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Abstract – In this paper we present multi-objective hMetis 
partitioning for simultaneous cutsize and circuit delay 
minimization. We change the partitioning process itself by 
introducing a new objective function that incorporates a truly 
path-based delay component for the most critical paths. To avoid 
semi-critical paths from becoming critical, the traditional slack-
based delay component is also included in the cost function. The 
proposed timing driven partitioning algorithm is built on top of 
the hMetis algorithm, which is very efficient. Simulations results 
show that 14% average delay improvement can be obtained. 
Smooth trade-off between cutsize and delay is possible in our 
algorithm.  

1. Introduction 
The increase in circuit complexities and the high demand for 

short time-to-market products force designers to adopt divide-
and-conquer design methodologies. Furthermore, ever-growing 
performance expectations require designers to perform 
optimization at all levels of the design cycle. Significant 
contribution of interconnect to the area and delay of today’s and 
future chips, combined with the fact that partitioning has a great 
impact on the interconnect distribution, makes partitioning a 
very important early step during physical design. It is imperative 
to account for timing during the partitioning process to allow for 
early wire planning. 

In this paper we present multi-objective hMetis [4] 
partitioning for cutsize and circuit delay minimization. Our 
timing-driven optimization approach is different from previous 
work: we modify the objective function of the hMetis 
partitioning algorithm to minimize cutsize as well as circuit 
delay without performing any netlist alterations (e.g., buffer 
insertion and gate duplication), though our method can be easily 
modified to incorporate these techniques as well. 

The remainder of the paper is organized as follows. Section 2 
presents previous work on timing-driven partitioning. Section 3 
presents the multi-objective partitioning methodology. In 
Section 4, we study the algorithm to find the K most critical 
paths during partitioning. Simulation results are presented in 
Section 5. We conclude, outlining our main contribution in 
Section 6. 

2. Previous Work 
In the past decade, there have been some works on timing-driven 
partitioning (e.g., [1], [2], [5], [6]). Most previous approaches 
achieve delay minimization by altering the netlist using logic 
replication, retiming, and buffer insertion in order to meet delay 

constraints while minimizing the cutsize. Gate replication in 
these methods can be massive. 

The way timing optimization is handled in timing-driven 
partitioning approaches, can be classified into two categories: (1) 
path-based timing minimization approaches and (2) net-based 
timing minimization approaches. Most of the previous works fall 
into the second category.  

The net-based partitioning approaches define some criticality 
value (e.g. slack) for each net, as a measure that indicates the 
degree of its contribution to the circuit delay. The partitioning 
process is discouraged from cutting edges with high criticality 
values, which is similar to minimizing the bounding box for each 
critical net. The drawback of the net-based techniques is that 
nets that lie on the same critical path are treated in the same way 
as when they are on different critical paths. Figure 1 shows an 
example of a situation in which net-based techniques fail to 
consider the whole path in the partitioning process. It is clear 
that the partitioning in Figure 1-a will result in a larger circuit 
delay than the one in Figure 1-b because all three cut nets belong 
to the same critical path. 
 

a) b) 
 

Figure 1 Example of a situation where net-based partitioning 
approaches fail to diffrentiate between partitionings with the same 

cutsize but different delays 

We can identify a few problems for all previous timing driven 
partitioning approaches: (1) Unrealistic delay models are used. It 
is common to use the general-delay model, which considers 
delay 1 for all gates, delay 0 for interconnects inside a partition, 
and a constant delay for interconnects between partitions [1], [5], 
[6]. (2) Unrealistic simplifications are made. For instance, 
circuits are mapped to two-input gates only [1]. (3) The run 
times for even moderate-sized circuits are too long.  

In this paper, we try to eliminate the above deficiencies. We 
modify the objective function of the hMetis partitioning 
algorithm to minimize the cutsize as well as the circuit delay. 
We dynamically focus the timing optimization engine on the K 
most critical paths and use timing criticality to characterize each 
net that lies on the critical paths. We use the Elmore delay, along 



with different wire delays at different levels of partitioning to 
achieve a more realistic delay model. Our interconnect delay 
model incorporates a statistical net-length estimation [11]. All 
these make our timing-driven partitioning algorithm fast and 
more reliable. Moreover, we do not modify the netlist, which 
results in no increase in the gate area of the circuit. 

3. Multi Objective hMetis Partitioning: Cutsize and 
Delay Minimization 

While the goal of classic partitioning algorithms is to 
minimize cutsize – and hMetis performs this task very efficiently 
[4] – the multi-objective graph partitioning problem is much 
more difficult. One of the main difficulties in performing multi-
objective optimization is that no single optimal solution exists. 
Instead, an optimal solution exists for each objective in the 
solution space. Furthermore, an optimal solution for one 
objective may require accepting a poor solution for another one. 
The result is that the definition of a good solution becomes 
ambiguous. We will adopt the formulation of a good solution as 
it appears in [7]: 
• Allow fine-tuned control of the tradeoffs of the objectives. 
• Generate predictable partitionings. 
• Provide a way to handle objectives that correspond to 

quantities that are of different natures (e.g., range, variance, 
sensitivity to changes in partitioning). 

In our case we want a partitioning algorithm that can minimize 
objective C, the number of wires cut (hence minimizing 
congestion at placement) and objective D, the number of times 
most critical paths are cut (minimizing circuit delay). However, 
the two objectives are dissimilar objectives, which means that 
optimizing C alone does not necessarily imply that D is also 
optimized and vice-versa. That is why we adopt a combination-
based formulation for multi-objective optimization: if C0 is the 
optimal solution with respect to the first objective C and D0 is 
the optimal solution with respect to the first objective D, then the 
combined objective will be a scalar combined metric Cc given by 
the following equation: 
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Where (p1, p2) is the preference vector. Minimizing equation 1 
attempts to compute a partitioning such that it is not far away 
from any of the optimal with respect to any initial objective. A 
preference vector of (1,3) for example, indicates that we need to 
move at least three units closer to the optimal partitioning with 
respect to the delay objective for each unit that we move away 
from the optimal partitioning with respect to the cutsize 
objective. The preference vector can be used to traverse the 
distance between the optimal solution points of each objective. 
That results in predictable partitioning based on the preference 
vector as well as fine-tuned control of the tradeoff between the 
two objectives. 

The delay objective component is expressed as a combination 
of three factors that directly influence the delay of a circuit: the 
delay of the critical paths, the number of times that each critical 

path has been cut, and the edge weight of all edges that lie on the 
critical paths. 
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Where α and β are weighting parameters; ωi is the edge weight 
of edge i (derived from the edge slack); ei is either 0 or 1 
depending on whether edge i is cut or not; |EK| is the number of 
edges that form the K paths; Dj is the current delay of the j-th 
critical path; kj is the number of times that the j-th critical path 
has been cut so far; and γ is used for even finer tuning. 

Equation 2 combines the advantages of the path-based 
method, which captures global delay information, and the 
advantage of the edge-based method, that can capture timing 
criticality of semi-critical paths without enumerating them. 
Parameters α and β allow us to put more emphasis on any of the 
two net-based and path-based components in Equation 2. 

4. Path-based Timing Driven Partitioning: 
Choosing the K-most Critical Paths 

Since there are exponential number of paths in a circuit, a 
path-based timing-driven method has to focus only on a limited, 
K-most critical paths. We considered two strategies: (1) 
partitioning without updating of the K-most critical paths during 
recursive bi-section, or (2) updating the list of the K-most critical 
paths during recursion. In the first case we initially find the K-
most critical paths and then perform all subsequent recursive 
bipartioning stages trying to avoid the critical paths from being 
cut. The second case is motivated by the fact that the initial K-
most critical paths may not remain critical after the partitioning 
or placement and routing is done [12]. In this case we re-
calculate the K-most critical paths at each partitioning level and 
update the edge weights as well as path delays. In this way we 
can see at any partitioning level what are the current K-most 
critical paths and assign edge weights accordingly. 

Another important problem to be addressed is how to choose 
the value of K. On one hand, if we choose a too small K we will 
end up with no-timing improvement. That is because these K 
paths will quickly become non-critical and other previously non-
critical paths will become critical. By focusing only on a small 
initial number of paths the optimization is diverted from the goal 
of timing improvement during the partitioning. On the other 
hand, if we choose too large a K, the run time will increase 
because there will be more paths that will have to be 
enumerated. Also, if K is too large, there will be too many edges 
with large weights and the search space for the partitioning 
algorithm will be very limited. For example, we show in Figure 
2 the path delay distribution for the too_large benchmark [9]. 
Before partitioning, there were 81 critical paths with normalized 
delays in the range (0.9, 1]. After a 10-way partitioning, none of 
the initial critical paths was among those with normalized delay 
in the range (0.8, 1]. The arrow going from the right to the left in 
the top-right plot in Figure 2 shows this fact. The arrows 
oriented from the left to the right in the same plot indicate initial 
non-critical paths that became critical after partitioning was 
completed. This is similar to results obtained previously when 



this situation was observed after placement and routing were 
done [12]. However, if we re-calculate all K-most critical paths 
at each partitioning level, the above case will happen less 
frequently. That is shown in the bottom-right plot which 
emphasizes the phenomenon of critical paths becoming non-
critical and non-critical paths becoming critical as taking place 
among paths mainly with large delays (regions 1,2,3 in the right 

side of Figure 2). In this way we are able to concentrate the 
optimization process on the “real” K most critical paths at any 
time at all levels because they are re-enumerated taking into 
account all the wire delays that were assigned (the process of 
assigning wire delays to all cut nets is described in Section 5.) to 
all cut nets during previous partitioning levels.  
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Figure 2 The path delay distribution for too_large (total number of paths is 14781) before and after partitioning, which is done with and 

without updating the most critical paths in region 1 (0.9, 1] 
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Figure 3 Number of paths distribution when K most critical 
paths are updated or not illustrates the delay improvement 
obtained when K most critical paths are updated for too_large 

To further show the effect of updating the K-most critical 
paths during partitioning, Figure 3 shows the path distribution 
with respect to circuit delay in both cases. As we can see the 
delay obtained after partitioning performed with dynamic 

updating the list of the K-most critical paths is smaller than the 
one obtained without updating the list.  

The situation described in the example above is true for all 
the circuits that we tested. That is why we decide to perform 
recursive partitioning while dynamically updating the K-most 
critical paths at any partitioning level. In this way we 
determine a minimal number of critical paths at a certain 
partitioning level to become non-critical later on.  

In our simulations we noticed that we obtain satisfactory 
results if we consider as critical only the paths that lie in the 
region (0.95, 1] in Figure 2. In cases where the number of 
paths in this region exceeded 500 we retained only the first 
500 paths. The enumeration path algorithm that was 
implemented is similar to that described in [3]. 

5. Simulation Setup and Results 
In this section we describe the delay model that we use, the 
timing driven partitioning simulation setup and present 
simulation results. 

5.1. Delay model 
Our delay model has two components. The first component is 
the gate delay. For all gates we consider a typical intrinsic 
delay that is given for a typical input transition and a typical 
output net capacitance. The second component is the wire 
delay, which we approximate using the Elmore delay model. 
The Elmore delay for an edge e (an edge corresponds to the 



wire connecting the net source to one of its fanout sinks) is 
given by: 
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where Re is the wire lumped resistance, Ce is the wire lumped 
capacitance, and Ct is the total lumped capacitance of the 
source node of each net. To compute Re and Ce we need the 
length of each edge. For that, we use the statistical net-length 
estimation method proposed in [11]. The average length of a 
net, connecting m cells enclosed in a rectangular area with 
width a and height b, is given by: 
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where α, β, and γ are fitting parameters computed in [11] as α 
≈ 1.1, β ≈ 2.0, and γ  ≈ 0.5. During recursive partitioning, 
when a net is cut, it is assigned a certain wire delay that will 
be used to re-compute all delays on the paths that include that 
net. The higher the level in which a net is cut during recursive 
partitioning, the greater the back-annotated wire delay has to 
be. In our case, any net that is cut during the first 
bipartitioning step (see Figure 4) is assumed to be bounded by 
a rectangular area which is the same as the chip area and for 
simplicity we consider an aspect ratio equal to 1. At the 
second partitioning level a and b have different values that 
will ensure a smaller delay than that assigned during a 
previous partitioning level. The delay of each net is set only 
the first time when it is cut. In our experiments we consider a 
0.18µ copper process technology (unit length resistance r = 
0.115, unit length capacitance c = 0.00015). 
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Figure 4 Illustration of the wire delay assignment to cut nets at 

different bipartitioning levels 

5.2. Simulation Setup 
The simulation setup is shown in Figure 5. We start with a 
netlist of a circuit that was first optimized using the 
script.rugged in SIS [8]. Then, we perform bipartitioning 
using either the pure hMetis algorithm or the multi-objective 
method. Finally we compare the partitioning obtained in both 
cases in terms of cutsize and circuit delay. 
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Figure 5 Simulation setup for comparison of our proposed multi-
objective hMetis partitioning algorithm to pure hMetis algorithm 

5.3. Simulation Results 
We report simulation results for a set of combinational and 

sequential circuits from the ISCAS89 [9] and ITC [10] 
benchmark suites that are presented in Table 1. The second 
column in the table indicates the number of PIs and POs, 
followed by the number of gates in the third column. 

 
Circuit PI/PO No. of gates  Circuit PI/PO No. of gates
cordic 23/2 881  ex1010 10/10 4898 
misex3 14/14 1349  pdc 16/40 4821 

X3 135/99 1369  too_large 38/3 6961 
c6288 32/32 2435  s38417 192/110 7333 
s15850 39/75 4321  b21s 32/22 15604 

frisc 19/16 4400  b22s 32/22 23892 
elliptic 130/112 4711  b17s 37/30 39390 

    b18s 36/22 107979 
Table 1 Benchmark characteristics 

The comparison results of the proposed method and pure 
hMetis are presented in Table 2. All results in the table are the 
average of 40 different runs on a Pentium dual-CPU, 1.5 GHz 
with 2GB of memory. For each circuit, Cutsize represents the 
number of all edges cut after the recursive bipartitioning. 
Delay indicates the maximum delay among all paths. In the 
net-based method, we set α=1 and β=0 in Equation 2. In the 
path-based method, we set α and β to non-zero values, 
however, only edges on the K-most critical paths are assigned 
a weight derived from their slack. In the “net and path-based” 
method, edge weights are calculated for all nets, even if they 
are not on the K-most critical paths. The table shows the 
results for 10-way partitionings. It can be seen that the 
proposed partitioning methodology improves delay by 14% on 
average. However, this is at the expense of a 10% increase in 
cutsize and 2.4x run-time degradation, but the runtime is still 
very reasonable. 

 
 



 Delay Cutset CPU (s) 

Circuit Pure 
hMetis 

Net- 
based 

Path- 
based 

Net and 
Path Based

Pure 
hMetis

Net-
based

Path-
based

Net and 
Path Based

Pure 
hMetis

Net- 
based 

Path- 
based 

Net and 
Path Based

Cordic 21.9 16.53 16.42 16.41 327 275 270 278 2 3 4 5 
misex3 67.6 63.66 59.91 61.16 543 530 669 614 5 8 13 13 

X3 18.78 16.65 16.9 16.65 211 270 245 261 4 5 6 6 
c6288 59.21 55.13 55.2 56.26 182 182 215 216 31 50 76 80 
s15850 81.14 78.85 73.61 78.93 617 699 622 671 28 36 35 37 
Frisc 169.33 150.95 168.3 150.2 838 923 910 869 34 65 68 61 

Elliptic 271.02 271.02 260.25 205.25 508 547 542 619 16 20 20 22 
ex1010 354.22 338.25 304.5 331.75 1307 1260 1734 1514 21 30 45 49 

Pdc 409.29 416.99 379.24 384.5 1750 1622 2042 1847 31 36 49 52 
too_large 112.91 103.52 111.5 97.62 2566 2459 2819 2470 20 33 43 45 

s38417 567.12 537.75 529 527.25 198 274 232 298 18 40 34 38 
b21s 1109.62 1191 494 512.25 845 857 872 915 457 796 705 848 
b22s 2275.5 2220.75 1667 2005.75 1108 1247 1154 1136 534 926 1250 1400 
b17s 2606.84 2573.75 2412.25 2406.34 1780 2446 1841 1882 518 2482 2987 2991 
b18s 1551.6 1909.5 1609.5 1333.5 1717 1730 1712 1717 860 2025 2365 3076 
Avg. 1 0.96 0.87 0.86 1 1.07 1.09 1.1 1 1.83 2.21 2.39 

Table 2 Comparison between our methods and pure hMetis

6. Conclusion 
In this paper we propose multi-objective hMetis partitioning 
algorithm for cutsize and circuit delay optimization. The 
advantages of the proposed algorithm are: (1) It is fast, thus 
applicable to large-sized circuits. (2) It performs better timing-
driven partitioning, as it considers path delays as opposed to 
edge slacks. (3) It does not determine area increase because it 
does not use netlist alteration as previous approaches do. (4) It 
offers a smooth cutsize/delay tradeoff.  
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