

Multi-objective Circuit Partitioning for Cutsize and Path-Based Delay Minimization

Cristinel Ababei* Navaratnasothie Selvakkumaran** Kia Bazargan* George Karypis**

* Department of Electrical and Computer Engineering
University of Minnesota, 200 Union St. SE

Minneapolis, MN 55455
{ababei,kia}@ece.umn.edu

** Department of Computer Science

University of Minnesota, 200 Union St. SE
Minneapolis, MN 55455

{selva,karypis}@cs.umn.edu

Abstract – In this paper we present multi-objective hMetis
partitioning for simultaneous cutsize and circuit delay
minimization. We change the partitioning process itself by
introducing a new objective function that incorporates a truly
path-based delay component for the most critical paths. To avoid
semi-critical paths from becoming critical, the traditional slack-
based delay component is also included in the cost function. The
proposed timing driven partitioning algorithm is built on top of
the hMetis algorithm, which is very efficient. Simulations results
show that 14% average delay improvement can be obtained.
Smooth trade-off between cutsize and delay is possible in our
algorithm.

1. Introduction
The increase in circuit complexities and the high demand for

short time-to-market products force designers to adopt divide-
and-conquer design methodologies. Furthermore, ever-growing
performance expectations require designers to perform
optimization at all levels of the design cycle. Significant
contribution of interconnect to the area and delay of today’s and
future chips, combined with the fact that partitioning has a great
impact on the interconnect distribution, makes partitioning a
very important early step during physical design. It is imperative
to account for timing during the partitioning process to allow for
early wire planning.

In this paper we present multi-objective hMetis [4]
partitioning for cutsize and circuit delay minimization. Our
timing-driven optimization approach is different from previous
work: we modify the objective function of the hMetis
partitioning algorithm to minimize cutsize as well as circuit
delay without performing any netlist alterations (e.g., buffer
insertion and gate duplication), though our method can be easily
modified to incorporate these techniques as well.

The remainder of the paper is organized as follows. Section 2
presents previous work on timing-driven partitioning. Section 3
presents the multi-objective partitioning methodology. In
Section 4, we study the algorithm to find the K most critical
paths during partitioning. Simulation results are presented in
Section 5. We conclude, outlining our main contribution in
Section 6.

2. Previous Work
In the past decade, there have been some works on timing-driven
partitioning (e.g., [1], [2], [5], [6]). Most previous approaches
achieve delay minimization by altering the netlist using logic
replication, retiming, and buffer insertion in order to meet delay

constraints while minimizing the cutsize. Gate replication in
these methods can be massive.

The way timing optimization is handled in timing-driven
partitioning approaches, can be classified into two categories: (1)
path-based timing minimization approaches and (2) net-based
timing minimization approaches. Most of the previous works fall
into the second category.

The net-based partitioning approaches define some criticality
value (e.g. slack) for each net, as a measure that indicates the
degree of its contribution to the circuit delay. The partitioning
process is discouraged from cutting edges with high criticality
values, which is similar to minimizing the bounding box for each
critical net. The drawback of the net-based techniques is that
nets that lie on the same critical path are treated in the same way
as when they are on different critical paths. Figure 1 shows an
example of a situation in which net-based techniques fail to
consider the whole path in the partitioning process. It is clear
that the partitioning in Figure 1-a will result in a larger circuit
delay than the one in Figure 1-b because all three cut nets belong
to the same critical path.

a) b)

Figure 1 Example of a situation where net-based partitioning
approaches fail to diffrentiate between partitionings with the same

cutsize but different delays

We can identify a few problems for all previous timing driven
partitioning approaches: (1) Unrealistic delay models are used. It
is common to use the general-delay model, which considers
delay 1 for all gates, delay 0 for interconnects inside a partition,
and a constant delay for interconnects between partitions [1], [5],
[6]. (2) Unrealistic simplifications are made. For instance,
circuits are mapped to two-input gates only [1]. (3) The run
times for even moderate-sized circuits are too long.

In this paper, we try to eliminate the above deficiencies. We
modify the objective function of the hMetis partitioning
algorithm to minimize the cutsize as well as the circuit delay.
We dynamically focus the timing optimization engine on the K
most critical paths and use timing criticality to characterize each
net that lies on the critical paths. We use the Elmore delay, along

with different wire delays at different levels of partitioning to
achieve a more realistic delay model. Our interconnect delay
model incorporates a statistical net-length estimation [11]. All
these make our timing-driven partitioning algorithm fast and
more reliable. Moreover, we do not modify the netlist, which
results in no increase in the gate area of the circuit.

3. Multi Objective hMetis Partitioning: Cutsize and
Delay Minimization

While the goal of classic partitioning algorithms is to
minimize cutsize – and hMetis performs this task very efficiently
[4] – the multi-objective graph partitioning problem is much
more difficult. One of the main difficulties in performing multi-
objective optimization is that no single optimal solution exists.
Instead, an optimal solution exists for each objective in the
solution space. Furthermore, an optimal solution for one
objective may require accepting a poor solution for another one.
The result is that the definition of a good solution becomes
ambiguous. We will adopt the formulation of a good solution as
it appears in [7]:
• Allow fine-tuned control of the tradeoffs of the objectives.
• Generate predictable partitionings.
• Provide a way to handle objectives that correspond to

quantities that are of different natures (e.g., range, variance,
sensitivity to changes in partitioning).

In our case we want a partitioning algorithm that can minimize
objective C, the number of wires cut (hence minimizing
congestion at placement) and objective D, the number of times
most critical paths are cut (minimizing circuit delay). However,
the two objectives are dissimilar objectives, which means that
optimizing C alone does not necessarily imply that D is also
optimized and vice-versa. That is why we adopt a combination-
based formulation for multi-objective optimization: if C0 is the
optimal solution with respect to the first objective C and D0 is
the optimal solution with respect to the first objective D, then the
combined objective will be a scalar combined metric Cc given by
the following equation:

0

2
0

1 D
Dp

C
Cpc +=C (1)

Where (p1, p2) is the preference vector. Minimizing equation 1
attempts to compute a partitioning such that it is not far away
from any of the optimal with respect to any initial objective. A
preference vector of (1,3) for example, indicates that we need to
move at least three units closer to the optimal partitioning with
respect to the delay objective for each unit that we move away
from the optimal partitioning with respect to the cutsize
objective. The preference vector can be used to traverse the
distance between the optimal solution points of each objective.
That results in predictable partitioning based on the preference
vector as well as fine-tuned control of the tradeoff between the
two objectives.

The delay objective component is expressed as a combination
of three factors that directly influence the delay of a circuit: the
delay of the critical paths, the number of times that each critical

path has been cut, and the edge weight of all edges that lie on the
critical paths.

 (2) ∑ ∑
= =

+=
||

1 1

KE

i

K

j
jjii kDeD γβωα

Where α and β are weighting parameters; ωi is the edge weight
of edge i (derived from the edge slack); ei is either 0 or 1
depending on whether edge i is cut or not; |EK| is the number of
edges that form the K paths; Dj is the current delay of the j-th
critical path; kj is the number of times that the j-th critical path
has been cut so far; and γ is used for even finer tuning.

Equation 2 combines the advantages of the path-based
method, which captures global delay information, and the
advantage of the edge-based method, that can capture timing
criticality of semi-critical paths without enumerating them.
Parameters α and β allow us to put more emphasis on any of the
two net-based and path-based components in Equation 2.

4. Path-based Timing Driven Partitioning:
Choosing the K-most Critical Paths

Since there are exponential number of paths in a circuit, a
path-based timing-driven method has to focus only on a limited,
K-most critical paths. We considered two strategies: (1)
partitioning without updating of the K-most critical paths during
recursive bi-section, or (2) updating the list of the K-most critical
paths during recursion. In the first case we initially find the K-
most critical paths and then perform all subsequent recursive
bipartioning stages trying to avoid the critical paths from being
cut. The second case is motivated by the fact that the initial K-
most critical paths may not remain critical after the partitioning
or placement and routing is done [12]. In this case we re-
calculate the K-most critical paths at each partitioning level and
update the edge weights as well as path delays. In this way we
can see at any partitioning level what are the current K-most
critical paths and assign edge weights accordingly.

Another important problem to be addressed is how to choose
the value of K. On one hand, if we choose a too small K we will
end up with no-timing improvement. That is because these K
paths will quickly become non-critical and other previously non-
critical paths will become critical. By focusing only on a small
initial number of paths the optimization is diverted from the goal
of timing improvement during the partitioning. On the other
hand, if we choose too large a K, the run time will increase
because there will be more paths that will have to be
enumerated. Also, if K is too large, there will be too many edges
with large weights and the search space for the partitioning
algorithm will be very limited. For example, we show in Figure
2 the path delay distribution for the too_large benchmark [9].
Before partitioning, there were 81 critical paths with normalized
delays in the range (0.9, 1]. After a 10-way partitioning, none of
the initial critical paths was among those with normalized delay
in the range (0.8, 1]. The arrow going from the right to the left in
the top-right plot in Figure 2 shows this fact. The arrows
oriented from the left to the right in the same plot indicate initial
non-critical paths that became critical after partitioning was
completed. This is similar to results obtained previously when

this situation was observed after placement and routing were
done [12]. However, if we re-calculate all K-most critical paths
at each partitioning level, the above case will happen less
frequently. That is shown in the bottom-right plot which
emphasizes the phenomenon of critical paths becoming non-
critical and non-critical paths becoming critical as taking place
among paths mainly with large delays (regions 1,2,3 in the right

side of Figure 2). In this way we are able to concentrate the
optimization process on the “real” K most critical paths at any
time at all levels because they are re-enumerated taking into
account all the wire delays that were assigned (the process of
assigning wire delays to all cut nets is described in Section 5.) to
all cut nets during previous partitioning levels.

0
500

1000
1500
2000
2500
3000
3500
4000
4500

N
o.

 o
f P

at
hs

Normalized Delay

too_large (14781)

Initial K Paths Fixed K Paths Updated

4 3 2 1

4 3 2 1

...0.7 0.7...0.8 0.8...0.9 0.9...1

...0.7 0.7...0.8 0.8...0.9 0.9...1

24

81/81

21

79/81

17
20
16

2/81

K Paths Fixed

K Paths Updated

Figure 2 The path delay distribution for too_large (total number of paths is 14781) before and after partitioning, which is done with and

without updating the most critical paths in region 1 (0.9, 1]

K Paths Fixed

K Paths Updated

Delay decrease for
all paths when K
paths are updated

Figure 3 Number of paths distribution when K most critical
paths are updated or not illustrates the delay improvement
obtained when K most critical paths are updated for too_large

To further show the effect of updating the K-most critical
paths during partitioning, Figure 3 shows the path distribution
with respect to circuit delay in both cases. As we can see the
delay obtained after partitioning performed with dynamic

updating the list of the K-most critical paths is smaller than the
one obtained without updating the list.

The situation described in the example above is true for all
the circuits that we tested. That is why we decide to perform
recursive partitioning while dynamically updating the K-most
critical paths at any partitioning level. In this way we
determine a minimal number of critical paths at a certain
partitioning level to become non-critical later on.

In our simulations we noticed that we obtain satisfactory
results if we consider as critical only the paths that lie in the
region (0.95, 1] in Figure 2. In cases where the number of
paths in this region exceeded 500 we retained only the first
500 paths. The enumeration path algorithm that was
implemented is similar to that described in [3].

5. Simulation Setup and Results
In this section we describe the delay model that we use, the
timing driven partitioning simulation setup and present
simulation results.

5.1. Delay model
Our delay model has two components. The first component is
the gate delay. For all gates we consider a typical intrinsic
delay that is given for a typical input transition and a typical
output net capacitance. The second component is the wire
delay, which we approximate using the Elmore delay model.
The Elmore delay for an edge e (an edge corresponds to the

wire connecting the net source to one of its fanout sinks) is
given by:

)
2

()(t
e

e C
C

ReDelay += (3)

where Re is the wire lumped resistance, Ce is the wire lumped
capacitance, and Ct is the total lumped capacitance of the
source node of each net. To compute Re and Ce we need the
length of each edge. For that, we use the statistical net-length
estimation method proposed in [11]. The average length of a
net, connecting m cells enclosed in a rectangular area with
width a and height b, is given by:

)()(ba
ba
bamLav ++

+
⋅

−⋅≈ βα γ (4)

where α, β, and γ are fitting parameters computed in [11] as α
≈ 1.1, β ≈ 2.0, and γ ≈ 0.5. During recursive partitioning,
when a net is cut, it is assigned a certain wire delay that will
be used to re-compute all delays on the paths that include that
net. The higher the level in which a net is cut during recursive
partitioning, the greater the back-annotated wire delay has to
be. In our case, any net that is cut during the first
bipartitioning step (see Figure 4) is assumed to be bounded by
a rectangular area which is the same as the chip area and for
simplicity we consider an aspect ratio equal to 1. At the
second partitioning level a and b have different values that
will ensure a smaller delay than that assigned during a
previous partitioning level. The delay of each net is set only
the first time when it is cut. In our experiments we consider a
0.18µ copper process technology (unit length resistance r =
0.115, unit length capacitance c = 0.00015).

Net cut first time
during 2nd bi-
partitioning
assign Elmore
delay
b’ b

a
a’

Net cut first
time during 1st
bi-partitioning
assign Elmore
delay

Same Net cut
during 2nd bi-
partitioning
do NOT assign
Elmore delay

Same Net cut
during 3rd bi-
partitioning
do NOT assign
Elmore delay

1
2

2

3

Figure 4 Illustration of the wire delay assignment to cut nets at

different bipartitioning levels

5.2. Simulation Setup
The simulation setup is shown in Figure 5. We start with a
netlist of a circuit that was first optimized using the
script.rugged in SIS [8]. Then, we perform bipartitioning
using either the pure hMetis algorithm or the multi-objective
method. Finally we compare the partitioning obtained in both
cases in terms of cutsize and circuit delay.

Gate Netlist

K Most Critical Paths
Enumeration & Criticality

Computation Pure hMetis
Bipartitioning

(all edges
same weight) K Most Critical Paths

Re-Enumeration &
Criticality Update

Cutsize & Delay
Comparison

Multi Objective

hMetis
Bipartitioning

Figure 5 Simulation setup for comparison of our proposed multi-
objective hMetis partitioning algorithm to pure hMetis algorithm

5.3. Simulation Results
We report simulation results for a set of combinational and

sequential circuits from the ISCAS89 [9] and ITC [10]
benchmark suites that are presented in Table 1. The second
column in the table indicates the number of PIs and POs,
followed by the number of gates in the third column.

Circuit PI/PO No. of gates Circuit PI/PO No. of gates
cordic 23/2 881 ex1010 10/10 4898
misex3 14/14 1349 pdc 16/40 4821

X3 135/99 1369 too_large 38/3 6961
c6288 32/32 2435 s38417 192/110 7333
s15850 39/75 4321 b21s 32/22 15604

frisc 19/16 4400 b22s 32/22 23892
elliptic 130/112 4711 b17s 37/30 39390

 b18s 36/22 107979
Table 1 Benchmark characteristics

The comparison results of the proposed method and pure
hMetis are presented in Table 2. All results in the table are the
average of 40 different runs on a Pentium dual-CPU, 1.5 GHz
with 2GB of memory. For each circuit, Cutsize represents the
number of all edges cut after the recursive bipartitioning.
Delay indicates the maximum delay among all paths. In the
net-based method, we set α=1 and β=0 in Equation 2. In the
path-based method, we set α and β to non-zero values,
however, only edges on the K-most critical paths are assigned
a weight derived from their slack. In the “net and path-based”
method, edge weights are calculated for all nets, even if they
are not on the K-most critical paths. The table shows the
results for 10-way partitionings. It can be seen that the
proposed partitioning methodology improves delay by 14% on
average. However, this is at the expense of a 10% increase in
cutsize and 2.4x run-time degradation, but the runtime is still
very reasonable.

 Delay Cutset CPU (s)

Circuit Pure
hMetis

Net-
based

Path-
based

Net and
Path Based

Pure
hMetis

Net-
based

Path-
based

Net and
Path Based

Pure
hMetis

Net-
based

Path-
based

Net and
Path Based

Cordic 21.9 16.53 16.42 16.41 327 275 270 278 2 3 4 5
misex3 67.6 63.66 59.91 61.16 543 530 669 614 5 8 13 13

X3 18.78 16.65 16.9 16.65 211 270 245 261 4 5 6 6
c6288 59.21 55.13 55.2 56.26 182 182 215 216 31 50 76 80
s15850 81.14 78.85 73.61 78.93 617 699 622 671 28 36 35 37
Frisc 169.33 150.95 168.3 150.2 838 923 910 869 34 65 68 61

Elliptic 271.02 271.02 260.25 205.25 508 547 542 619 16 20 20 22
ex1010 354.22 338.25 304.5 331.75 1307 1260 1734 1514 21 30 45 49

Pdc 409.29 416.99 379.24 384.5 1750 1622 2042 1847 31 36 49 52
too_large 112.91 103.52 111.5 97.62 2566 2459 2819 2470 20 33 43 45

s38417 567.12 537.75 529 527.25 198 274 232 298 18 40 34 38
b21s 1109.62 1191 494 512.25 845 857 872 915 457 796 705 848
b22s 2275.5 2220.75 1667 2005.75 1108 1247 1154 1136 534 926 1250 1400
b17s 2606.84 2573.75 2412.25 2406.34 1780 2446 1841 1882 518 2482 2987 2991
b18s 1551.6 1909.5 1609.5 1333.5 1717 1730 1712 1717 860 2025 2365 3076
Avg. 1 0.96 0.87 0.86 1 1.07 1.09 1.1 1 1.83 2.21 2.39

Table 2 Comparison between our methods and pure hMetis

6. Conclusion
In this paper we propose multi-objective hMetis partitioning
algorithm for cutsize and circuit delay optimization. The
advantages of the proposed algorithm are: (1) It is fast, thus
applicable to large-sized circuits. (2) It performs better timing-
driven partitioning, as it considers path delays as opposed to
edge slacks. (3) It does not determine area increase because it
does not use netlist alteration as previous approaches do. (4) It
offers a smooth cutsize/delay tradeoff.

Acknowledgements
This work was supported in part by a grant from the Office of
the Vice President for Research and Dean of the Graduate
School of the University of Minnesota, and in part by NSF CCR-
9972519, EIA-9986042, ACI-9982274, and ACI-0133464 by
Army Research Office contract DA/DAAG55-98-1-0441, and by
the Army High Performance Computing Research Center
contract number DAAH04-95-C-0008.

References
[1] J. Cong, C. Wu, ‘Global Clustering-Based Performance-Driven

Circuit Partitioning’, Proc. ISPD, 2002.
[2] W.E. Donath et al, ‘Timing Driven Placement Using Complete

Path Delays’, Proc. ACM/IEEE DAC, 1990.
[3] Y-C. Ju, R.A. Saleh, ‘Incremental Techniques for the Identification

of Statically Sensitizable Critical Paths’, Proc. ACM/IEEE DAC,
1991.

[4] G. Karypis, R. Aggarwal, V. Kumar, S. Shekhar, ‘Multilevel
Hypergraph Partitioning: Application in VLSI domain’, Proc.
ACM/IEEE DAC, June 1997.

[5] J. Minami, T. Koide, S. Wakabayashi, ‘An Iterative Improvement
Circuit Partitioning Algorithm under Path Delay Constraints’,
IEICE Trans. Fundamentals, Dec. 2000.

[6] S.-L Ou, M. Pedram, ‘Timing-driven Partitioning Using Iterative
Quadratic Programming’, at http://atrak.usc.edu/~massoud/, see
“Coming Attractions!”, 2001.

[7] K. Schloegel, G. Karypis, V. Kumar, ‘A New Algorithm for Multi-
objective Graph Partitioning’, European Conference on Parallel
Processing, 1999.

[8] E.M. Sentovich, K.J. Singh, L. Lavagno, C. Moon, R. Murgai, A.
Saldanha, H. Savoj, P.R. Stephan, R.K. Brayton, A. Sangiovanni-
Vincentelli, ‘SIS: A System for Sequential Circuit Synthesis’,
Technical Report UCB/ERL M92/41, University of California,
Berkeley, May 1992.

[9] http://www.cbl.ncsu.edu
[10] http://www.cad.polito.it/tools/9.html
[11] P. Zarkesh-Ha, J.A. Davis, J.D. Meindl, ‘Prediction of Net-Length

Distribution for Global Interconnects in a Heterogeneous System-
on-a-Chip’, IEEE Trans. VLSI Systems, Dec. 2000.

[12] H. Youssef, E. Shragowitz, L.C. Bening, ‘Critical Path Issue
in VLSI Designs’, Proc. ACM/IEEE ICCAD, 1989.

http://www.cbl.ncsu.edu/
http://www.cad.polito.it/tools/9.html

