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Basic Operation (1)

• Device is in cut-off region
• Simply, two back-to-back reverse biased pn diodes.   
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Basic Operation (2)

• With a positive gate bias, electrons are pulled toward the 
positive gate electrode

• Given a large enough bias, the electrons start to “invert”
the surface (p n type), a conductive channel forms

• Threshold voltage Vt
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Basic Operation (3)

• Current flows from drain to source with a positive drain 
voltage

• What is current in terms of Vgs, Vds, Vbs?
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MOS Current

Ids = 0 
Vgs< Vt : cut-off

Ids = μeCoxW/L ((Vgs-Vt) Vds-0.5Vds
2)

0 < Vds < Vgs- Vt : triode (linear) mode
Ids = μeCoxW/(2L) (Vgs-Vt)2

0 < Vgs- Vt < Vds : saturation mode
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Channel Length Modulation

dso VLL ζ−=

• Pinch-off depletion layer width increases as the drain 
voltage increases

• Extreme case of this is punch-through
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Simulation versus Model (NMOS)

• The square-law model doesn’t match well with simulations
• Only fits for low Vgs, low Vds (low E-field) conditions
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Simulation versus Model (PMOS)

• Not as bad as the NMOS device
• Still large discrepancies at high E-field conditions
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Simulation versus Model (Ids vs. Vgs)

• Saturation current does not increase quadratically
• The simulated curves looks like a straight line
• Main reason for discrepancy: velocity saturation
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Velocity Saturation

• E-fields have gone up as dimensions scale
• Unfortunately, carrier velocity in silicon is limited
• Electron velocity saturates at a lower E-field than holes
• Mobility (μe=v/E) degrades at higher E-fields
• Simple piecewise linear model can be used
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Velocity Saturation
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[Toh, Ko, Meyer, 
JSSC, 8/1988]

• Modeled through a variable mobility
• n=1 for PMOS, n=2 for NMOS
• To get an analytical expression, let’s assume n=1
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Velocity Saturation
• Plug it into the original current equation
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Equate the two expressions to get
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Simulation versus Model

• Model incorporating velocity saturation matches fairly 
well with simulation 
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Unified MOS Model
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Unified MOS Model Equations

γ - body effect parameter

• Model presented is compact and suitable for hand 
analysis.

• Still have to keep in mind the main approximation: that 
VDSat is constant. 

• But the model still works fairly well.
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Alpha Power Law
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• Simple empirical model for short channel MOS

• Parameter α is between 1 and 2
• α=1-1.2 for short channel 

devices
• Parameters α and Vt are fitted 

to measured data for minimum 
square error fitted Vt can be 
different from physical Vt

[Sakurai and Newton, 
JSSC 1990]


