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Body Effect (Back Bias)
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« Body effect degrades transistor stack performance

« However, we need a reasonable body effect for post silicon
tuning techniques

« Reverse body biasing, forward body biasing

Remember the Standard V, Equation?
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=Y. Taur, T. Ning, Fundamentals of Modern VLSI Devices,
Cambridge University Press, 2002.
* Detailed derivation given in Taur’s book
» Basically, three terms
— Flat band voltage

— 2yg: the magic number for on-set of inversion
— Oxide voltage
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* V, can be adjusted by applying FBB or RBB
— Essential for low power and high performance
— Will talk about body biasing extensively later on




UNIVERSITY OF MINNESOTA

Body Biasing for Process Compensation
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Short Channel Effect: V, roll-off
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» 30 V, variation increases in short channel devices
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Short Channel Effect: V, roll-off
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« Ability of gate & body to control channel charge diminishes
as L decreases, resulting in Vt-roll-off and body effect
reduction
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Short Channel Effect: Drain Induced
Barrier Lowering (DIBL)

Long Channel Short Channel
n+ poly gate n+ poly gate
L4 Pl
n+ source n+ drain n+ source n+ drain

depletion —
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* Increase in V4 reduces V,and increases V,-roll-off: DIBL




Short Channel Effect: Drain Induced
Barrier Lowering (DIBL)

V, roll-off (V,,~0V)
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Short Channel V, Equation
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[Poon, IEDM, 1973]
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Short Channel Effect: DIBL
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- AV,
- DIBL coefficient A, =

AV,
- DIBL increases leakage current
- Dynamic V44 can reduce leakage because of DIBL
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TranS|stor Scaling Challenges - X;
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Effect of Series Resistance
(10nm Device)
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Sub-Threshold Current
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« NPN BJT is formed in sub-threshold region

< Only difference with a real BJT is that the base voltage is
controlled through a capacitive divider, and not directly
by a electrode

» Like in a BJT, current is exponential to V,,
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Leakage Components

Weak Inversion Current,
Drain Induced Barrier Lowering
and Narrow Width Effect

Gate Oxide Tunneling
Gate

Source

Punchthrough
Reverse Bias Diode
Gate Induced Drain &BTBT
p-sub Leakage (GIDL)
Bulk

[Keshavarzi, Roy, and Hawkins, ITC 1997]
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Sub-Threshold Current

2 a (Vgs Vi ) —qVgs
Id =\%'ueffcox kBT (m_]‘)e AKT (1—8 KT)
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Sub-Threshold Swing

KT C
- mV - dep
S=m ] In10 ( Aec) , m=1+ c
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* Smaller S-swing is better
* Ideal case: m=1 (C,,>>C,,)
— Fundamental limit =1 * 26mV * In10
=60 mV/dec @ RT
— Can only be achieve by device geometry (FD-SOI)
* Typical case: m=1.3
- 8$=1.3*26mV *In10 = 80 mV/dec @ RT
— At worst case temperature (T=110C), S = 100 mV/dec
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V44 and V, Scaling

» V, cannot be scaled indefinitely due to increasing leakage
power (constant sub-threshold swing)
« Example

CMOS device with S=100mV/dec has l,;=10pA/um
@ V=500mV

l,=10pA/pm x 10-5 = 0.1 nA/um

Now, consider we scale the V, to 100mV
l,=10pA/um x 101 = 1 pA/um

Suppose we have 1B transistors of width 1um
lguo=1pA/um x 1B x 1um =100 A !!
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V44 and V, Scaling
Performance vs Leakage:
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= As V, decreases, sub-threshold leakage increases
= Leakage is a barrier to voltage scaling
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Gate Oxide Tunneling Leakage
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Gate Oxide Tunneling Leakage

¢ Quantum mechanics tells us that there is a finite
probability for electrons to tunnel through oxide

* Probability of tunneling is higher for very thin
oxides

« NMOS gate leakage is much larger than PMOS

+ Gate leakage has the potential to become one of
the main showstoppers in device scaling
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Band-to-Band Tunneling Leakage
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S/D junction BTBT Leakage

¢ Reversed biased diode band-to-band tunneling
— High junction doping: “Halo” profiles
— Large electric field and small depletion width at the junctions
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Gate Induced Drain Leakage (GIDL)

» Appears in high E-field region under gate/drain
overlap causing deep depletion

* Occurs at low V, and high V, bias

» Generates carriers into substrate from surface
traps, band-to-band tunneling

* Localized along channel width between gate and
drain

* Thinner oxide, higher V,, lightly-doped drain
enhance GIDL

* High field between gate and drain increases
injection of carriers into substrate
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Narrow Width Effect
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region Channel . De;_:letion region extends
outside of gate controlled
Side view of MOS transistor region
1T » Opposite to V, roll-off
= * Depends on isolation

technology
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Leakage Components

1. Nopunchthrough

2. No width effect

3. No gate leakage
"
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[IEEE press, 2000]
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