EE5323 Homework #6
Sequential Logic
YOU DO NOT NEED TO SUBMIT THIS HW

1. For this problem, use the data in the table below.

<table>
<thead>
<tr>
<th></th>
<th>Setup time</th>
<th>C1k to Q</th>
<th>D to Q</th>
<th>Contamination delay</th>
<th>Hold time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Register</td>
<td>65ps</td>
<td>50ps</td>
<td>n/a</td>
<td>35ps</td>
<td>30ps</td>
</tr>
<tr>
<td>Latches</td>
<td>25ps</td>
<td>50ps</td>
<td>40ps</td>
<td>35ps</td>
<td>30ps</td>
</tr>
</tbody>
</table>

For each of the following sequencing styles, determine the maximum logic propagation delay available within a 500ps clock cycle. Assume there is zero clock skew.

a. Register
b. Two-phase transparent latches.

2. Consider a register built from a pair of transparent latches using nonoverlapping clocks. Express the setup time, hold time, and clock-to-Q delay of the register in terms of the latch timing parameters, namely tsetup-latch, tc-q-latch and thold-latch, as well as tnonoverlap.

3. Determine the minimum clock period at which the circuit below will operate correctly for each of the following logic delays. Assume there is zero clock skew and that the latch delays are accounted for in the propagation delay Δ's.

a. Δ1=300ps; Δ2=400ps; Δ3=200ps; Δ4=350ps.
b. Δ1=300ps; Δ2=400ps; Δ3=400ps; Δ4=550ps.
c. Δ1=300ps; Δ2=900ps; Δ3=200ps; Δ4=350ps.
d. repeat a ~ c if clock skew is 100ps.

![Circuit Diagram]
4. Consider the following latch based pipeline circuit shown below.
Assume that the input, \(IN \), is valid (i.e., set up) 2\(\text{ns} \) before the falling edge of \(CLK \) and is held till the falling edge of \(CLK \) (there is no guarantee on the value of \(IN \) at other times). Determine the maximum positive and negative skew on \(CLK' \) for correct functionality.

5. This problem examines sources of skew and jitter.
 a. A balanced clock distribution scheme is shown below. For each source of variation, identify if it contributes to skew or jitter. Circle your answer in table below.

IMPORTANT INFORMATION: Permission is granted to copy and distribute this material for educational purposes only, provided that the complete bibliographic citation and following credit line is included: “Copyright 2002 J. Rabaey et al.” This material may not be copied or distributed for commercial purposes without express written permission of the copyright holders.
1) Uncertainty in the clock generation circuit | Skew | Jitter
2) Process variation in devices | Skew | Jitter
3) Interconnect variation | Skew | Jitter
4) Power Supply Noise | Skew | Jitter
5) Data Dependent Load Capacitance | Skew | Jitter
6) Static Temperature Gradient | Skew | Jitter

b. Consider a Gated Clock implementation where the clock to various logical modules can be individually turned off as shown below (i.e., Enable_1,..., Enable_N can take on different values on a cycle by cycle basis). Which approach (A or B) results in lower jitter at the output of the input clock driver? (hint: consider gate capacitance) Explain.