
Approximate Hybrid Binary-Unary Computing with Applications
in BERT Language Model and Image Processing

Alireza Khataei
Department of ECE

University of Minnesota
Minneapolis, MN, USA
khata014@umn.edu

Gaurav Singh
Department of ECE

University of Minnesota
Minneapolis, MN, USA
singh431@umn.edu

Kia Bazargan
Department of ECE

University of Minnesota
Minneapolis, MN, USA

kia@umn.edu

ABSTRACT
We propose a novel method for approximate hardware implementa-
tion of univariate math functions with significantly fewer hardware
resources compared to previous approaches. Examples of such func-
tions include exp(x) and the activation function GELU(x), both used
in transformer networks, gamma(x), which is used in image pro-
cessing, and other functions such as tanh(x), cosh(x), sq(x), and
sqrt(x). The method builds on previous works on hybrid binary-
unary computing. The novelty in our approach is that we break a
function into a number of sub-functions such that implementing
each sub-function becomes cheap, and converting the output of the
sub-functions to binary becomes almost trivial. Our method also
uses self-similarity in functions to further reduce the cost. We com-
pare our method to the conventional binary, previous stochastic
computing, and hybrid binary-unary methods on several functions
at 8-, 12-, and 16-bit resolutions. While preserving high accuracy,
our method outperforms previous works in terms of hardware cost,
e.g., tolerating less than 0.01 mean absolute error, our method re-
duces the (area × latency) cost on average by 5, 7, and 2 orders of
magnitude, compared to the conventional binary, stochastic com-
puting, and hybrid binary-unary methods, respectively. Ultimately,
we demonstrate the potential benefits of our method for natural
language processing and image processing applications. We deploy
our method to implement major blocks in an encoding layer of
BERT language model, and also the Roberts Cross edge detection
algorithm. Both include non-linear functions.

CCS CONCEPTS
•Hardware→ Reconfigurable logic and FPGAs; • Computing
methodologies→ Neural networks; Image processing.

KEYWORDS
hardware accelerators, approximate computing, unary computing,
stochastic computing, BERT language model, image processing
ACM Reference Format:
Alireza Khataei, Gaurav Singh, and Kia Bazargan. 2023. Approximate Hybrid
Binary-Unary Computing with Applications in BERT Language Model

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
FPGA ’23, February 12–14, 2023, Monterey, CA, USA
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-9417-8/23/02. . . $15.00
https://doi.org/10.1145/3543622.3573181

and Image Processing. In Proceedings of the 2023 ACM/SIGDA International
Symposium on Field Programmable Gate Arrays (FPGA ’23), February 12–
14, 2023, Monterey, CA, USA. ACM, New York, NY, USA, 11 pages. https:
//doi.org/10.1145/3543622.3573181

1 INTRODUCTION
The past two decades have witnessed an evolution in computing
from single-threaded, single-core processor architectures to ones
with a diverse set of processing elements, with more specialized
accelerators embedded in these platforms. Each application domain
requires bespoke accelerators to implement its unique set of opera-
tors and tasks, optimized for the best performance. The explosion
of machine learning applications has brought about highly opti-
mized units such as matrix multiplication. Multiply-accumulate
operations have been well-studied in the past decade, and FPGAs
and other platforms usually provide enough computing resources
for this common operation. What is missing, though, is efficient
units performing non-linear operations.

A number of research groups have looked into non-traditional,
non-binary number representations that enable low-cost imple-
mentation of non-linear functions. The next section will present
the background on these methods, which include Stochastic Com-
puting [27], Fully Unary [19, 20], and Hybrid Binary-Unary (HBU)
Computing [7]. We take the exact HBUmethod and make structural
modifications that significantly improve its LUT-count and critical
path delay by allowing a controllable level of approximation. In
contrast to the exact HBU method, our approach can implement
functions at higher resolutions with ultra-low hardware costs.

Using FPGAs, we compare our method to the conventional bi-
nary, stochastic, and exact HBU methods on several functions at 8-,
12-, and 16-bit resolutions. We also apply our technique to the non-
linear functions in the BERT language model and Roberts Cross
edge detection algorithm to examine the impacts of approximation
error on the quality of real systems. To explore the trade-off be-
tween accuracy and hardware costs, we synthesize two hardware
designs with different error ranges for each function. The exper-
imental results show that our method reduces the area × latency
cost on average by 105, 107, and 102, compared to the conventional
binary, stochastic computing, and exact HBU methods, respectively.

The key advantages of our proposed method over the exact HBU
method are as follows:

(1) Our method can efficiently implement math functions at
higher resolution (e.g., 16-bit) compared to the exact HBU
method which is limited to 12-bit functions.

(2) Our method can provide a trade-off between accuracy and
hardware cost, which is beneficial in applications that can

https://doi.org/10.1145/3543622.3573181
https://doi.org/10.1145/3543622.3573181
https://doi.org/10.1145/3543622.3573181

FPGA ’23, February 12–14, 2023, Monterey, CA, USA Alireza Khataei, Gaurav Singh, and Kia Bazargan

tolerate some approximation error. For instance, it can reduce
hardware area by an average of 2 orders of magnitude by
introducing less than 0.01 mean absolute error.

(3) Our method eliminates the need for a binary adder when
assembling the results from sub-functions, which results in
shorter latency and critical path delay.

2 BACKGROUND
2.1 Alternatives to Binary
For many years, the binary radix representation has been of great
interest due to its compact size advantages in digital systems. An
alternative to the conventional binary system is stochastic comput-
ing [10, 26–28, 33] which uses random streams of bits to represent
numbers in the unit interval. To convert a 𝑤-bit binary number
into this system, 2𝑤 bits are needed, in which the ratio of 1’s to the
length of the stream determines the value as a probability. Using sto-
chastic approaches, complex computations can be performed with
a low-cost hardware architecture. Despite that, stochastic methods
suffer from high latency due to the length of streams which is ex-
ponentially longer than binary[23]. Moreover, they do not provide
accurate output results due to random variations[1]. The splitting
resolution method [21] was proposed to reduce latency but at the
expense of increasing area. In addition, new generations of stochas-
tic computing ware proposed in [15, 22], in which computations
are performed in a deterministic fashion but at the cost of increased
latency [6].

Fully unary computing [19, 20] was introduced as an alterna-
tive, in which an arbitrary function can be implemented using a
network of wires and XOR gates called the "scaling network". This
method converts binary input numbers to unary representation
as thermometer codes using an "encoder", e.g., the binary num-
ber 1012 is converted to 1111100, which is a code of length 7 (the
maximum value that a 3-bit binary number can hold), with the
first five bits set to 1. After the conversion, it performs computa-
tions on the unary value using the scaling network, and finally
converts the unary result to binary output using a "decoder". As
the authors in [19] report, the fully unary method outperforms the
conventional binary and stochastic computing methods such as
Bernstein polynomial[29], Maclaurin series [30], linear finite-state
machines[17], and dynamical systems with feedback[35] methods.
However, as the resolution increases beyond 12-bit, the complexity
of decoders and encoders increases exponentially which makes
the overall architecture unattractive in terms of area × latency. To
address this issue, exact hybrid binary-unary (exact HBU) was pro-
posed by [6] which takes advantage of unary and binary at the same
time. The lower bits of input data are converted from binary to
unary while keeping the upper bits in the binary format. Recently,
many researchers have been exploring the unary methods and de-
ploying them to accelerate compute-intensive applications ranging
from conventional neural networks [5, 8], to image processing, and
sorting networks[23].

2.2 Unary Number Representation
In general, a unary number format is any representation in which
all bits have the same weight, as opposed to the binary radix that
assigns a specific weight to each bit’s position[25]. Fully unary

computing [19], exact HBU [6] use a unary representation in the
form of thermometer codes: a𝑤-bit binary number gets expanded to
2𝑤 bits, in which the total number of 1’s in those 2𝑤 bits determines
the value carried by the bundle of wires. For instance:

(000)Unary = (00)Binary, (100)Unary = (01)Binary
(110)Unary = (10)Binary, (111)Unary = (11)Binary

Since there is a one-to-one correspondence between these two
representations, unary thermometer codes can express many types
of numbers, including integer, fixed-point, signed, and unsigned,
which are basically based on our interpretation of their correspond-
ing binary formats. As an example, (111)Unary is equal to (11)Binary,
and (11)Binary may be interpreted as (3)Decimal or (1.5)Decimal or
(-1)Decimal or other numbers.

2.3 Fully Unary Computing [19, 20]
Generally speaking, a complex math function in digital hardware
can be considered as a black box following a look-up table that
maps an 𝑁 -bit input to an𝑀-bit output.

In fully unary computing, a binary input is encoded to the unary
thermometer code feeding a network of wires and XOR gates, in
which the unary input is mapped to output wires that form a new
thermometer code equal to the desired value. At the final stage,
the output is decoded from unary to binary. Fig. 1 (left) shows
the structure of the scaling network corresponding to the function
described as a look-up table in Fig. 1 (right). The encoder and
decoder units to convert binary-to-unary as input, and convert the
unary output back to binary are not shown in the figure.

1 1 1 1 0 0 0

O
u
tp
u
t

Input

Input Output

0000000 110000000000000

1000000 111000000000000

1100000 111100000000000

1110000 111111111000000

1111000 111111111110000

1111100 111111111111000

1111110 111111111110000

1111111 111111111000000

Figure 1: The structure of the scaling network and its corre-
sponding look-up-table in the unary domain

As shown in Fig. 1, if the input increases from x = 2 to x = 3,
the output goes up by 5 steps from f = 4 to f = 9. Therefore, X3
(the 3𝑟𝑑 bit of the unary input) is connected to F5 (the 5𝑡ℎ bit of
the unary output), F6, F7, F8, and F9 using wires. If the function
was monotonically increasing, it could be implemented entirely out
of such scaling wires. The arbitrary function in Fig. 1 is, however,
non-monotonic, and if the input increases from x = 5 to x = 6, the
output goes 1 step down from f = 12 to f = 11. As a result, we must
use an XOR gate to flip F12 from ‘1’ to ‘0’. More precisely, F12 first
changes from ’0’ to ‘1’ when the input reaches (or exceeds) x = 5,
and it later switches back to ‘0’ when the input reaches (or exceeds)

Approximate Hybrid Binary-Unary Computing with Applications in BERT Language Model and Image Processing FPGA ’23, February 12–14, 2023, Monterey, CA, USA

x = 6. Therefore, X5 and X6 are triggering points for F12 and must
be connected to it through an XOR gate, i.e., 𝐹12 = 𝑋5 ⊕ 𝑋6

2.4 Exact HBU Computing [6]
For high-resolution and non-monotonic functions, fully unary com-
puting is not competitive with its counterparts due to the com-
plexity of thermometer encoders and decoders. To address this
issue, exact HBU[6] can be deployed to reduce the complexity of
the decoders and encoders by dividing the original function into
𝑛 sub-functions with their offsets separated. Since the input and
output lengths of each sub-function are shortened, they can be
implemented using the fully unary cores at lower resolutions. How-
ever, since all the sub-functions are implemented independently
and fed concurrently, we have 𝑛 different outputs computed by fully
unary cores, one of which contributes to the final expected value.
The upper bits of the binary input determine the correct output
and its corresponding offset that was separated before. Eventually,
the correct output is added with its offset to generate the final bi-
nary output. Fig. 2 shows the overall architecture of the exact HBU
method.

Binary
Output

f1

f2

fn

Fully Unary
Cores MuxesBinary-to-Unary

Encoders
Unary-to-Binary

Decoders

+

Bias1

Binary
Adder

Binary
Input

U
pp

er

Bi
ts

Lower
Bits

Bias2 Biasn

Figure 2: The structure of the exact HBU method [6].

3 PROPOSEDWORK
We will first provide an overview of our method (Sec. 3.1), fol-
lowed by the pseudo-code of our method (Sec. 3.2), followed by a
small numeric example showing how we implement the functions
(Sec. 3.4).

3.1 Overview
As discussed earlier, the exact HBU method[6] divides a math func-
tion 𝑓 (𝑥) into 𝑛 sub-functions and separate their offsets:

𝑓 (𝑥) =

𝑏1 + 𝑓1 (𝑥) 0 ≤ 𝑥 < 𝑥1
...

𝑏𝑛 + 𝑓𝑛 (𝑥) 𝑥𝑛−1 ≤ 𝑥 < 𝑥𝑛

(1)

where 𝑓𝑖 , 𝑏𝑖 , and 𝑛 represent the 𝑖𝑡ℎ sub-function without offset,
offset, and the number of divisions, respectively.

In our method, we propose an algorithm that divides and trans-
forms the original function 𝑓 (𝑥) into 𝑓 (𝑥) in such a way that the
upper 𝐾 bits of the output in each sub-function are the same in the
binary domain.

𝑓 (𝑥) −→ 𝑓 (𝑥) =

𝑓1 (𝑥) 0 ≤ 𝑥 < 𝑥1
...

𝑓𝑛 (𝑥) 𝑥𝑛−1 ≤ 𝑥 < 𝑥𝑛

(2)

Since the upper 𝐾 bits of each sub-function 𝑓𝑖 (𝑥) are fixed, we
can separate those 𝐾 bits and rewrite 𝑓 (𝑥) as follows using simple
bit-concatenation:

𝑓 (𝑥) −→ 𝑓 (𝑥) =

{”𝑈𝐵1”, 𝑔1 (𝑥)} 0 ≤ 𝑥 < 𝑥1
...

{”𝑈𝐵𝑛”, 𝑔𝑛 (𝑥)} 𝑥𝑛−1 ≤ 𝑥 < 𝑥𝑛

(3)

where “𝑈𝐵𝑖 ” represents the upper𝐾 bits of the 𝑖𝑡ℎ sub-function, and
𝑔𝑖 (𝑥) represents the 𝑖𝑡ℎ truncated sub-function which is derived
from 𝑓𝑖 (𝑥) by omitting its upper𝐾 bits. Therefore, the concatenation
of “𝑈𝐵𝑖 ” and 𝑔𝑖 (𝑥) creates 𝑓𝑖 (𝑥).

Since we have divided the input length of the function into 𝑛
sub-regions, we need to use 𝑛 fully unary cores to implement 𝑔𝑖 (𝑥),
𝑖 ∈ {1, 2, ..., 𝑛}. Similar to the exact HBUmethod, 𝑛 different outputs
are computed in parallel, one of which must contribute to the final
binary output. Therefore, we need to use the upper bits of the input
to multiplex the correct output. Fig. 3 shows the overall architecture
of our method.

Using such a transformation, each approximated sub-function
𝑔𝑖 (𝑥) can be implemented in the unary domain at a lower resolution
than the original function 𝑓 (𝑥). It means we can utilize low-cost
thermometer encoders and decoders to perform the computations,
which are the primary bottlenecks of the previous fully unary and
exact HBU methods. In addition, unlike the exact HBU, our method
does not use any offsets 𝑏𝑖 , hence eliminating the need for any
binary adders, which translates to much lower latency and critical
path delay.

Binary
Input

Binary
Output

g1

g2

gn

Fully Unary Cores

Binary-to-Unary
Encoders

MUX

“UB1”

Unary-to-Binary
Decoders

Concat.

U
pp

er

Bi
ts

Lower
Bits

“UB2”

“UBn”

Figure 3: The structure of our method.

This transformation can beat the previous exact HBU method
in terms of hardware area, critical path delay, and latency. In addi-
tion, we propose a self-similarity measurement technique to further
reduce hardware costs. Based on our observation, many of the trans-
formed sub-functions are either the same or very similar. Therefore,
using some level of approximation, we can dramatically reduce
the number of distinct fully unary cores and decoders that need to
be implemented. This also enables us to implement complex math
functions at higher resolutions and lower costs, which was not
feasible in the previous exact HBU approach. These optimization
strategies make our method superior to conventional binary, sto-
chastic, and exact HBU methods in terms of area, critical path delay,
and latency, at 8- to 16-bit resolutions. In the following sections,
we will discuss our method in detail.

FPGA ’23, February 12–14, 2023, Monterey, CA, USA Alireza Khataei, Gaurav Singh, and Kia Bazargan

Table 1: The parameters used in our proposed algorithm.

Parameter Description

𝐼𝐿 Initial division length

𝐿𝑚𝑖𝑛 Sub-function minimum input length

𝐾 # Upper bits to be fixed in sub-functions

𝑇𝑅𝐸 Target rounding error

𝑇𝑆𝐸 Target similarity error

3.2 Function Division and Transformation
In this section, we focus on how to efficiently divide and transform
an arbitrary function to reduce hardware cost and approximation er-
ror. First, we define 5 parameters that are used in our algorithm, two
of which (𝐼𝐿 and 𝐿𝑚𝑖𝑛) were inspired by the exact HBU method[6].
Table 1 describes the parameters and their definitions.

Algorithm 1 shows the function division and transformation
process for an arbitrary math function 𝑓 (𝑥) at the input and output
resolutions𝑤𝑖𝑛 and𝑤𝑜𝑢𝑡 . In this process, the input and output val-
ues of the functions are considered an unsigned integers, although
they may originally represent other values. As a result of this al-
gorithm, g(x), UB, and 𝑔𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠 are returned as outputs, where
𝑔𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠 is a list of tuples that determines the input range of
each 𝑔𝑖 (𝑥), and𝑈𝐵 is the list of ”𝑈𝐵𝑖 ”s.

In the first loop (lines 6–9), the input domain [0, 2𝑤𝑜𝑢𝑡 − 1] is
divided into 𝐼𝐿-bit sub-regions, and the results are stored in a list
called 𝑓 𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠 . In fact, 𝑓 𝐵𝑜𝑢𝑎𝑛𝑑𝑎𝑟𝑖𝑒𝑠 is a list of tuples, each
of which corresponds to the input domain of a sub-function that
still requires transformation and processing. Once a sub-region is
processed and finalized, it is stored in 𝑔𝐵𝑜𝑢𝑎𝑛𝑑𝑎𝑟𝑖𝑒𝑠 . In the next
loop (lines 10–39), in each iteration, we select an input sub-region
from 𝑓 𝐵𝑜𝑢𝑎𝑛𝑑𝑎𝑟𝑖𝑒𝑠 and remove that from the list. Next, we check
whether the upper 𝐾 bits of 𝑓 (𝑥) in this region are fixed or not. If
they are fixed, we store this sub-region into 𝑔𝐵𝑜𝑢𝑎𝑛𝑑𝑎𝑟𝑖𝑒𝑠 and the
corresponding output values 𝑓 (𝑥) into 𝑓 (𝑥). If they are not fixed,
we round the sub-function output to the nearest values whose upper
𝐾 bits are fixed in this sub-region. Among all the 2𝐾 options for the
upper bits’ format, we choose the one which results in the minimum
rounding error. Next, if this minimum rounding error is less than
𝑇𝑅𝐸 or the length of the sub-region is equal to 𝐿𝑚𝑖𝑛 , we store this
sub-region into𝑔𝐵𝑜𝑢𝑎𝑛𝑑𝑟𝑖𝑒𝑠 and the corresponding rounded values
f(x) into 𝑓 (𝑥). Otherwise, we divide this sub-region by 2 and store
them into 𝑓 𝐵𝑜𝑢𝑎𝑛𝑑𝑟𝑖𝑒𝑠 . The rounding error is calculated based on
the mean absolute error equation as follows:

𝑅𝑜𝑢𝑛𝑑𝑖𝑛𝑔𝐸𝑟𝑟𝑜𝑟 =
1
𝑚

∑︁
𝑥

���� 𝑓𝑡𝑒𝑚𝑝 (𝑥) − 𝑓𝑠𝑢𝑏 (𝑥)2𝑤𝑜𝑢𝑡

���� (4)

At the end of the while loop, 𝑔𝐵𝑜𝑢𝑎𝑛𝑑𝑟𝑖𝑒𝑠 contains a list of tuples
that corresponds to the input domains of sub-functions whose
upper 𝐾 bits are fixed. Therefore, we separate these upper bits from
𝑓 (𝑥) and store the resulting values as 𝑔(𝑥). The upper bits of each
sub-function are also stored in a list called𝑈𝐵.

Using the algorithm above, an arbitrary function 𝑓 (𝑥) can be
transformed and divided into sub-functions 𝑓𝑖 (𝑥) whose upper 𝐾

Algorithm 1: Function Division and Transformation
1 Parameters: 𝐼𝐿, 𝐿𝑚𝑖𝑛, 𝐾,𝑇𝑅𝐸
2 Input: 𝑓 (𝑥)
3 Output: 𝑔(𝑥),𝑈 𝐵,𝑔𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠
4 𝑥𝑠 ← 0;
5 // (6–9) Dividing the input region by 2𝐼𝐿

6 for 𝑖 = 1 to 2𝑤𝑖𝑛−𝐼𝐿 do
7 𝑓 𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠.push([𝑥𝑠 , 𝑥𝑠 + 2𝐼𝐿 − 1])
8 𝑥𝑠 ← 𝑥𝑠 + 2𝐼𝐿
9 end

10 while 𝑓 𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠 ≠ 𝑁𝑈𝐿𝐿 do
11 [𝑥𝑠 , 𝑥𝑒] ← 𝑓 𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠.𝑝𝑜𝑝 ()
12 𝑓𝑠𝑢𝑏 ← 𝑓 ([𝑥𝑠 , 𝑥𝑒])
13 // (14–15) Finding min / max of K upper bits

14 𝑚𝑖𝑛𝑈𝐵 ← ⌊𝑚𝑖𝑛(𝑓𝑠𝑢𝑏)/2𝑤𝑜𝑢𝑡−𝐾 ⌋
15 𝑚𝑎𝑥𝑈𝐵 ← ⌊𝑚𝑎𝑥 (𝑓𝑠𝑢𝑏)/2𝑤𝑜𝑢𝑡−𝐾 ⌋
16 if 𝑚𝑖𝑛𝑈𝐵 =𝑚𝑎𝑥𝑈𝐵 then
17 𝑔𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠 .push([𝑥𝑠 , 𝑥𝑒])
18 𝑓 ← 𝑓𝑠𝑢𝑏

19 else
20 // (21–29) Computing the lowest

𝑅𝑜𝑢𝑛𝑑𝑖𝑛𝑔𝐸𝑟𝑟𝑜𝑟 for the K upper bits

21 𝐵𝑒𝑠𝑡𝑅𝐸 ← 𝑖𝑛𝑓

22 for 𝑖 = 0 to 2𝐾 − 1 do
23 𝑓𝑡𝑒𝑚𝑝 ← (𝑖 × 2𝑤𝑜𝑢𝑡−𝐾) + (𝑓𝑠𝑢𝑏 mod 2𝑤𝑜𝑢𝑡−𝐾)
24 𝑅𝐸 ← 𝑅𝑜𝑢𝑛𝑑𝑖𝑛𝑔𝐸𝑟𝑟𝑜𝑟 (𝑓𝑠𝑢𝑏 , 𝑓𝑡𝑒𝑚𝑝)
25 if 𝑅𝐸 < 𝑏𝑒𝑠𝑡𝑅𝐸 then
26 𝑏𝑒𝑠𝑡𝑅𝐸 ← 𝑅𝐸

27 𝑏𝑒𝑠𝑡𝑈𝐵 ← 𝑖

28 end
29 end
30 // (31–37) Applying the approximation or

dividing the sub-region by 2

31 if 𝑏𝑒𝑠𝑡𝑅𝐸 < 𝑇𝑅𝐸 or 𝐿𝑚𝑖𝑛 = (𝑥𝑒 − 𝑥𝑠) then
32 𝑔𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠 .push([𝑥𝑠 , 𝑥𝑒])
33 𝑓 ← 𝑏𝑒𝑠𝑡𝑈𝐵 × 2𝑤𝑜𝑢𝑡−𝐾 + 𝑓𝑠𝑢𝑏 mod 2𝑤𝑜𝑢𝑡−𝐾

34 else
35 𝑓 𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠 .push([𝑥𝑠 , (𝑥𝑒 − 1)/2])
36 𝑓 𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠 .push([(𝑥𝑒 + 1)/2, 𝑥𝑒])
37 end
38 end
39 end
40 𝑔← 𝑓 mod 2𝑤𝑜𝑢𝑡−𝐾

41 𝑈𝐵 ← ⌊𝑓 /2𝑤𝑜𝑢𝑡−𝐾 ⌋

bits are fixed. Thus, we can temporarily eliminate the upper bits,
and implement each truncated sub-function (denoted as 𝑔𝑖 (𝑥)) in
the fully unary domain using only the lower bits, which in turn
reduces the complexity of decoders and encoders. However, once
the unary computations are performed and converted to the binary
format, the output of each 𝑔𝑖 (𝑥) must be concatenated with their

Approximate Hybrid Binary-Unary Computing with Applications in BERT Language Model and Image Processing FPGA ’23, February 12–14, 2023, Monterey, CA, USA

separated upper bits. At the final stage, the upper bits of the binary
input are used to multiplex the expected final values among the
results provided by each unary core.

3.3 Self-Similarity Measurement
In the previous subsection, we discussed how to divide and trans-
form an arbitrary function 𝑓 (𝑥) into 𝑛 sub-functions 𝑓𝑖 (𝑥) whose
upper 𝐾 bits are fixed. Therefore, each 𝑓𝑖 (𝑥) can be rewritten as the
concatenation of ”𝑈𝐵𝑖” and 𝑔𝑖 (𝑥). As a result, we need 𝑛 separate
fully unary cores to correspond to each 𝑔𝑖 (𝑥) to perform the com-
putation. Using the aforementioned method alone can reduce the
hardware area and latency significantly. However, we can further
reduce the hardware utilization by implementing similar unary
cores as one unit. Hence, we need to measure the self-similarity in
all the truncated sub-functions 𝑔𝑖 (𝑥) which have the same input
lengths.

To do so, a new parameter 𝑇𝑆𝐸 is defined, and each 𝑔𝑖 (𝑥) is
compared with all the other 𝑔 𝑗 (𝑥)’s. The similarity error between
𝑔𝑖 (𝑥) and 𝑔 𝑗 (𝑥) can be computed based on the following equation:

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝐸𝑟𝑟𝑜𝑟 =
1
𝑚

∑︁
𝑥

����𝑔𝑖 (𝑥) − 𝑔 𝑗 (𝑥)2𝑤𝑜𝑢𝑡

���� (5)

If the similarity error between 𝑔𝑖 (𝑥) and 𝑔 𝑗 (𝑥) is less than or equal
to 𝑇𝑆𝐸, they can be implemented interchangeably. In other words:

If ∃(𝑔𝑖 , 𝑔 𝑗) such that 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝐸𝑟𝑟𝑜𝑟 (𝑔𝑖 , 𝑔 𝑗) ≤ 𝑇𝑆𝐸
⇒ 𝑔𝑖 (𝑥) ≈ 𝑔 𝑗 (𝑥)

3.4 Guiding Example
To clarify the proposed method, we go through the steps using a
guiding example. Fig. 4 (top-left) shows an arbitrary function 𝑓 (𝑥)
with 𝑤𝑖𝑛 = 4 bits and 𝑤𝑜𝑢𝑡 = 4 bits. In this example, we assume
𝐼𝐿 = 3 bits, 𝐿𝑚𝑖𝑛 = 2 bits, 𝐾 = 2 bits, 𝑇𝑅𝐸 = 2.5 × 10−2, and
𝑇𝑆𝐸 = 0.5 × 10−2. As 𝑤𝑖𝑛 = 4, and 𝐼𝐿 = 3, we initially divide the
input domain ([0 15]) into 2 equal-sized sub-regions ([0, 7], and
[8, 15]) and store them in the list 𝑓 𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠 . In the first iteration
of the while loop, we select the first item from 𝑓 𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠 (i.e.,
[0, 7]) and remove it from the list. In this sub-region, the output
values 𝑓𝑠𝑢𝑏 = 𝑓 ([0, 7]) ranges from 0 to 3, hence the upper 𝐾 = 2
bits are fixed. As a result, we store this sub-region into 𝑔𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠
and 𝑓𝑠𝑢𝑏 values into 𝑓 . In the next iteration, we select the next
item from 𝑓 𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠 ([8, 15]) and remove it from the list. In this
sub-region, 𝑓𝑠𝑢𝑏 = 𝑓 ([0, 7]) = {4, 4, 4, 7, 8, 11, 12, 8}, therefore, the
upper 2 bits are not fixed. We have 2𝐾 = 4 options for the upper
bits’ format, which are ‘00’, ‘01’, ‘10’, and ‘11’. We consider all the
options separately and round the values to the nearest values whose
upper 2 bits are the same. In what follows, we illustrate the possible
options for rounding the upper bits:

(1) ’00XX’(𝑖 = 0): 𝑓𝑡𝑒𝑚𝑝 = {3, 3, 3, 3, 3, 3, 3, 3}
(2) ’01XX’(𝑖 = 1): 𝑓𝑡𝑒𝑚𝑝 = {4, 4, 4, 7, 7, 7, 7, 7}
(3) ’10XX’(𝑖 = 2): 𝑓𝑡𝑒𝑚𝑝 = {8, 8, 8, 8, 8, 11, 11, 8}
(4) ’11XX’(𝑖 = 2): 𝑓𝑡𝑒𝑚𝑝 = {12, 12, 12, 12, 12, 12, 12, 12}
Among all these options, ’01XX’ results in the best (lowest)

rounding error, which is 8.59 × 10−2. However, since the error is
not less than 𝑇𝑅𝐸 (8.59 × 10−2 > 2.5 × 10−2), and the sub-region
length has not reached the minimum allowable length 𝐿𝑚𝑖𝑛 (3 ≠ 2),
we do not apply the approximation for this sub-region. Instead,

we divide the sub-region by 2 ([8, 11] and [12, 15]) and add them
into 𝑓 𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠 . At this time, 𝑓 𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠 still has 2 elements,
and we must go through the while loop again. In the next iteration,
𝑓𝑠𝑢𝑏 = 𝑓 ([8, 11]) ranges from 4 to 7, which means the upper 2
bits are fixed. Hence, we add the input sub-region to 𝑔𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠 ,
which is a list of sub-regions that are finalized, and we add the
transformed output of this sub-region in 𝑓 . In the next iteration,
𝑓𝑠𝑢𝑏 = 𝑓 ([12, 15]) ranges from 8 to 12, which means the upper 2
bits are not fixed. We again consider all 4 possible options and pick
the best one which minimizes the rounding error. The best option
that we have is to fix the upper bits as ‘10’ which results in the
rounding error 1.56×10−2. Since the error is less than𝑇𝑅𝐸, we keep
the changes and add this sub-function into 𝑓 and 𝑔𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠 .

At this point, there is no region left in the queue (𝑓 𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠),
and we get out of the while loop. At the last stage, we store the
upper K bits and the remaining lower bits of 𝑓 into 𝑔 and 𝑈𝐵,
respectively. As a result of this algorithm, the original function
was divided into 3 different sub-functions in which the upper 2
bits are fixed, and they can be safely truncated before performing
the computations in the unary domain. Fig. 4 shows the truncated
sub-functions (bottom middle) and their corresponding upper bits
(bottom right) as well as the intermediate steps of the algorithm.

Since the original function was divided into 3 sub-regions corre-
sponding to 𝑥 ∈ [0, 7], [8, 11], and [12, 15], we need 3-to-7, 2-to-3
and 2-to-3 thermometer encoders (determined by the 𝑥 range of
sub-functions), followed by 3 fully unary cores which implement
the truncated sub-functions. These encoders, use the lower bits of
binary input to feed the unary cores. As the output of each trun-
cated sub-function ranges from 0 to 3, each core is connected to a
3-to-2 thermometer decoder separately. Next, we concatenate each
output with its corresponding eliminated upper bits. Finally, the
upper bits of the binary input are used to multiplex the correct
output result for that particular input.

“𝑼𝑩𝟏” “00”

“𝑼𝑩𝟐” “01”

“𝑼𝑩𝟑” “10”

𝒇

෠𝒇𝟏

෠𝒇𝟐

෠𝒇𝟑
𝒈𝟏

𝒈𝟐

𝒈𝟑

Figure 4: Function division and transformation of an arbi-
trary function using our proposed algorithm.

To further reduce the hardware cost, we can check the possibility
of implementing similar truncated sub-functions as one unary core.
Thus, we compare all the truncated sub-functions with the same
input lengths together. In our example, there are two regions with
the same input length which correspond to 𝑥 ∈ [8, 11], and 𝑥 ∈
[12, 15]. The similarity error between these two is equal to 0.14
which is greater than 𝑇𝑆𝐸, and hence these two regions are not
similar enough to be implemented interchangeably.

FPGA ’23, February 12–14, 2023, Monterey, CA, USA Alireza Khataei, Gaurav Singh, and Kia Bazargan

GELU gamma tanh cosh exp GELU gamma tanh cosh exp

(a) (b)

Exact
Approximate

0.0044 0.0566 0.0073 0.0029 0.0022

0.0176 0.1523 0.0457 0.0144 0.0156

0.0874 0.1145 0.0195 0.0149
AE
Max AE

Figure 5: (a) Graph, (b) absolute error (AE) and maximum absolute error (Max AE) of each function at 12-bit resolution using
conventional stochastic computing method [27] (top row), our method with Config. 1 (middle row) and Config. 2 (bottom row).

4 EVALUATION
In this section, we evaluate our proposed method in terms of hard-
ware implementation and accuracy against the conventional binary,
stochastic[27] and exact HBU[6] methods on a number of functions
listed in Table 2. FloPoCo[2] is another method that implements
non-linear functions using polynomial approximations. As part of
its architecture, it uses multipliers to perform the computations and
if we force the synthesizer to implement them using LUTs (instead
of DSP blocks), the architecture would become inefficient in terms
of area. On the other hand, this method implements the functions
more accurately compared to our method. As a result, we did not
compare our method against FloPoCo, as that would be comparing
apples to oranges.

Finally, we apply our method to the Roberts Cross edge detection
algorithm as an image processing application, and to the non-linear
functions of BERT, to examine the effects of the approximations on
a real system’s quality and performance.

Table 2: Implemented math functions

Function Name Equation

𝐺𝐸𝐿𝑈 0.5𝑥 (1 + 2√
𝜋

∫ 𝑥√
2

0 𝑒−𝑡
2
𝑑𝑡)

𝑔𝑎𝑚𝑚𝑎 𝑥0.45

𝑡𝑎𝑛ℎ (1 + 𝑡𝑎𝑛ℎ(4(2𝑥 − 1)))/2

𝑐𝑜𝑠ℎ 𝑐𝑜𝑠ℎ(𝑥) − 1

𝑒𝑥𝑝 𝑒𝑥−1

4.1 Efficiency vs Accuracy Trade-Off
By changing the parameters of the proposed algorithm, we can
generate architectures with different hardware costs and accuracy.
In practice, the amount of tolerable error varies from one applica-
tion to another. Since our method is a trade-off between hardware
costs and accuracy, we synthesize two hardware architectures per
function which are denoted as Configuration 1, and Configuration 2.
These refer to those architectures introducing less than 0.01 and
0.001 mean absolute error, respectively. However, we will show that

both configurations in our method cause on average less error com-
pared to the stochastic approach, besides requiring fewer hardware
resources.

4.2 Hardware Implementation
To evaluate our method in terms of hardware costs and accuracy, we
used Xilinx’s XC7K70TFBG676-2 FPGA and Vivado 2020.2 to imple-
ment the math functions listed in Table 2 using different methods
including the conventional binary, stochastic, exact HBU, and our
proposed method with two configurations. To generate hardware
designs, we developed a Matlab program to generate Verilog files.
It changes the parameters of the proposed algorithm in predefined
ranges to find the optimum hardware design for implementing
an arbitrary function with desired accuracy and resolution. We
implemented the functions at 8-, 12-, and 16-bit resolutions with
no DSP48 and BRAM blocks. Table 3 shows the FPGA hardware
costs and accuracy results. "Tcrit" and "Cy" denote the critical path
delay in nanoseconds and the number of clock cycles needed to
execute, respectively, and "A×L" denotes area × latency cost, which
is the multiplication of the Area, Tcrit, and Cy columns. The Error
column shows the total approximation error based on the mean
absolute error metric. Fig. 5 (a) shows the graph of each function
implemented using conventional stochastic computing and our pro-
posed methods. Fig. 5 (b) compares the accuracy and maximum
absolute error of the approximated functions implemented on the
FPGA. Except for the 𝐺𝐸𝐿𝑈 function, to be consistent with the
stochastic method, the input and output data were scaled to fit the
unit interval [0, 1], i.e., the binary input and output were interpreted
as𝑤-bit fixed-points with𝑤-bit fractions.

In the conventional binary implementations, we used fully pipe-
lined Xilinx CORDIC (v6.0) andDivider Generator (v5.1) LogiCOREs
to perform the CORDIC-based functions such as 𝑡𝑎𝑛ℎ(𝑥), 𝑐𝑜𝑠ℎ(𝑥),
𝑒𝑥 . To implement the function𝑔𝑎𝑚𝑚𝑎 in binary, we approximated it
using a Taylor polynomial of degree 5 around 𝑥 = 0.5 and converted
the polynomial’s coefficients into fixed-point formats. Finally, to im-
plement the 𝐺𝐸𝐿𝑈 activation function in binary, we approximated
the equation of Table 2 with:

𝐺𝐸𝐿𝑈 ≈ 0.5𝑥 (1 + 𝑡𝑎𝑛ℎ[
√︃

2
𝜋 (𝑥 + 0.044715𝑥

3)] (6)

and implemented it using adders and multipliers.

Approximate Hybrid Binary-Unary Computing with Applications in BERT Language Model and Image Processing FPGA ’23, February 12–14, 2023, Monterey, CA, USA

Table 3: FPGA hardware costs and accuracy results.

Func
Area

(LUT)
Tcrit (ns) Cy A×L Error

Area

(LUT)
Tcrit (ns) Cy A×L Error

Area

(LUT)
Tcrit (ns) Cy A×L Error

Conv. Binary Method with W = 8 Conv. Binary Method with W = 12 Conv. Binary Method with W = 16

𝐺𝐸𝐿𝑈 1415 16.09 21 478114.35 3.03E-03 2170 19.59 29 1232798.7 1.95E-04 3190 22.38 38 2712904 1.20E-05

𝑔𝑎𝑚𝑚𝑎 3024 24.74 1 74813.76 9.31E-03 4341 29.07 1 126192.9 6.16E-03 5299 33.14 1 175608.9 6.10E-03

𝑡𝑎𝑛ℎ 440 1.80 21 16632 - 841 1.87 29 45607.43 - 1490 1.93 38 109276.6 -

𝑐𝑜𝑠ℎ 332 1.80 11 6573.6 - 643 1.87 15 18036.15 - 1159 1.93 20 44737.4 -

𝑒𝑥𝑝 353 1.80 11 6989.4 - 668 1.87 15 18737.4 - 1197 1.93 20 46204.2 -

Avg. 1112.8 9.25 116624.62 1732.6 10.85 288274.51 2467 12.26 617746.1

Conv. Stochastic Method [27] with W = 8 Conv. Stochastic Method [27] with W = 12 Conv. Stochastic Method [27] with W = 16

𝑔𝑎𝑚𝑚𝑎 105 2.88 256 77414.4 1.13E-02 108 3.27 4096 1446543 1.00E-02 147 3.62 65536 34874327 1.07E-02

𝑡𝑎𝑛ℎ 145 3.80 256 141056 4.03E-02 180 3.88 4096 2860646 4.71E-02 236 4.1 65536 63412634 3.47E-02

𝑐𝑜𝑠ℎ 103 2.86 256 75412.48 7.88E-02 107 3.37 4096 1476977 4.45E-03 143 3.31 65536 31020155 1.70E-03

𝑒𝑥𝑝 99 3.4 256 86169.6 1.18E-02 108 3.26 4096 1442120 4.02E-03 153 4.09 65536 41010463 2.35E-03

Avg. 113 3.24 95013.12 125.75 3.45 1806572 169.75 3.78 42579395

Exact HBU Method [6] with W = 8 Exact HBU Method [6] with W = 12 Exact HBU Method [6] with W = 16

𝐺𝐸𝐿𝑈 19 1.39 1 26.41 - 337 2.47 1 832.39 -

𝑔𝑎𝑚𝑚𝑎 28 1.53 1 42.84 - 491 2.4 1 1178.4 -

𝑡𝑎𝑛ℎ 24 1.39 1 33.36 - 382 2.35 1 897.7 - [Too Long to Synthesize]

𝑐𝑜𝑠ℎ 26 1.39 1 36.14 - 430 2.43 1 1044.9 -

𝑒𝑥𝑝 28 1.29 1 36.12 - 464 2.44 1 1132.16 -

Avg. 25 1.4 34.97 420.8 2.42 1017.11

Our Method with W = 8 (Config. 1) Our Method with W = 12 (Config. 1) Our Method with W = 16 (Config. 1)

𝐺𝐸𝐿𝑈 3 0.95 1 2.85 4.96E-03 11 1.04 1 11.44 2.76E-03 13 1.35 1 17.55 2.12E-03

𝑔𝑎𝑚𝑚𝑎 3 0.96 1 2.88 5.95E-03 7 1.14 1 7.98 6.64E-03 9 1.33 1 11.97 7.35E-03

𝑡𝑎𝑛ℎ 4 1.29 1 5.16 9.32E-03 4 1.05 1 4.2 9.10E-03 13 1.55 1 20.15 7.79E-03

𝑐𝑜𝑠ℎ 3 0.95 1 2.85 9.99E-03 6 1.05 1 6.3 4.34E-03 14 1.37 1 19.18 7.38E-03

𝑒𝑥𝑝 4 0.95 1 3.8 7.07E-03 9 1.14 1 10.26 4.60E-03 12 1.67 1 20.04 4.92E-03

Avg. 3.4 1.02 3.51 7.4 1.08 8.04 12.2 1.45 17.78

Our Method with W = 8 (Config. 2) Our Method with W = 12 (Config. 2) Our Method with W = 16 (Config. 2)

𝐺𝐸𝐿𝑈 13 1.22 1 15.86 7.17E-04 29 1.53 1 44.37 6.78E-04 46 1.41 1 64.86 5.23E-04

𝑔𝑎𝑚𝑚𝑎 17 1.23 1 20.91 8.39E-04 38 1.25 1 47.5 7.45E-04 50 1.25 1 62.5 9.05E-04

𝑡𝑎𝑛ℎ 16 1.23 1 19.68 9.77E-04 39 1.38 1 53.82 9.93E-04 42 1.4 1 58.8 9.88E-04

𝑐𝑜𝑠ℎ 14 1.22 1 17.08 5.19E-04 36 1.54 1 55.44 6.67E-04 36 1.54 1 55.44 7.23E-04

𝑒𝑥𝑝 14 1.22 1 17.08 5.80E-04 35 1.54 1 53.9 6.48E-04 55 1.53 1 84.15 5.96E-04

Avg. 14.8 1.22 18.12 35.4 1.45 51 45.8 1.43 65.15

As a result of using these approximations and fixed-point rep-
resentation, the functions 𝑔𝑎𝑚𝑚𝑎 and 𝐺𝐸𝐿𝑈 introduce errors in
our binary implementations. However, we could have further re-
duced those errors, but at the expense of increasing hardware costs.
As the experimental results show, the area × latency cost of our
method with Config. 1 is on average 3 × 10−5, 2.79 × 10−5, and
2.87 × 10−5 times the conventional binary method at 8-, 12-, and
16-bit resolutions. For the functions implemented with Config. 2,
which preserves more accuracy than Config. 1, these ratios change
to 1.55 × 10−4, 1.77 × 10−4, and 1.05 × 10−4, respectively.

For the stochastic computing method, we used the SCSynth
tool[9] to generate Verilog files describing the stochastic computing

architectures. We did not implement the 𝐺𝐸𝐿𝑈 activation function
using the stochastic method since it does not satisfy a necessary
condition of the Bernstein polynomial approximation, i.e., for some
𝑥 ∈ (0, 1), 𝑓 (𝑥) = 0 [29]. On average, the area × latency cost of our
method with Config. 1 is 3.69 × 10−5, 4.45 × 10−6, and 4.18 × 10−7
times the conventional stochastic computing method at 8-, 12-, and
16-bit resolutions, respectively. For Config. 2, the average area ×
latency cost turns into 1.91 × 10−4, 2.82 × 10−5, and 1.53 × 10−6
times the conventional stochastic computing method at 8-, 12-, and
16-bit resolutions, respectively. Besides these improvements, both
configurations of our method cause less error than the stochastic
computing approach, on average.

FPGA ’23, February 12–14, 2023, Monterey, CA, USA Alireza Khataei, Gaurav Singh, and Kia Bazargan

Area (LUT) Critical Path Delay Area x Latency

Log of Mean Mean Log of Mean

Conv. Binary Conv. Stochastic Exact HBU

Our Method (Config. 1) Our Method (Config. 2)

Figure 6: Comparison of hardware costs results. The scales
of area and area × latency values are logarithmic.

For the exact HBU implementation, the exact HBU method took
a long time and failed to synthesize the functions at 16-bit resolu-
tion in a reasonable amount of time due to the massive number of
sub-functions and complex unary cores generated by this method.
Therefore, we just presented the results at 8- and 12-bit resolutions.
On average, the area × latency cost of our method with Config. 1 is
10.04% and 0.79% of the exact HBU method at 8- and 12-bit resolu-
tions, respectively. Using Config. 2, the cost of our method becomes
51.81% and 5.01% of the exact HBU at 8- and 12-bit resolutions,
respectively.

Fig. 6 compares the hardware costs of implementing the func-
tions using our method against the conventional binary, stochastic,
and exact HBU (the scales of Area and Area × Latency values are
logarithmic). The comparison shows that our method outperforms
the other methods in terms of hardware cost. As we can see, the
gap between the hardware cost of our method and other methods
widens at higher resolutions.

4.3 Application: BERT Language Model
Transformer networkwas proposed in [31] as a deep learningmodel
and an alternative to convolutional and recurrent neural networks.
It uses the self-attentionmechanism to process the sequential inputs
in many natural language processing (NLP) tasks [11, 12]. Since
Transformer can be relatively easily parallelized, using it in NLP
tasks allows for fast training even when high-accuracy results are
sought [31]. Transformer-based languagemodels like BERT [3] have
delivered high-quality results for various NLP downstream tasks,
and RoBERTa [18] extended the work done in BERT and achieved
state-of-the-art results in various benchmarks like GLUE [34].

While these models used floating-point, later works have quan-
tized transformer based networks. I-BERT [16] specifically quan-
tized RoBERTa while using purely integer operations. Their work
removed the need to convert the output from 8-bit integer (INT8)
based matrix multiplication into floating-point to apply non-linear
operations like Softmax and GELU. Hence, they achieved an end-
to-end integer based model. Their work used a polynomial approx-
imation on the exponential function (for the Softmax) and the erf
function (in GELU). The primary limitations of their work were in
using 32-bit based INT division and multiplication operations in

addition to a larger error rate in GELU relative to the bit-length of
their operation. I-BERT also needs to store a significant number of
scaling factors and coefficients to perform non-linear operations.

In this part, we employ our proposed method to implement
non-linear functions very efficiently, hence providing better oppor-
tunities for higher levels of parallelism given the same area budget
as existing implementations in vector processing. The end result
would be an increase in overall system performance. Fig. 7 shows
the overall architecture of a BERT encoder. Our innovation is to
break non-linear functions into smaller sub-functions and use our
method only for the highly non-linear parts of these functions at
lower resolutions to reduce the hardware cost and accelerate the
computations.

MM Add

Softmax

LayerNorm

GELU

In
pu

t

O
ut
pu

t

Figure 7: The architecture for the BERT Implementation.

Softmax is an activation function that transforms an input vector
of N elements into a vector of size N representing a probability
distribution. This function can be defined as:

𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑋)𝑖 =
𝑒𝑥𝑖∑𝑁
𝑗=1 𝑒

𝑥 𝑗
(7)

where 𝑋 = [𝑥1, 𝑥2, ..., 𝑥𝑁] ∈ R𝑁 , and 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑋)𝑖 is the 𝑖𝑡ℎ el-
ement in the softmax vector. Implementing a Softmax layer in
hardware is a challenging task due to the complexity of exponential
units. Besides the large number of hardware resources that are re-
quired to perform the exponential operations, overflow is another
issue that must be considered. To tackle the overflow challenge, a
down-scaling technique was proposed in [14], in which the Softmax
function is re-defined as:

𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑋)𝑖 =
𝑒𝑥𝑖∑𝑁
𝑗=1 𝑒

𝑥 𝑗
=

𝑒𝑥𝑖∑𝑁
𝑗=1 𝑒

𝑥 𝑗
× 𝑒
−𝑚

𝑒−𝑚
=

𝑒𝑥𝑖−𝑚∑𝑁
𝑗=1 𝑒

𝑥 𝑗−𝑚
(8)

where𝑚 =𝑚𝑎𝑥 ([𝑥1, 𝑥2, ..., 𝑥𝑁]). This approach limits the outputs
of the exponential units to the range of [0, 1].

Fig. 8 shows our proposed architecture for the Softmax layer.
We keep the input values of a Softmax layer as Fixed<1,32,12>,
and for the outliers that cannot fit in this format, we can clip the
number such that it remains in the allowable range. Fixed<1,32,12>
represents signed fixed-point numbers with 1 bit set aside for "sign",
a total of 32 bits, out of which 12 bits are for the fractional part of
the number, and the rest of the 19 bits for the integer part. Next, we
subtract the maximum input value from the input vector to prevent
the exponential operations from overflowing. If x < -8, the expo-
nential function can be approximated with zero. On the other hand,
∀𝑥 ∈ [−8, 0] : 𝑒𝑥𝑝 (𝑥) ∈ (0, 1], that means we can keep the input
and output value of the exponential units as Fixed<1,16,12> and
Fixed<0,16,15>, respectively. As a result, we can use our method at
a 16-bit resolution to calculate exponential computations efficiently.

Approximate Hybrid Binary-Unary Computing with Applications in BERT Language Model and Image Processing FPGA ’23, February 12–14, 2023, Monterey, CA, USA

In(1)

max

-

In(N) -

Comparator
x < -8

Comparator
x < -8

Approx. HBU
Accelerator

Approx. HBU
Accelerator

Output

Divider0

0

+. .
 . … … …

Figure 8: The proposed architecture for the Softmax layer.

Afterward, we use a 32-bit binary accumulator to add up all the
exponential values from the HBU units. Finally, we use a binary
divider to normalize the final output.

GELU (Gaussian Error Linear Unit) is another neural network
activation function [13] that can be used in Transformers. Due to
the non-monotonicity of this activation, GELUs can enable a neural
network to model more complicated problems.

We keep the input of a GELU layer as Fixed<1,32,8>. In our
method, we split the function into three separate sub-functions,
two of which are linearly approximated with RELU. We define
“Trimmed GELU” as follows.

𝑇𝐺𝐸𝐿𝑈 (𝑥) =


0 𝑥 < −8
𝑥 𝑥 ⩾ +8

𝐺𝐸𝐿𝑈 (𝑥) 𝑂.𝑊 .

(9)

This function near zero (𝑥 ∈ [−8, 8)), however, has a complex be-
havior that must be implemented with high precision in Transform-
ers, otherwise, it results in a significant accuracy degradation [16].
Since ∀𝑥 ∈ [−8, 8) : 𝐺𝐸𝐿𝑈 (𝑥) ∈ (−1, 8), the input and output of
the function in this region can be represented as Fixed<1,16,12>,
because only 3 bits are needed to represent the integer part with a
maximum magnitude of 8, and 12 fractional bits are enough for the
accuracy we need. We deploy our method to perform the compu-
tation of this part. Fig. 9 shows our proposed architecture for the
TGELU layer.

Input

Comparators
Approx.

HBU
Accelerator

Output

x
<

-8

x
≥

8

MUX
0 0

Lower 16
Bits

Figure 9: The proposed architecture for the GELU layer.

The accuracy evaluation was carried out on several GLUE de-
velopment sets [34], each of which relates to a specific NLP task.
We modified the GELU and Softmax layers in the Python imple-
mentation of I-BERT using the RoBERTa-based model [18] and the
Fairseq toolkit [24]. The Python implementation is faithful to the
number representation (floating-point for RoBERTa, fixed-point for
the rest with the bit widths listed before), and the approximation
method used. Table 4 reports the accuracy results.

Table 4: Accuracy comparison of BERT models.

Method MRPC CoLA RTE QNLI

RoBERTa [18] 89 84.4 79.4 92.7

I-BERT [16] 90 82.6 77.6 92.5

Exact HBU [6] 89.7 82.8 76.9 92.5

Our method (Config. 1) 87.5 80.2 67.5 86.7

Our method (Config. 2) 89 82.8 78.7 92.8

For evaluating our proposed architectures in terms of hardware
resource utilization, we implemented an encoder block of BERT on a
Xilinx XC7K70TFBG676-2 FPGAusing Vitis-HLS 2020.2 (Fig. 7). Due
to the design of BERT, one encoder block is architecturally similar
to other encoder blocks, hence an accelerator for one block can be
used for all the remaining blocks. Therefore, the accelerator design
in Fig. 7 can support all operations in an encoder block by doing
multiple passes through it. For example, we can break a matrix-
multiplication of size 3072 into 24 passes through an accelerator
which uses matrix-multiply and accumulate on a vector length of
128.

Tables 5 and 6 report the hardware cost using the different meth-
ods. To put our hardware implementation of Softmax and GELU
in the context of a transformer encoder block accelerator, we used
hls4ml [4, 32] to implement a Matrix-Multiplication and Addition
(MMA) block. The MMA block is implemented using the conven-
tional binary method, where inputs and weights are 8-bit integers,
while the accumulation and bias are 32-bit. We picked a vector
size of 128, with a reuse factor of 64 to fit our FPGA device target.
GELU block also works on a vector size of 128, while Softmax is
limited to a vector size of 80. This is because the BERT encoder
design only requires Softmax of vector length 80. LayerNorm was
not implemented currently, due to a lack of support for the layer
in hls4ml. Even though this is not a complete implementation, it
is still valuable, as it shows the context in which we can evaluate
potential hardware benefits of our approach: it shows the relative
hardware sizes and the latency of the MMA, GELU, and Softmax
blocks.

With these blocks, we can compose five flavors of BERT: each
flavor would use the specific method listed in Table 5 for Softmax
and GELU layers, but all five use the same MMA block. We can
see that I-BERT implementations can explode in FF and LUT us-
age specifically due to the INT32-based computation that includes
division. In IBERT, the exponential function is approximated by
factoring the input and then applying a polynomial approximation.
Our implementation bypasses both the factoring and polynomial
approximation, by directly approximating the original function in
fixed-point. While this reduces the bit-length representation, our
model with approximated GELU and Softmax has comparable ac-
curacy to IBERT in GLUE benchmarks (Table 4). The number of
cycles used by the MMA layer is 67, which makes it the bottleneck
in the exact HBU, Config. 1 and Config. 2 (those only need between
3 and 9 cycles to calculate Softmax and GELU). However, in the
I-BERT implementation, GELU becomes the bottleneck with 111
cycles, and in RoBERTa, Softmax is the bottleneck with 543 cycles.

FPGA ’23, February 12–14, 2023, Monterey, CA, USA Alireza Khataei, Gaurav Singh, and Kia Bazargan

Table 5: FPGA hardware costs of the Softmax, GELU, and
MMA layers.

Method LUT FF DSP BRAM Cycles

Softmax Layer (vector size 80)

RoBERTa [18] 129061 74581 949 0 543

I-BERT [16] 492324 610550 0 0 80

Exact HBU [6] 14596 6715 0 0 9

Our method (Config. 1) 6743 1884 0 0 3

Our method (Config. 2) 7623 1964 0 0 3

GELU Layer (vector size 128)

RoBERTa [18] 696967 578696 3200 960 101

I-BERT [16] 13555 4512 0 0 111

Exact HBU [6] 11448 4569 0 0 4

Our method (Config. 1) 6369 4758 0 0 4

Our method (Config. 2) 7908 4758 0 0 4

MMA Layer (vector size 128)

hls4ml [4, 32] (reuse factor 64) 33944 11830 128 171 65

hls4ml [4, 32] (reuse factor 4) 340425 13104 2048 1025 6

Table 6: Latency matched hardware combination.

Method LUT FF DSP BRAM Cycles

I-BERT [16] (Design 1) 539823 626892 128 171 256

I-BERT [16] (Design 2) 846304 628166 2048 1025 111

Exact HBU [6] 366469 24388 2048 1025 9

Our method (Config. 1) 353537 19746 2048 1025 6

Our method (Config. 2) 355956 19826 2048 1025 6

4.4 Application: Roberts Cross Edge Detection
As a real image processing and computer vision application, we
deployed our method to implement an 8-bit Roberts Cross edge
detection algorithm, which performs square and square root func-
tions as integral parts of the algorithm. Again, we synthesized two
hardware designs with different mean absolute error ranges to
evaluate the effect of approximation on such a system-level im-
plementation. We also compared the system quality and cost of
hardware generated by conventional binary, stochastic, exact HBU,
and our proposed methods. For binary implementation, we used
a fully pipelined Xilinx CORDIC (v6.0) LogiCORE to perform the
square root function. Fig. 10 shows the output images using differ-
ent methods. Table 7 provides the comparison of these methods in
terms of hardware costs as well as the peak signal-to-noise ratio
(PSNR) as an image quality metric. The reference output image was
generated by Matlab using floating-point double precision.

As the results show, the hardware cost of the first configuration
of our method (Config. 1) in terms of area × latency is 40.183%,
0.907%, and 0.015% of the exact HBU, conventional binary, and
stochastic methods, respectively. Using the second configuration
(Config. 2), the area × latency cost of our method becomes 78.504%,
1.77%, and 0.029% of the exact HBU, conventional binary, and sto-
chastic methods, respectively. Concerning image quality, the second

configuration of our method has higher PSNR than the stochastic
approach, which translates to higher quality. The quality of this
implementation is also close to the results of the exact methods.
The first configuration, however, has a slightly lower PSNR than the
stochastic method, although the area × latency of this configuration
is 4 orders of magnitude better.

Table 7: FPGA hardware costs and image quality results of
the Roberts Cross edge detection algorithm.

Method
Area

(LUT)
Tcrit (ns) Cy A×L PSNR

Conventional Binary 209 6.72 8 11235.84 30.80

Conventional Stochastic [27] 303 4.49 512 696560.64 28.18

Exact HBU [6] 107 2.37 1 253.59 30.80

Our Method (Config. 1) 43 2.37 1 101.91 26.77

Our Method (Config. 2) 84 2.37 1 199.08 30.70

Original Image Reference Output Conv. Binary and HBU

Stochastic Computing Our Method (Config. 1) Our Method (Config. 2)

Figure 10: Roberts Cross edge detection algorithm’s results.

5 CONCLUSIONS
We proposed a novel approach to implement almost all types of
univariate math functions using ultra-low-cost hardware and yet
preserving high accuracy. Based on the hardware implementations
of some complex functions at 8- to 16-bit resolutions, we showed
that our method outperforms the conventional binary, previous sto-
chastic computing, and exact hybrid binary-unarymethods in terms
of hardware area, critical path delay, and latency. As for accuracy,
our method on average introduces less error than conventional
stochastic computing as an approximate approach. Moreover, our
method can efficiently implement math functions at higher resolu-
tions than the exact hybrid binary-unary work. By deploying our
method to the non-linear operations in the encoders of the BERT
language model and Roberts Cross edge detection algorithm, we
also showed that our method results in much better area × latency
than the other methods while achieving high-quality outputs.

ACKNOWLEDGEMENT
This material is based upon work supported in part by the National
Science Foundation under grant number PFI-TT 2016390, and by
Cisco Systems, Inc. under grant number 1044678.

Approximate Hybrid Binary-Unary Computing with Applications in BERT Language Model and Image Processing FPGA ’23, February 12–14, 2023, Monterey, CA, USA

REFERENCES
[1] A. Alaghi, W. Qian, and J. P. Hayes. 2017. The Promise and Challenge of Stochastic

Computing. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems PP, 99 (2017), 1–1.

[2] Florent De Dinechin and Bogdan Pasca. 2011. Designing custom arithmetic data
paths with FloPoCo. IEEE Design & Test of Computers 28, 4 (2011), 18–27.

[3] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[4] J. Duarte, S. Han, P. Harris, S. Jindariani, E. Kreinar, B. Kreis, J. Ngadiuba, M.
Pierini, R. Rivera, N. Tran, and Z. Wu. 2018. Fast inference of deep neural
networks in FPGAs for particle physics. Journal of Instrumentation 13, 07 (jul
2018), P07027–P07027. https://doi.org/10.1088/1748-0221/13/07/p07027

[5] S. Rasoul. Faraji, Pierre Abillama, Gaurav Singh, and Kia Bazargan. 2020. HBUC-
NNA: Hybrid Binary-Unary Convolutional Neural Network Accelerator. In
2020 IEEE International Symposium on Circuits and Systems (ISCAS). https:
//doi.org/ISCAS.2020

[6] S Rasoul Faraji and Kia Bazargan. 2020. Hybrid binary-unary hardware accelera-
tor. IEEE Trans. Comput. 69, 9 (2020), 1308–1319.

[7] S Rasoul Faraji and Kia Bazargan. 2020. Hybrid binary-unary truncated multipli-
cation for DSP Applications on FPGAs. In 2020 IEEE/ACM International Conference
On Computer Aided Design (ICCAD). IEEE, 1–9.

[8] S. Rasoul Faraji, Gaurav Singh, and Kia Bazargan. 2019. HBUNN - Hybrid Binary-
Unary Neural Network: Realizing a Complete CNN on an FPGA. In IEEE Interna-
tional Conference on Computer Design (ICCD) (ICCD ’19).

[9] N. Eamon Gaffney and Armin Alaghi. 2016. scsynth. https://github.com/
arminalaghi/scsynth

[10] B.R. Gaines. 1969. Stochastic Computing Systems. In Advances in Information
Systems Science. Springer US, 37–172. http://dx.doi.org/10.1007/978-1-4899-5841-
9_2

[11] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin.
2017. Convolutional sequence to sequence learning. In International conference
on machine learning. PMLR, 1243–1252.

[12] Alex Graves. 2012. Sequence transduction with recurrent neural networks. arXiv
preprint arXiv:1211.3711 (2012).

[13] Dan Hendrycks and Kevin Gimpel. 2016. Gaussian error linear units (gelus).
arXiv preprint arXiv:1606.08415 (2016).

[14] Ruofei Hu, Binren Tian, Shouyi Yin, and Shaojun Wei. 2018. Efficient hard-
ware architecture of softmax layer in deep neural network. In 2018 IEEE 23rd
International Conference on Digital Signal Processing (DSP). IEEE, 1–5.

[15] Devon Jenson and Marc Riedel. 2016. A Deterministic Approach to Stochastic
Computation. In Proceedings of the 35th International Conference on Computer-
Aided Design (Austin, Texas) (ICCAD ’16). New York, NY, USA, Article 102, 8 pages.
https://doi.org/10.1145/2966986.2966988

[16] Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer.
2021. I-bert: Integer-only bert quantization. In International conference on machine
learning. PMLR, 5506–5518.

[17] Peng Li, D.J. Lilja, W. Qian, M.D. Riedel, and K. Bazargan. 2014. Logical Computa-
tion on Stochastic Bit Streams with Linear Finite-State Machines. Computers, IEEE
Transactions on 63, 6 (June 2014), 1474–1486. https://doi.org/10.1109/TC.2012.231

[18] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A
robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692
(2019).

[19] Soheil Mohajer, Zhiheng Wang, and Kia Bazargan. 2018. Routing Magic: Per-
forming Computations Using Routing Networks and Voting Logic on Unary
Encoded Data. In Proceedings of the 2018 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays (Monterey, CALIFORNIA, USA) (FPGA ’18).
ACM, New York, NY, USA, 77–86.

[20] Soheil Mohajer, ZhihengWang, Kia Bazargan, and Yuyang Li. 2020. Parallel unary
computing based on function derivatives. ACM Transactions on Reconfigurable
Technology and Systems (TRETS) 14, 1 (2020), 1–25.

[21] M. H. Najafi, S. R. Faraji, B. Li, D. J. Lilja, and K. Bazargan. 2019. Acceler-
ating Deterministic Bit-Stream Computing with Resolution Splitting. In 20th
International Symposium on Quality Electronic Design (ISQED). 157–162. https:
//doi.org/10.1109/ISQED.2019.8697443

[22] M. Hassan Najafi, David J. Lilja, and Marc Riedel. 2018. Deterministic Methods
for Stochastic Computing Using Low-discrepancy Sequences. In Proceedings of
the International Conference on Computer-Aided Design (San Diego, California)
(ICCAD ’18). ACM, New York, NY, USA, Article 51, 8 pages. https://doi.org/10.
1145/3240765.3240797

[23] M. Hassan Najafi, D. J. Lilja, M. D. Riedel, and K. Bazargan. 2018. Low-Cost
Sorting Network Circuits Using Unary Processing. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems 26, 8 (Aug 2018), 1471–1480.

[24] Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng,
David Grangier, and Michael Auli. 2019. fairseq: A fast, extensible toolkit for
sequence modeling. arXiv preprint arXiv:1904.01038 (2019).

[25] W.J. Poppelbaum, A. Dollas, J.B. Glickman, and C. O’Toole. 1987. Unary Process-
ing. In Advances in Computers. Vol. 26. Elsevier, 47 – 92.

[26] W. J. Poppelbaum, C. Afuso, and J. W. Esch. 1967. Stochastic Computing El-
ements and Systems. In Proceedings of the Joint Computer Conference (Ana-
heim, California) (AFIPS ’67 (Fall)). ACM, New York, NY, USA, 635–644. https:
//doi.org/10.1145/1465611.1465696

[27] Weikang Qian, Xin Li, Marc D. Riedel, Kia Bazargan, and David J. Lilja. 2011. An
Architecture for Fault-Tolerant Computation with Stochastic Logic. IEEE Trans.
Comput. 60, 1 (2011), 93–105. https://doi.org/10.1109/TC.2010.202

[28] W. Qian and M.D. Riedel. 2008. The Synthesis of Robust Polynomial Arithmetic
with Stochastic Logic. In 45th ACM/IEEE Design Automation Conference, DAC’08.
648–653.

[29] Weikang Qian, Marc D. Riedel, and Ivo Rosenberg. 2011. Uniform Approximation
and Bernstein Polynomials with Coefficients in the Unit Interval. Eur. J. Comb.
32, 3 (April 2011), 448–463. https://doi.org/10.1016/j.ejc.2010.11.004

[30] Sayed Ahmad Salehi, Yin Liu, Marc D. Riedel, and Keshab K. Parhi. 2017. Com-
puting Polynomials with Positive Coefficients Using Stochastic Logic by Double-
NAND Expansion. In Proceedings of the on Great Lakes Symposium on VLSI 2017
(Banff, Alberta, Canada) (GLSVLSI ’17). ACM, New York, NY, USA, 471–474.
https://doi.org/10.1145/3060403.3060410

[31] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[32] vloncar, Sioni Summers, Javier Duarte, Nhan Tran, Ben Kreis, jngadiub,
Nicolò Ghielmetti, Duc Hoang, EJ Kreinar, Kelvin Lin, Maksymilian Graczyk,
Adrian Alan Pol, ngpaladi, Dejan Golubovic, Yutaro Iiyama, Zhenbin Wu, Delon,
Paolo Cretaro, veyron8800, Anders Wind, David, GDG, Jovan Mitrevski, Kon-
stantin Vinogradov, Konstantin Vinogradov, Petr Zejdl, Sarun Nuntaviriyakul,
Thea Aarrestad, and drankincms. 2021. fastmachinelearning/hls4ml: coris. https:
//doi.org/10.5281/zenodo.5680908

[33] John Von Neumann. 1956. Probabilistic logics and the synthesis of reliable
organisms from unreliable components. Automata studies 34, 34 (1956), 43–98.

[34] AlexWang, Amanpreet Singh, JulianMichael, Felix Hill, Omer Levy, and Samuel R
Bowman. 2018. GLUE: A multi-task benchmark and analysis platform for natural
language understanding. arXiv preprint arXiv:1804.07461 (2018).

[35] Zhiheng Wang, Naman Saraf, Kia Bazargan, and Arnd Scheel. 2015. Randomness
Meets Feedback: Stochastic Implementation of Logistic Map Dynamical System.
In Proceedings of the 52Nd Annual Design Automation Conference (San Francisco,
California) (DAC ’15). ACM, New York, NY, USA, Article 132, 7 pages. https:
//doi.org/10.1145/2744769.2744898

https://doi.org/10.1088/1748-0221/13/07/p07027
https://doi.org/ISCAS.2020
https://doi.org/ISCAS.2020
https://github.com/arminalaghi/scsynth
https://github.com/arminalaghi/scsynth
http://dx.doi.org/10.1007/978-1-4899-5841-9_2
http://dx.doi.org/10.1007/978-1-4899-5841-9_2
https://doi.org/10.1145/2966986.2966988
https://doi.org/10.1109/TC.2012.231
https://doi.org/10.1109/ISQED.2019.8697443
https://doi.org/10.1109/ISQED.2019.8697443
https://doi.org/10.1145/3240765.3240797
https://doi.org/10.1145/3240765.3240797
https://doi.org/10.1145/1465611.1465696
https://doi.org/10.1145/1465611.1465696
https://doi.org/10.1109/TC.2010.202
https://doi.org/10.1016/j.ejc.2010.11.004
https://doi.org/10.1145/3060403.3060410
https://doi.org/10.5281/zenodo.5680908
https://doi.org/10.5281/zenodo.5680908
https://doi.org/10.1145/2744769.2744898
https://doi.org/10.1145/2744769.2744898

	Abstract
	1 Introduction
	2 Background
	2.1 Alternatives to Binary
	2.2 Unary Number Representation
	2.3 Fully Unary Computing MohajerRouting2018, mohajer2020parallel
	2.4 Exact HBU Computing faraji2020hybridTC

	3 Proposed Work
	3.1 Overview
	3.2 Function Division and Transformation
	3.3 Self-Similarity Measurement
	3.4 Guiding Example

	4 Evaluation
	4.1 Efficiency vs Accuracy Trade-Off
	4.2 Hardware Implementation
	4.3 Application: BERT Language Model
	4.4 Application: Roberts Cross Edge Detection

	5 Conclusions
	References

