University of Minnesota

Short Channel MOS Transistor

Professor Chris H. Kim

University of Minnesota Dept. of ECE

chriskim@umn.edu www.umn.edu/~chriskim/

Body Effect (Back Bias)

$$\begin{aligned} &V_{t0} = V_{fb} + \left|2\psi_{B}\right| + \frac{\sqrt{2qN_{a}\varepsilon_{si}}\left|2\psi_{B}\right|}{C_{ox}} \\ &V_{t} = V_{fb} + \left|2\psi_{B} + V_{sb}\right| + \frac{\sqrt{2qN_{a}\varepsilon_{si}}\left|2\psi_{B} + V_{sb}\right|}{C_{ox}} - V_{sb} \end{aligned} \qquad \begin{aligned} &\text{Gate} \qquad & \text{Body} \\ &V_{t} = V_{fb} + \left|2\psi_{B}\right| + \frac{\sqrt{2qN_{a}\varepsilon_{si}}\left|2\psi_{B} + V_{sb}\right|}{C_{ox}} &V_{sb} > 0 : \text{RBB} \\ &V_{t} = V_{fb} + \left|2\psi_{B}\right| + \frac{\sqrt{2qN_{a}\varepsilon_{si}}\left|2\psi_{B} + V_{sb}\right|}{C_{ox}} &V_{t} = V_{t} = V_{t} = V_{t} \end{aligned}$$

- Body effect degrades transistor stack performance
- However, we need a reasonable body effect for post silicon tuning techniques
- Reverse body biasing, forward body biasing

UNIVERSITY OF MINNESOTA

Remember the Standard V_t Equation?

$$V_{t} = V_{fb} + \left| 2\psi_{B} \right| + \frac{\sqrt{2qN_{a}\varepsilon_{si}|2\psi_{B}|}}{C_{ox}}$$

- **Y.** Taur, T. Ning, Fundamentals of Modern VLSI Devices, Cambridge University Press, 2002.
- Detailed derivation given in Taur's book
- · Basically, three terms
 - Flat band voltage
 - $-2\psi_B$: the magic number for on-set of inversion
 - Oxide voltage

2

- V_t can be adjusted by applying FBB or RBB
 - Essential for low power and high performance
 - Will talk about body biasing extensively later on

4

UNIVERSITY OF MINNESOTA

Sub-Threshold Swing

$$S = m \frac{kT}{q} \ln 10 \ (mV/dec) \quad , \quad m = 1 + \frac{C_{dep}}{C_{ox}}$$

- Smaller S-swing is better
- Ideal case: m=1 (C_{ox}>>C_{sub})
 - Fundamental limit = 1 * 26mV * In10

= 60 mV/dec @ RT

- Can only be achieve by device geometry (FD-SOI)
- Typical case: m≈1.3
 - S = 1.3 * 26mV * In10 ≈ 80 mV/dec @ RT
 - At worst case temperature (T=110C), S ≈ 100 mV/dec

17

University of Minnesota

V_{dd} and V_t Scaling

Performance vs Leakage:

 $V_T \downarrow I_{OFF} \uparrow I_D(SAT) \uparrow$

$$I_{OFF} \propto rac{W_{eff}}{L_{eff}} K_1 e^{-V_T / mkT/q}$$

$$I_D(SAT) \propto \frac{W_{eff}}{L_{eff}} K_2 (V_{GS} - V_T)^2$$

$$I_D(SAT) \propto K_3 W_{eff} C_{ox} \upsilon_{SAT} (V_{GS} - V_T)$$

- ⇒ As V_t decreases, sub-threshold leakage increases
- ⇒ Leakage is a barrier to voltage scaling

18

University of Minnesota

V_{dd} and V_t Scaling

- V_t cannot be scaled indefinitely due to increasing leakage power (constant sub-threshold swing)
- Example

CMOS device with S=100mV/dec has I_{ds} =10 μ A/ μ m @ $V_{\rm t}$ =500mV

 I_{off} =10 μ A/ μ m x 10⁻⁵ = 0.1 nA/ μ m

Now, consider we scale the V_t to 100mV I_{off} =10 μ A/ μ m x 10⁻¹ = 1 μ A/ μ m

Suppose we have 1B transistors of width 1 μ m I_{sub}=1 μ A/ μ m x 1B x 1 μ m = 100 A !!

19

UNIVERSITY OF MINNESOTA

Gate Oxide Tunneling Leakage

- Quantum mechanics tells us that there is a finite probability for electrons to tunnel through oxide
- Probability of tunneling is higher for very thin oxides
- NMOS gate leakage is much larger than PMOS
- Gate leakage has the potential to become one of the main showstoppers in device scaling

$$I_{gate} = AE_{ox}^{2}e^{-B/E_{ox}}$$
 , $E_{ox} = \frac{V_{dd} - V_{t}}{t_{ox}}$

21

Band-to-Band Tunneling Leakage E_C E_V p(+)-side S/D junction BTBT Leakage • Reversed biased diode band-to-band tunneling - High junction doping: "Halo" profiles - Large electric field and small depletion width at the junctions

UNIVERSITY OF MINNESOTA

Gate Induced Drain Leakage (GIDL)

- Appears in high E-field region under gate/drain overlap causing deep depletion
- Occurs at low V_q and high V_d bias
- Generates carriers into substrate from surface traps, band-to-band tunneling
- Localized along channel width between gate and drain
- Thinner oxide, higher V_{dd}, lightly-doped drain enhance GIDL
- High field between gate and drain increases injection of carriers into substrate

University of Minnesota **Narrow Width Effect** Gate V_t width W Extra depletion Depletion region extends Channel region outside of gate controlled Side view of MOS transistor region Opposite to V₁ roll-off • Depends on isolation technology

23

