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CMOS Inverter 
Power Dissipation
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Where Does Power Go in CMOS?
• Switching power

– Charging capacitors
• Leakage power

– Transistors are imperfect switches
• Short-circuit power

– Both pull-up and pull-down on during 
transition

• Static currents
– Biasing currents, in e.g. memory
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Dynamic Power Consumption
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Dynamic Power Consumption

• One half of the energy from the supply is 
consumed in the pull-up network and one half is 
stored on CL

• Energy from CL is dumped during the 1→0 
transition
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Circuits with Reduced Swing
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Dynamic Power Consumption
Power = Energy/transition • Transition rate

= CLVDD
2 • f0→1

= CLVDD
2 • f • P0→1

= CswitchedVDD
2 • f

• Power dissipation is data dependent –
depends on the switching probability

• Switched capacitance Cswitched = CL • P0→1
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Transition Activity and Power
• Energy consumed in N cycles, EN:

EN = CL • VDD
2 • n0→1

n0→1 – number of 0→1 transitions in N cycles
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Short Circuit Current

• Short circuit current is usually well controlled
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Transistor Leakage
• Transistors that are supposed to be off - leak

Input at VDD Input at 0

VDD 0V

VDD

ILeak

VDD0V

VDD

ILeak

11

N
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Reverse Leakage Current
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IDL = JS × A

JS = 10-100 pA/mm2  at 25 deg C for  0.25um CMOS
JS doubles for every 9 deg C!
Much smaller than transistor leakage in deep submicron

Diode Leakage

Sizing of an 
Inverter Chain
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Inverter Chain

If CL is given:
- How many stages are needed to minimize the 
delay?
- How to size the inverters?
May need some additional constraints.
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Inverter Delay
• Minimum length devices, L=0.25um
• Assume that for WP = 2WN =2W 

• same pull-up and pull-down currents
• approx. equal resistances RN = RP
• approx. equal rise tpLH and fall tpHL delays

• Analyze as an RC network
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tpHL = (ln 2) RNCL tpLH = (ln 2) RPCLDelay (D):
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Inverter with Load

Load (CL)

Delay

Assumptions: no load -> zero delay

CL

tp = k RWCL

RW

RW

Wunit = 1

k is a constant, equal to 0.69 for step input
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Inverter with Load

Load

Delay

Cint CL

Delay = kRW(Cint + CL) = kRWCint + kRWCL = kRW Cint(1+ CL
/Cint)
= Delay (Intrinsic) + Delay (Load)

CN = Cunit

CP = 2Cunit
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Delay Formula
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Cint = γCgin with γ ≈ 1
f = CL/Cgin - effective fanout
R = Runit/W ; Cint =WCunit
tp0 = 0.69RunitCunit
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Apply to Inverter Chain
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In Out

1 2 N

tp = tp1 + tp2 + …+ tpN

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+ +

jgin

jgin
unitunitpj C

C
CRt

,

1,1~

LNgin

N

i jgin

jgin
p

N

j
jpp CC

C
C

ttt =⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+== +

=

+

=
∑∑ 1,

1 ,

1,
0

1
,   ,1

1=γ

19

Optimal Tapering for Given N

Delay equation has N - 1 unknowns, Cgin,2 – Cgin,N

Minimize the delay, find N - 1 partial derivatives

Result: Cgin,j+1/Cgin,j = Cgin,j/Cgin,j-1

Size of each stage is the geometric mean of two neighbors

- each stage has the same effective fanout (Cout/Cin)
- each stage has the same delay

1,1,, +−= jginjginjgin CCC

20

Optimum Delay and Number of Stages

1,/ ginL
N CCFf ==

When each stage is sized by f and has same eff. fanout f:

N Ff =

( )N
pp FNtt += 10

Minimum path delay

Effective fanout of each stage:
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Example

CL= 8 C1

In Out

C1
1 f f2

283 ==f

CL/C1 has to be evenly distributed across N = 3 stages:
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Optimum Number of Stages
For a given load, CL and given input capacitance Cin
Find optimal number of stages, N, and optimal sizing, f
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Optimum Effective Fanout f
Optimum f for given process defined by γ

( )ff γ+= 1exp

fopt = 3.6
for γ=1

0 0.5 1 1.5 2 2.5 32.5

3

3.5

4

4.5

5

γ

f o
p

t

24

Impact of Loading on tp
With self-loading γ=1
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Normalized Delay Function of F
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Buffer Design
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2 8 18

3 4 15
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