input-independent gate activity analysis, where modules
in which no gates are usable by an application are removed from
the design. Figure 12 shows the benefits of bespoke processors
relative to coarse-grained bespoke designs in which wholly-unusable
modules have been removed from the processor. Note that compared
to an Xtensa-like approach, a coarse-grained bespoke design does
not need any knowledge of the microarchitecture, as the unusable
gates are identified automatically by hardware-software co-analysis.

Bespoke Processors for Applications with Ultra-low Area and Power Constraints ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

Table 2: Benefits of exploiting timing slack created by cutting,
stitching, and re-synthesis.

Benchmark Timing
Slack (%)

Vmin
(V)

Addl. Power
Savings from

Slack (%)

Total
Power

Savings
(%)

binSearch 24.30 0.81 36.86 72.1
div 24.51 0.82 34.53 69.9

inSort 22.24 0.83 33.25 67.6
intAVG 23.37 0.83 33.35 67.7
intFilt 23.23 0.84 31.31 58.5
mult 20.45 0.91 20.33 59.3
rle 22.10 0.83 33.31 66.8

tHold 24.07 0.81 36.90 73.5
tea8 23.55 0.83 33.23 65.7
FFT 21.74 0.90 20.13 50.0

Viterbi 23.48 0.83 33.18 64.9
convEn 23.96 0.83 33.03 63.9

autocorr1 18.48 0.91 18.31 50.3
irq 17.91 0.92 16.24 57.7
dbg 45.70 0.60 67.73 91.5

The results show that the fine-grained gate-level bespoke design
can provide up to 75% power reduction (22% minimum, 35% on
average) over coarse-grained module-level bespoke design.

Additional power savings may be possible when cutting, stitch-
ing, and re-synthesis removes gates from critical paths, exposing
additional timing slack that can be exploited for energy savings.
Table 2 shows timing slack exposed during bespoke processor tai-
loring for each benchmark. Exposed timing slack can be used to
reduce the operating voltage of the processor without reducing the
frequency.6 Table 2 also shows the minimum safe operating voltage
for each bespoke design (assuming worst-case PVT variations), the
additional power savings afforded by exploiting timing slack in be-
spoke designs, and the total power savings achieved with respect to
the baseline design from eliminating unusable logic and exploiting
exposed timing slack for voltage reduction.

5.1 Verification
We followed a two-pronged approach to verify our bespoke pro-
cessor designs. First, we performed input-independent gate activity
analysis on the bespoke processor design and compared the proces-
sor state between the original and bespoke processors in each cycle.
At the end of activity analysis, we compared the contents of the data
memory with that of the original design to ensure that both designs
produced the same outputs. There were no discrepancies for any
of the bespoke processors, indicating that the bespoke processors
traverse the same states as the original processor and produce the
same outputs for each benchmark. While this verification efficiently7

checks for functional correctness considering all possible inputs, it
does not explicitly guarantee that the data memory contents of a
bespoke processor are correct for any specific inputs. For an explicit
proof of the correctness of bespoke processors, see Section 3.4.

6Exposed timing slack could also be used to increase operating frequency (perfor-
mance) of a bespoke design. On average, frequency can be increased by 13% in the
bespoke designs.

7Table 3 shows that the runtime of X-based simulations is within an order of
magnitude of a single input-based simulation.

Table 3: Verification runtime and coverage.

Benchmark

Sim. Time (s) Input-Based Coverage
X- per Num Line Br. Br. Gate

Based Input Paths % % Dir. % %
binSearch 23 3 83 100 100 93 87

div 7 22 1 100 - - 93
inSort 25 156 718 100 100 100 93

intAVG 116 79 1 100 100 100 82
intFilt 1365 625 1 100 100 100 28
mult 20 20 1 100 - - 64
rle 20 32 1 74 100 75 92

tHold 7 27 6239 100 100 100 88
tea8 21 32 1 100 100 100 93
FFT 10498 5669 1 100 100 100 47

Viterbi 433 3637 8 100 100 100 86
convEn 1401 168 1 100 100 100 89
autocorr 90 13 1 38 14 14 71

Number of Supported Benchmarks
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N
or

m
al

iz
ed

 V
al

ue
s

0

0.2

0.4

0.6

0.8

1

Power
Area
Gate Count

Figure 13: Normalized gate count, area, and power ranges for
all possible bespoke processor supporting multiple applications.

The second method we used to verify bespoke processors involves
performing input-based simulations on the original and bespoke
processors to confirm that they produce the same outputs. Outputs
produced during simulation are recorded, and the outputs and data
memory from the original and bespoke processors are compared for
equivalence. Since it is infeasible to simulate the application with all
possible inputs, we used KLEE LLVM Execution Engine (KLEE) [9]
to generate inputs that exercise as many control paths through the
application as possible. Table 3 lists the number of inputs simulated
for each benchmark and the corresponding coverage of the code. For
most benchmarks, all lines and branch directions are covered. Where
coverage is not 100%, the portion of the code that was not covered
was not executable. The table also reports the fraction of gates in
the bespoke designs that were exercised during the input-based
simulations. We see that a majority of the gates (78%, on average)
were toggled during the simulations, indicating that the majority of
gates in a bespoke design are necessary.8 Table 3 also shows the
aggregate runtime of the input-based simulations, providing some
quantification of verification effort.9

5.2 Supporting Multiple Programs
Bespoke processors are able to support multiple programs by in-
cluding the union of gates needed to support all of the programs.
Figure 13 shows gate count, power, and area for bespoke processors

8Note that gate coverage is not expected to be 100%, since KLEE aims to cover
lines of code and execution paths, not gates. In particular, benchmarks that use the
multiplier (intFilt, mult, FFT, and autocorr) see low gate coverage since the multiplier is
a significant fraction of bespoke designs for such benchmarks and KLEE does not try to
form inputs to the multiplier to increase datapath coverage.

9Note that simulations for multiple inputs can easily be parallelized to reduce the
verification time significantly.

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada H. Cherupalli et al.

Table 4: Milu produces three types of mutants. Type I: Logical
conditional operator mutants. Type II: Computation operator
mutants. Type III: loop conditional operator mutants.

Benchmark Type I Type II Type III Total
binSearch 0 0 15 15

inSort 8 0 15 23
rle 0 20 25 45

tea8 48 24 10 82
Viterbi 24 24 35 83

autocorr 12 0 10 22

tailored to N programs, normalized to the baseline processor. For
each value of N, the bars show the ranges of these metrics across
bespoke processors tailored to all combinations of N programs. For
many combinations of programs, even for up to ten programs, only
60% or less of the gates are needed. In fact, despite supporting ten
programs, the area and power of a bespoke processor can be reduced
by up to 41% and 20%, respectively. However, supporting multi-
ple programs can limit the extent of gate cutting and the resulting
area and power benefits when the applications exercise significantly
different portions of the processor. For example, the two-program
bespoke processor with the largest gate count is one tailored to dbg
and irq. Each application uses components of the processor that are
not exercised by the other program; dbg exercises the debug module,
while irq exercises the interrupt handling logic. The resulting gate
reduction of 18% still produces area and power benefits of 26% and
19%, respectively. Although supporting multiple programs reduces
gate count, area, and power reduction benefits, the area and power
will never increase with respect to the baseline design. In the worst
case, the baseline processor can run any combination of program
binaries.

5.3 Supporting In-field Updates
We consider two approaches to designing bespoke processors that
can be updated in the field. First, we evaluate a method that allows
a bespoke processor to handle common, minor programming bugs.
Second, we evaluate a method that allows a bespoke processor to
handle infrequent, arbitrary software updates.

In-field updates may often be deployed to fix minor correctness
bugs (e.g., off-by-one errors, etc.) [33]. To emulate in-field updates
to fix bugs, we use the Milu mutation testing tool [38] to generate
“updates” corresponding to bug fixes. Table 4 lists the breakdown
of mutants by type generated by Milu for the six benchmarks with
the most mutants. If a benchmark has zero mutants for a particular
type, no mutation sites of that type were found in that benchmark
by Milu. Type I mutants are conditional operator mutants (e.g.,
A||B→ A&&B). Type II mutants are computation operator mutants
(e.g., A+B→ A×B). Type III mutants are loop conditional operator
mutants (e.g., i < 32→ i , 32).

Table 5 lists the percentage of mutants (i.e., in-field updates to fix
bugs) that are supported by the original bespoke design (generated
for a “buggy” application). Many minor bug fixes can be covered by
a bespoke processor designed for the original application without any
modification. I.e., the mutants representing many in-field updates
only use a subset of the gates in the original bespoke processor.
This means that these mutants will execute correctly on the original

Table 5: Percentage of mutants (in-field updates) of different
types that are supported by the bespoke design for the base soft-
ware implementation. “-” denotes that a given benchmark did
not have any mutants of that type.

Benchmark Type I Type II Type III Total
% % % %

binSearch - - 73 73
inSort 25 - 27 26

rle - 100 84 91
tea8 58 75 100 68

Viterbi 92 83 80 84
autocorr 50 - 40 45

0

0.2

0.4

0.6

0.8

1

binSearch inSort rle tea8 Viterbi autocorr1
No

rm
al
ize

d	
Va

lu
es

Gate	Count Area Power Overhead

Figure 14: Normalized gate count, area, and power vs the base-
line design for designs supporting all mutants (in-field updates).

bespoke processor tailored to the original “buggy” application. We
see that between 25% and 100% of various mutants are covered, and
70% of all mutants are covered. This shows that a bespoke processor
will maintain some of the original general purpose processor’s ability
to support in-field updates. If a higher coverage of possible bugs
is desired, the automatically-generated mutants can be considered
as independent programs while tailoring the bespoke processor for
the application (see Section 3.5). Figure 14 shows the increase in
gate count, area, and power required to tailor a bespoke processor to
the six benchmarks with the most mutants by including all possible
mutants (i.e., bug fixes) generated by Milu during bespoke design.
Providing support for simple in-field updates incurs a gate count
overhead of between 1% and 40%. Despite this increase in gate
count, total area benefits for the bespoke processors are between
23% and 66%, while total power benefits are between 13% and
53%. Therefore, simple in-field updates can be supported while still
achieving substantial area and power benefits.

A bespoke processor tailored to a specific application can be
designed to support arbitrary software updates by designing it to
support a Turing-complete instruction (e.g., subneg) or set of instruc-
tions, in addition to other programs it supports (Section 3.5). For our
single-application bespoke processors, the average area and power
overheads to support subneg are 8% and 10%, respectively. Average
area and power benefits for subneg-enhanced bespoke processors
are 56% and 43%, respectively.

Note that an instruction in a bespoke processor’s target applica-
tion is not guaranteed to be supported in a different application (e.g.,
an update), since the processor eliminates gates that are not needed
to support the possible instruction sequences in the target applica-
tion’s execution tree; a different sequence of the same instructions

Bespoke Processors for Applications with Ultra-low Area and Power Constraints ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

Table 6: Microarchitectural features in recent embedded pro-
cessors

Processor Branch Predictor Cache
ARM Cortex-M0 no no
ARM Cortex-M3 yes no

Atmel ATxmega128A4 no no
Freescale/NXP MC13224v no no

Intel Quark-D1000 yes yes
Jennic/NXP JN5169 no no

SiLab Si2012 no no
TI MSP430 no no

may need those gates for execution. For example, if all operands
to add instructions in a bespoke processor’s target binary have had
their least significant eight bits masked to 0 by a preceding and
instruction, gates corresponding to the least significant bits of the
ALU’s adder may be removed in the bespoke processor. Therefore,
the same bespoke processor may not support a different program
where the add instruction is not preceded by the masking and. While
full support for instructions is not guaranteed in general by bespoke
processors, we are able to guarantee support for Turing-complete
instructions / instruction sequences (e.g., subneg), since a software
routine written using a Turing-complete instruction / instruction se-
quence consists entirely of multiple instances of the same instruction
/ instruction sequence.

5.4 System Code
The evaluations above were performed for a bare-metal system (ap-
plication running on the processor without an operating system
(OS)). While this setting is representative of ultra-low-power pro-
cessors and a large segment of embedded systems [17, 61]10, use
of an OS is common in several embedded application domains, as
well as in more complex systems. Thus, we also evaluated bespoke
design for our applications running on the processor with an OS
(FreeRTOS [55]). Application analysis of system code for FreeRTOS
reveals that 57% of gates are not exercisable by the OS, including
the entire hardware multiplier. When our benchmarks are evaluated
individually with FreeRTOS, 37% of gates are unused in the worst
case, 49% on average. When running FreeRTOS together with all
15 benchmarks, 27% of gates are unused.

6 GENERALITY AND LIMITATIONS
We target bespoke processors for applications with ultra-low area
and power constraints. Low-power processors are already the most
widely-used type of processor and are also expected to power a large
number of emerging applications [21, 46, 51, 65, 72]. Such proces-
sors also tend to be simple, run relatively simple applications, and do
not support non-determinism (no branch prediction and caching; for
example, see Table 6). This makes our symbolic simulation-based
technique a good fit for such processors. Below, we discuss how
our technique may scale for complex processors and applications, if
necessary.

More complex processors contain more performance-enhancing
features such as large caches, prediction or speculation mechanisms,
and out-of-order execution, that introduce non-determinism into the

10Many embedded processors provide bare-metal development toolchains [56, 66].

0

2

4

6

8

10

12

P
o

w
e

r
Sa

vi
n

gs
 (

%
)

Figure 15: Power savings achieved by oracular power gating
with no overheads are significantly lower than those achieved by
bespoke processors for the same applications, even when each
module is allowed a separate power domain and a wake-up la-
tency of 0 is assumed.

instruction stream. Co-analysis is capable of handling this added non-
determinism at the expense of analysis tool runtime. For example,
by injecting an X as the result of a tag check, both the cache hit and
miss paths will be explored in the memory hierarchy. Similarly, since
co-analysis already explores taken and not-taken paths for input-
dependent branches, it can be adapted to handle branch prediction.
In an out-of-order processor, instruction ordering is based on the
dependence pattern between instructions. While instructions may
execute in different orders depending on the state of pipelines and
schedulers, a processor that starts from a known reset state and
executes the same piece of code will transition through the same
sequence of states each time. Thus, modifying input-independent
CFG exploration to perform input-independent exploration of the
data flow graph (DFG) may allow analysis to be extended to out-of-
order execution.

For complex applications, CFG complexity increases. This may
not be an issue for simple in-order processors (e.g., the ultra-low-
power processors studied in this paper), since the maximum length
of instruction sequences (CFG paths) that must be considered is
limited based on the number of instructions that can be resident in
the processor pipeline at once. However, for complex applications
running on complex processors, heuristic techniques may have to be
used to improve scalability; a large number of such heuristics have
been proposed [10, 32].

In a multi-programmed setting (including systems that support
dynamic linking), we take the union of the toggle activities of all
applications (caller, callee, and the relevant OS code in case of
dynamic linking) to get a conservative profile of unusable gates.
Similarly for self-modifying code, the set of usable gates for the
processor is chosen as the union of usable gate sets for all code
versions. In case of fine-grained execution, any state that is not
maintained as part of a thread’s context is assumed to have a value of
X when symbolic execution is performed for an instruction belonging
to the thread. This leads to a conservative coverage of usable gates
for the thread, irrespective of the behavior of the other threads.

7 RELATED WORK
7.1 Power Gating
In this paper, we propose a method to reduce the area and power of
applications running on a processor by removing unusable gates. An-
other method to reduce power of unused gates is power gating. Prior

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada H. Cherupalli et al.

work on aggressive power gating applies power gating at the granu-
larity of RTL modules [2–4, 14, 19, 39, 40, 45, 52, 57, 60, 67, 71].
Some power gating techniques can even power down unused uncore
modules (e.g., on-chip routers [15, 16, 20]) or dynamically re-size
microarchitectural structures to better suit an application [43, 52].
However, module-based power gating can only reduce power when
an entire architectural or well-understood microarchitectural module
is inactive, unlike our method for removing unusable gates, which
can remove gates at a fine granularity. Solutions for fine-grained
power gating also exist, that allow power gating to be performed at
the gate or sub-module level. Unfortunately, fine-grained power gat-
ing incurs considerable area and power overheads (e.g., 40-50% [58])
for isolation gates, retention cells, and power switches. Therefore,
fine-grained power gating is not a good fit for emerging area- and
power-constrained applications.

We evaluated the effectiveness of aggressive module-based power
gating for the same processor and benchmarks evaluated in Section 5.
Figure 15 shows the maximum total power savings for an oracular,
zero-overhead, module-based power gating technique, in which a
module is assumed to dissipate no power in any cycle when none
of the module’s gates are toggled. Additionally, no wake-up latency
or energy is considered. Despite not including any of the overheads
of power gating, the maximum power reduction for any application
is less than 13% – significantly lower than the minimum power
reduction provided by any of the bespoke processors for the same
applications (37%). An actual power gating implementation would
incur an area overhead for isolation cells, retention cells, and power
switches. It would also incur latency overhead to wake-up modules
when they are needed, which translates into a reduction in power
savings and possibly reduced performance. In comparison, bespoke
processors reduce power much more significantly than module-based
power gating while incurring no performance overhead and also
reducing design area.

Finally, it is worth noting that power gating and bespoke processor
design are orthogonal and can be used together. For example, if a
power gating technique is already applied to the baseline processor,
our gate activity analysis will treat the power gating control logic
and isolation cells like any other gates. If any do not toggle, the
power gating control logic and isolation cells can be removed and
replaced by the appropriate constant values. Power switch cells can
be removed either if their control input is always constant or if their
entire domain is cut. In this manner, bespoke design can be applied
in conjunction with power gating to further reduce power.

7.2 High-Level Synthesis
High-Level Synthesis (HLS) tools such as Cadence Stratus [12] and
Mentor Catapult [47] also aim to generate hardware for a given ap-
plication. However, unlike bespoke processor design, HLS involves
additional development cost since a) a new high-level specification
of application behavior needs to be defined, and b) the high-level
specification itself needs to be verified. Besides, while HLS tools
can transform many C programs into efficient ASICs, there are well-
known limitations that further increase development costs. Dynamic
memory allocation, pointer ambiguity, extracting memory paral-
lelism, and creating efficient schedules for arbitrary C programs are
all challenges for HLS. In fact, most commercial tools limit the use

of pointers and dynamic memory allocation, requiring additional
hardware-aware design development to create a working ASIC from
a C program. In contrast, our bespoke processor tool flow automati-
cally creates a bespoke processor from the original, already-verified
gate-level netlist and application binary without further design work.
Also, unlike HLS, our bespoke tool flow can generate a design that
supports multiple applications on the same hardware (including
full-fledged OS) and can support in-field updates. In these ways, a
bespoke processor design flow can decrease design and verification
effort and allow increased programmability compared with HLS tool
flows.

7.3 Application- and Domain-Specific Cores
Recent work has studied the design of application- and domain-
specific processors that improve energy-efficiency and increase per-
formance by adding specialized hardware. Statically-specialized
cores, such as conservation cores [68], QsCores [69], and Green-
Droid [28] automatically develop hardware implementations that
are connected to a general purpose processor at the data cache and
target hotspots within an application code. Such cores increase en-
ergy efficiency at the expense of increasing the total area of a design,
and thus may not be a good fit for area-constrained applications.
Reconfigurable architectures, such as DySER [29], can also increase
energy efficiency by mapping frequently-executed code segments
onto tightly-coupled reconfigurable execution units. However, in-
creased energy efficiency comes with an increase in area and power
for the additional reconfigurable units. Extensible processors, such
as Xtensa [13], allow a designer to specify configurations including
structure sizing, optional modules (e.g., debug and exceptions), and
custom application-specific functional units. Such extensible proces-
sors are limited in the extent to which they can reduce area and power,
since they are applied primarily at the module level. Furthermore,
the process is not fully automated and requires additional hardware
design effort. Compared with extensible application-specific pro-
cessors, bespoke processors can reduce power further, since they
can remove gates within modules (see Section 5) and require less
manual design effort.

Chip generators [59] can be used to generate families of chips
from the ground up for a particular application domain by allow-
ing domain expert hardware designers to encode domain-specific
knowledge into tools that design application-specific chips within
the same domain. Like HLS, this approach still requires a domain ex-
pert to design the overarching hardware in an HLS-like manner and
then specify functions that allow arbitrary elaboration of the hard-
ware design (e.g., encoding optimization functions for determining
lower-level parameters such as cache associativity). Chip generators,
therefore, require a change to the design process, while tailoring
bespoke processors to applications can be completely automated
from a program binary and processor netlist.

Simulate and eliminate [35] attempts to create a design tailored
to an application by simulating the target application with a user-
provided set of inputs on multiple base designs. Logic and intercon-
nect components that are not used by the application are removed.
Simulate and eliminate differs from bespoke processors in three fun-
damental ways – level of automation, scope of elimination, and cor-
rectness guarantees. First, simulate and eliminate requires significant

Bespoke Processors for Applications with Ultra-low Area and Power Constraints ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

user input to guide the selection of core parameters, selection of bit
widths, and definition of optimizations. Bespoke processors require
no user intervention. Second, simulate and eliminate only consid-
ers high-level, manually-identified components when determining
what is used by a processor, and consequently will not achieve as
large of area and power reductions as fine-grined bespoke proces-
sor tailoring (Figure 12). Third, simulate and eliminate relies on
user-specified inputs to determine the components that are never
used by an application. This means that simulate and eliminate can-
not guarantee safe optimization for applications where inputs affect
control flow. Additionally, simulate and eliminate cannot determine
if an unsafe elimination is performed. Bespoke processor tailoring
guarantees correctness by considering all possible application inputs
when determining which gates to remove.

8 CONCLUSION
In this paper, we made a case for bespoke processors – processors
that are tailored to a target application, such that they contain only
the gates necessary to execute the application. We presented an auto-
mated methodology that takes a microprocessor IP and application
as input and produces a bespoke processor with significantly lower
area and power that is guaranteed to execute the application correctly
for all possible executions and for all possible inputs. We showed
that bespoke processors can have significantly lower area and power
than their general purpose counterparts, while maintaining support
for multiple applications, as well as varying degrees of in-field pro-
grammability and debuggability. Average area and power reductions
from bespoke processor design are 62% and 50%, respectively, while
exploiting timing slack exposed by bespoke design improves average
power savings to 65%.

ACKNOWLEDGMENTS
The authors would like to thank James Myers and the anonymous
reviewers for helpful suggestions and feedback.

REFERENCES
[1] 43oh. 2012. Products with an MSP430. http://43oh.com/2012/03/winner-products-

using-the-msp430/. (2012).
[2] A. Abdollahi, F. Fallah, and M. Pedram. 2005. An effective power mode transi-

tion technique in MTCMOS circuits. In Design Automation Conference, 2005.
Proceedings. 42nd. 37–42. https://doi.org/10.1109/DAC.2005.193769

[3] Abhinav Agarwal and Arvind. 2013. Leveraging Rule-based Designs for Auto-
matic Power Domain Partitioning. In Proceedings of the International Conference
on Computer-Aided Design (ICCAD ’13). IEEE Press, Piscataway, NJ, USA,
326–333. http://dl.acm.org/citation.cfm?id=2561828.2561895

[4] Mohab Anis, Mohamed Mahmoud, Mohamed Elmasry, and Shawki Areibi. 2002.
Dynamic and Leakage Power Reduction in MTCMOS Circuits Using an Auto-
mated Efficient Gate Clustering Technique. In Proceedings of the 39th Annual
Design Automation Conference (DAC ’02). ACM, New York, NY, USA, 480–485.
https://doi.org/10.1145/513918.514041

[5] Henry Blodget, Marcelo Ballve, Tony Danova, Cooper Smith, John Heggestuen,
Mark Hoelzel, Emily Adler, Cale Weissman, Hope King, Nicholas Quah, John
Greenough, and Jessica Smith. 2014. The Internet of Everything: 2015. BI
Intelligence (2014).

[6] Jacob Borgeson. 2012. Ultra-low-power pioneers: TI slashes total MCU power
by 50 percent with new “Wolverine” MCU platform. Texas Instruments White
Paper (2012). http://www.ti.com/lit/wp/slay019a/slay019a.pdf

[7] Randal E. Bryant. 1990. Symbolic Simulation – Techniques and Applications. In
Proceedings of the 27th ACM/IEEE Design Automation Conference (DAC ’90).
517–521.

[8] Randal E Bryant. 1991. Symbolic Simulation – Techniques and Applications.
In Proceedings of the 27th ACM/IEEE Design Automation Conference. ACM,
517–521.

[9] Cristian Cadar, Daniel Dunbar, and Dawson R Engler. 2008. KLEE: Unassisted
and Automatic Generation of High-Coverage Tests for Complex Systems Pro-
grams.. In OSDI, Vol. 8. 209–224.

[10] Cristian Cadar and Koushik Sen. 2013. Symbolic Execution for Software Testing:
Three Decades Later. Commun. ACM 56, 2 (Feb. 2013), 82–90. https://doi.org/
10.1145/2408776.2408795

[11] Cadence. Encounter Digital Implementation User Guide. http://www.cadence.
com/

[12] Cadence. Stratus High-Level Synthesis User Guide. http://www.cadence.com/
[13] Cadence. 2017. Tensilica Customizable Processors.

http://ip.cadence.com/ipportfolio/tensilica-ip/xtensa-customizable. (2017).
[14] B.H. Calhoun, F.A. Honore, and A. Chandrakasan. 2003. Design methodology

for fine-grained leakage control in MTCMOS. In Low Power Electronics and
Design, 2003. ISLPED ’03. Proceedings of the 2003 International Symposium on.
104–109. https://doi.org/10.1109/LPE.2003.1231844

[15] Lizhong Chen and Timothy M Pinkston. 2012. Nord: Node-router decoupling for
effective power-gating of on-chip routers. In Proceedings of the 2012 45th An-
nual IEEE/ACM International Symposium on Microarchitecture. IEEE Computer
Society, 270–281.

[16] Lizhong Chen, Di Zhu, Massoud Pedram, and Timothy M Pinkston. 2015. Power
punch: Towards non-blocking power-gating of noc routers. In 2015 IEEE 21st
International Symposium on High Performance Computer Architecture (HPCA).
IEEE, 378–389.

[17] Steven Cherry. 2013. Hacking Pacemakers.
http://spectrum.ieee.org/podcast/biomedical/devices/hacking-pacemakers/.
(2013).

[18] Hari Cherupalli, Rakesh Kumar, and John Sartori. 2016. Exploiting Dynamic
Timing Slack for Energy Efficiency in Ultra-Low-Power Embedded Systems. In
Computer Architecture (ISCA), 2016 43th Annual International Symposium on.
IEEE.

[19] De-Shiuan Chiou, Da-Cheng Juan, Yu-Ting Chen, and Shih-Chieh Chang. 2007.
Fine-Grained Sleep Transistor Sizing Algorithm for Leakage Power Minimization.
In Design Automation Conference, 2007. DAC ’07. 44th ACM/IEEE. 81–86.

[20] Reetuparna Das, Satish Narayanasamy, Sudhir K Satpathy, and Ronald G Dres-
linski. 2013. Catnap: energy proportional multiple network-on-chip. In ACM
SIGARCH Computer Architecture News, Vol. 41. ACM, 320–331.

[21] Adam Dunkels, Joakim Eriksson, Niclas Finne, Fredrik Osterlind, Nicolas Tsiftes,
Julien Abeillé, and Mathilde Durvy. 2012. Low-Power IPv6 for the internet of
things. In Networked Sensing Systems (INSS), 2012 Ninth International Confer-
ence on. IEEE, 1–6.

[22] Embedded Microprocessor Benchmark Consortium. 2017. EEMBC.
http://www.eembc.org. (2017).

[23] Dave Evans. 2011. The Internet of Things: How the Next Evolution of the Internet
Is Changing Everything. (April 2011).

[24] Tao Feng, L. C. Wang, Kwang-Ting Cheng, M. Pandey, and M. S. Abadir. 2003.
Enhanced symbolic simulation for efficient verification of embedded array sys-
tems. In Design Automation Conference, 2003. Proceedings of the ASP-DAC 2003.
Asia and South Pacific. 302–307. https://doi.org/10.1109/ASPDAC.2003.1195032

[25] Paul Gerrish, Erik Herrmann, Larry Tyler, and Kevin Walsh. 2005. Challenges
and constraints in designing implantable medical ICs. IEEE Transactions on
Device and Materials Reliability 5, 3 (2005), 435–444.

[26] William F Gilreath and Phillip A Laplante. 2003. Computer Architecture: A
Minimalist Perspective. Vol. 730. Springer Science & Business Media.

[27] O Girard. 2013. OpenMSP430 project. available at opencores.org (2013).
[28] Nathan Goulding-Hotta, Jack Sampson, Ganesh Venkatesh, Saturnino Garcia,

Joe Auricchio, Po-Chao Huang, Manish Arora, Siddhartha Nath, Vikram Bhatt,
Jonathan Babb, and others. 2011. The GreenDroid Mobile Application Processor:
An Architecture for Silicon’s Dark Future. IEEE Micro 31, 2 (2011), 86–95.

[29] Venkatraman Govindaraju, Chen-Han Ho, Tony Nowatzki, Jatin Chhugani, Na-
dathur Satish, Karthikeyan Sankaralingam, and Changkyu Kim. 2012. DySER:
Unifying Functionality and Parallelism Specialization for Energy-Efficient Com-
puting. IEEE Micro 32, 5 (Sept. 2012), 38–51. https://doi.org/10.1109/MM.2012.
51

[30] G. Hackmann, Weijun Guo, Guirong Yan, Zhuoxiong Sun, Chenyang Lu, and
S. Dyke. 2014. Cyber-Physical Codesign of Distributed Structural Health Moni-
toring with Wireless Sensor Networks. Parallel and Distributed Systems, IEEE
Transactions on 25, 1 (Jan 2014), 63–72. https://doi.org/10.1109/TPDS.2013.30

[31] Tsuyoshi Hamada, Khaled Benkrid, Keigo Nitadori, and Makoto Taiji. 2009. A
comparative study on ASIC, FPGAs, GPUs and general purpose processors in the
O (Nˆ 2) gravitational N-body simulation. In Adaptive Hardware and Systems,
2009. AHS 2009. NASA/ESA Conference on. IEEE, 447–452.

[32] K. Hamaguchi. 2001. Symbolic simulation heuristics for high-level design de-
scriptions with uninterpreted functions. In High-Level Design Validation and Test
Workshop, 2001. Proceedings. Sixth IEEE International. 25–30.

[33] Sönke Holthusen, Sophie Quinton, Ina Schaefer, Johannes Schlatow, and Martin
Wegner. 2016. Using Multi-Viewpoint Contracts for Negotiation of Embedded
Software Updates. arXiv preprint arXiv:1606.00504 (2016).

https://doi.org/10.1109/DAC.2005.193769
http://dl.acm.org/citation.cfm?id=2561828.2561895
https://doi.org/10.1145/513918.514041
http://www.ti.com/lit/wp/slay019a/slay019a.pdf
https://doi.org/10.1145/2408776.2408795
https://doi.org/10.1145/2408776.2408795
http://www.cadence.com/
http://www.cadence.com/
http://www.cadence.com/
https://doi.org/10.1109/LPE.2003.1231844
https://doi.org/10.1109/ASPDAC.2003.1195032
https://doi.org/10.1109/MM.2012.51
https://doi.org/10.1109/MM.2012.51
https://doi.org/10.1109/TPDS.2013.30

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada H. Cherupalli et al.

[34] IC Insights. 2017. Microcontroller Sales Regain Momentum After
Slump. www.icinsights.com/news/bulletins/Microcontroller-Sales-Regain-
Momentum-After-Slump. (2017).

[35] Ali Irturk, Janarbek Matai, Jason Oberg, Jeffrey Su, and Ryan Kastner. 2011.
Simulate and eliminate: A top-to-bottom design methodology for automatic gener-
ation of application specific architectures. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 30, 8 (2011), 1173–1183.

[36] ITRS. 2015. International Technology Roadmap for Semiconductors 2.0 2015
Edition Executive Report. http://www.semiconductors.org/main/2015_interna-
tional_technology_roadmap_for_semiconductors_itrs/. (2015).

[37] P. Jain and G. Gopalakrishnan. 1994. Efficient symbolic simulation-based veri-
fication using the parametric form of Boolean expressions. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 13, 8 (Aug 1994),
1005–1015. https://doi.org/10.1109/43.298036

[38] Y. Jia and M. Harman. 2008. MILU: A Customizable, Runtime-Optimized Higher
Order Mutation Testing Tool for the Full C Language. In Practice and Research
Techniques, 2008. TAIC PART ’08. Testing: Academic Industrial Conference.
94–98. https://doi.org/10.1109/TAIC-PART.2008.18

[39] Y. Kanno, H. Mizuno, Y. Yasu, K. Hirose, Y. Shimazaki, T. Hoshi, Y. Miyairi,
T. Ishii, Tetsuy. Yamada, T. Irita, T. Hattori, K. Yanagisawa, and N. Irie. 2007.
Hierarchical Power Distribution With Power Tree in Dozens of Power Domains
for 90-nm Low-Power Multi-CPU SoCs. Solid-State Circuits, IEEE Journal of
42, 1 (Jan 2007), 74–83. https://doi.org/10.1109/JSSC.2006.885057

[40] J. Kao, S. Narendra, and A. Chandrakasan. 1998. MTCMOS hierarchical sizing
based on mutual exclusive discharge patterns. In Design Automation Conference,
1998. Proceedings. 495–500.

[41] BK Charlotte Kjellander, Wiljan TT Smaal, Kris Myny, Jan Genoe, Wim Dehaene,
Paul Heremans, and Gerwin H Gelinck. 2013. Optimized circuit design for
flexible 8-bit RFID transponders with active layer of ink-jet printed small molecule
semiconductors. Organic Electronics 14, 3 (2013), 768–774.

[42] A. Kolbi, J. Kukula, and R. Damiano. 2001. Symbolic RTL simulation. In Design
Automation Conference, 2001. Proceedings. 47–52. https://doi.org/10.1109/DAC.
2001.156106

[43] Vasileios Kontorinis, Amirali Shayan, Dean M. Tullsen, and Rakesh Kumar.
2009. Reducing Peak Power with a Table-driven Adaptive Processor Core.
In Proceedings of the 42Nd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO 42). ACM, New York, NY, USA, 189–200. https:
//doi.org/10.1145/1669112.1669137

[44] L. Liu and S. Vasudevan. 2011. Efficient validation input generation in RTL by
hybridized source code analysis. In Design, Automation Test in Europe Conference
Exhibition (DATE), 2011. 1–6. https://doi.org/10.1109/DATE.2011.5763253

[45] Changbo Long and Lei He. 2003. Distributed Sleep Transistor Network for Power
Reduction. In Proceedings of the 40th Annual Design Automation Conference
(DAC ’03). ACM, New York, NY, USA, 181–186. https://doi.org/10.1145/775832.
775879

[46] Michele Magno, Luca Benini, Christian Spagnol, and E Popovici. 2013. Wearable
low power dry surface wireless sensor node for healthcare monitoring application.
In Wireless and Mobile Computing, Networking and Communications (WiMob),
2013 IEEE 9th International Conference on. IEEE, 189–195.

[47] Mentor Graphics. 2016. Catapult High-Level Synthesis.
https://www.mentor.com/hls-lp/catapult-high-level-synthesis/c-systemc-hls.
(2016).

[48] Kris Myny, Steve Smout, Maarten Rockelé, Ajay Bhoolokam, Tung Huei Ke,
Soeren Steudel, Brian Cobb, Aashini Gulati, Francisco Gonzalez Rodriguez,
Koji Obata, and others. 2014. A thin-film microprocessor with inkjet print-
programmable memory. Scientific reports 4 (2014), 7398.

[49] K. Myny, E. van Veenendaal, G. H. Gelinck, J. Genoe, W. Dehaene, and P.
Heremans. 2011. An 8b organic microprocessor on plastic foil. In 2011 IEEE
International Solid-State Circuits Conference. 322–324. https://doi.org/10.1109/
ISSCC.2011.5746337

[50] Seetharam Narasimhan, Hillel J Chiel, and Swarup Bhunia. 2011. Ultra-low-power
and robust digital-signal-processing hardware for implantable neural interface
microsystems. IEEE transactions on biomedical circuits and systems 5, 2 (2011),
169–178.

[51] Chulsung Park, Pai H Chou, Ying Bai, Robert Matthews, and Andrew Hibbs. 2006.
An ultra-wearable, wireless, low power ECG monitoring system. In Biomedical
Circuits and Systems Conference, 2006. BioCAS 2006. IEEE. IEEE, 241–244.

[52] Paula Petrica, Adam M. Izraelevitz, David H. Albonesi, and Christine A. Shoe-
maker. 2013. Flicker: A Dynamically Adaptive Architecture for Power Limited
Multicore Systems. SIGARCH Comput. Archit. News 41, 3 (June 2013), 13–23.
https://doi.org/10.1145/2508148.2485924

[53] Gil Press. 2014. Internet of Things By The Numbers: Market Estimates And
Forecasts. Forbes (2014).

[54] Benjamin Ransford, Jacob Sorber, and Kevin Fu. 2012. Mementos: system support
for long-running computation on RFID-scale devices. Acm Sigplan Notices 47, 4
(2012), 159–170.

[55] Real Time Engineers Ltd. 2016. The FreeRTOS website. http://www.freertos.org/.
(2016).

[56] Miro Samek. 2007. Building BareMetal ARM systems with GNU.
http://www.state-machine.com/arm/Building_bare-metal_ARM_with_GNU.pdf.
(2007).

[57] Ashoka Sathanur, Antonio Pullini, Luca Benini, Alberto Macii, Enrico Macii, and
Massimo Poncino. 2007. Timing-driven Row-based Power Gating. In Proceedings
of the 2007 International Symposium on Low Power Electronics and Design
(ISLPED ’07). ACM, New York, NY, USA, 104–109. https://doi.org/10.1145/
1283780.1283803

[58] Naomi Seki, Lei Zhao, Jo Kei, Daisuke Ikebuchi, Yu Kojima, Yohei Hasegawa,
Hideharu Amano, Toshihiro Kashima, Seidai Takeda, Toshiaki Shirai, and others.
2008. A fine-grain dynamic sleep control scheme in MIPS R3000. In Computer
Design, 2008. ICCD 2008. IEEE International Conference on. IEEE, 612–617.

[59] Ofer Shacham. 2011. Chip Multiprocessor Generator: Automatic Generation of
Custom and Heterogeneous Compute Platforms. Ph.D. Dissertation.

[60] Youngsoo Shin, Jun Seomun, Kyu-Myung Choi, and Takayasu Sakurai. 2010.
Power Gating: Circuits, Design Methodologies, and Best Practice for Standard-
cell VLSI Designs. ACM Trans. Des. Autom. Electron. Syst. 15, 4, Article 28 (Oct.
2010), 37 pages. https://doi.org/10.1145/1835420.1835421

[61] A. Silberschatz, P. Galvin, and G Gagne. 2017. Bare Machine, Wikipedia.
http://en.wikipedia.org/wiki/Bare_machine. (2017).

[62] Synopsys. Design Compiler User Guide. http://www.synopsys.com/
[63] Synopsys. Formality User Guide. http://www.synopsys.com/
[64] Synopsys. PrimeTime User Guide. http://www.synopsys.com/
[65] Russell Tessier, David Jasinski, Atul Maheshwari, Aiyappan Natarajan, Weifeng

Xu, and Wayne Burleson. 2005. An energy-aware active smart card. Very Large
Scale Integration (VLSI) Systems, IEEE Transactions on 13, 10 (2005), 1190–
1199.

[66] Texas Instruments. 2015. StarterWare. http://processors.wiki.ti.com/index.php/StarterWare.
(2015).

[67] Kimiyoshi Usami and Naoaki Ohkubo. 2006. A design approach for fine-grained
run-time power gating using locally extracted sleep signals. In Proc. of ICCD’06.
155–161.

[68] Ganesh Venkatesh, Jack Sampson, Nathan Goulding, Saturnino Garcia, Vladyslav
Bryksin, Jose Lugo-Martinez, Steven Swanson, and Michael Bedford Taylor.
2010. Conservation Cores: Reducing the Energy of Mature Computations. In
Proceedings of the Fifteenth Edition of ASPLOS on Architectural Support for
Programming Languages and Operating Systems (ASPLOS XV). ACM, New York,
NY, USA, 205–218. https://doi.org/10.1145/1736020.1736044

[69] Ganesh Venkatesh, Jack Sampson, Nathan Goulding-Hotta, Sravanthi Kota
Venkata, Michael Bedford Taylor, and Steven Swanson. 2011. QsCores: Trad-
ing Dark Silicon for Scalable Energy Efficiency with Quasi-specific Cores. In
Proceedings of the 44th Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO-44). ACM, New York, NY, USA, 163–174. https:
//doi.org/10.1145/2155620.2155640

[70] Wikipedia. 2016. List of wireless sensor nodes. (2016). https://en.wikipedia.org/
wiki/List_of_wireless_sensor_nodes [Online; accessed 7-April-2016].

[71] Tong Xu, Peng Li, and Boyuan Yan. 2011. Decoupling for power gating: Sources
of power noise and design strategies. In Design Automation Conference (DAC),
2011 48th ACM/EDAC/IEEE. 1002–1007.

[72] Ross Yu and Thomas Watteyne. 2013. Reliable, Low Power Wireless Sensor Net-
works for the Internet of Things: Making Wireless Sensors as Accessible as Web
Servers. Linear Technology (2013). http://cds.linear.com/docs/en/white-paper/
wp003.pdf

[73] Bo Zhai, Sanjay Pant, Leyla Nazhandali, Scott Hanson, Javin Olson, Anna Reeves,
Michael Minuth, Ryan Helfand, Todd Austin, Dennis Sylvester, and others. 2009.
Energy-efficient subthreshold processor design. Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on 17, 8 (2009), 1127–1137.

[74] Y. Zhang, Z. Chen, and J. Wang. 2012. Speculative Symbolic Execution. In Soft-
ware Reliability Engineering (ISSRE), 2012 IEEE 23rd International Symposium
on. 101–110. https://doi.org/10.1109/ISSRE.2012.8

https://doi.org/10.1109/43.298036
https://doi.org/10.1109/TAIC-PART.2008.18
https://doi.org/10.1109/JSSC.2006.885057
https://doi.org/10.1109/DAC.2001.156106
https://doi.org/10.1109/DAC.2001.156106
https://doi.org/10.1145/1669112.1669137
https://doi.org/10.1145/1669112.1669137
https://doi.org/10.1109/DATE.2011.5763253
https://doi.org/10.1145/775832.775879
https://doi.org/10.1145/775832.775879
https://doi.org/10.1109/ISSCC.2011.5746337
https://doi.org/10.1109/ISSCC.2011.5746337
https://doi.org/10.1145/2508148.2485924
https://doi.org/10.1145/1283780.1283803
https://doi.org/10.1145/1283780.1283803
https://doi.org/10.1145/1835420.1835421
http://www.synopsys.com/
http://www.synopsys.com/
http://www.synopsys.com/
https://doi.org/10.1145/1736020.1736044
https://doi.org/10.1145/2155620.2155640
https://doi.org/10.1145/2155620.2155640
https://en.wikipedia.org/wiki/List_of_wireless_sensor_nodes
https://en.wikipedia.org/wiki/List_of_wireless_sensor_nodes
http://cds.linear.com/docs/en/white-paper/wp003.pdf
http://cds.linear.com/docs/en/white-paper/wp003.pdf
https://doi.org/10.1109/ISSRE.2012.8

	Abstract
	1 Introduction
	2 Motivation
	3 Tailoring a Bespoke Processor
	3.1 Input-independent Gate Activity Analysis
	3.2 Cutting and Stitching
	3.3 Illustrative Example
	3.4 Correctness
	3.5 Supporting Multiple Applications

	4 Methodology
	4.1 Simulation Infrastructure and Benchmarks
	4.2 Baselines

	5 Results
	5.1 Verification
	5.2 Supporting Multiple Programs
	5.3 Supporting In-field Updates
	5.4 System Code

	6 Generality and Limitations
	7 Related Work
	7.1 Power Gating
	7.2 High-Level Synthesis
	7.3 Application- and Domain-Specific Cores

	8 Conclusion
	References

