EE2361: Introduction to Microcontrollers

Kia Bazargan

University of Minnesota
Dept. of ECE

www.umn.edu/~kia/
kia@umn.edu
Course Information

• **Class webpage**
 – Login to http://moodle.umn.edu

• **Instructor: Kia Bazargan**
 – Office: EE/CSci 4-159, Email: kia@umn.edu
 – Phone: (612) 625-4588
 – *Office hours:* Wed 10-11, or by appointment
Rough Course Overview

<table>
<thead>
<tr>
<th>Topics</th>
<th>“hours”</th>
<th>Book ch</th>
<th>week</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrative remarks</td>
<td>.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction, History of Processors</td>
<td>1.5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Processor Fundamentals and the PIC Architecture</td>
<td>1.5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Introduction to Assembly (Operations and Operands)</td>
<td>1.5</td>
<td>2, 3</td>
<td>2,3</td>
</tr>
<tr>
<td>Data Structures in Assembly Language</td>
<td>1.5</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Basic I/O and timing (with Analog Output)</td>
<td>1.5</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>Simple Interrupts</td>
<td>1.5</td>
<td>6</td>
<td>5, 6</td>
</tr>
<tr>
<td>Intermediate Timing</td>
<td>2</td>
<td>8</td>
<td>6, 7</td>
</tr>
<tr>
<td>Introduction to Embedded C Language</td>
<td>3</td>
<td>5</td>
<td>4, 5</td>
</tr>
<tr>
<td>Analog to Digital Conversion</td>
<td>3</td>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td>Interface between C and Assembly</td>
<td>1.5</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>Serial Interfaces</td>
<td>3</td>
<td>9</td>
<td>8, 9</td>
</tr>
<tr>
<td>Advanced Parallel I/O (configuration, interrupts)</td>
<td>1.5</td>
<td>14</td>
<td>10, 11</td>
</tr>
<tr>
<td>Advanced Timing (PWM, Capture, Compare)</td>
<td>2</td>
<td>8</td>
<td>11, 12</td>
</tr>
<tr>
<td>Power Management, Special Operations</td>
<td>1.5</td>
<td>15</td>
<td>13</td>
</tr>
</tbody>
</table>
Class Materials

• Textbook (none required):
 – “Learning to Fly the PIC24” by Lucio Di Jasio.
 – “Embedded Design with the PIC18F452 Microcontroller”, by Peatman

• PIC microcontroller manuals
 – PIC24FJ64GA002 Data Sheet, Programmer Ref Manual

• Documents posted on Moodle
 – Slides
 – Lecture notes
 – Additional documents (not covered in class)
Grading Policy

• Labs (20%)
 – 8 Labs, already posted first week’s labs
 – Labs 1 and 5 are challenging

• Homework (20%)
 – 4-5 homework assignments and quizzes

• Midterm exam (30%)
 – In class, open book, open notes, calculators permitted

• Final exam (30%)
 – In class, open book, open notes, calculators permitted
 – Have to get at least 50% of the grade on the final and midterm to pass the course.
Class Policies

• Students caught engaging in an academically dishonest practice will receive an F for the course.

• University policy on academic dishonesty will be followed strictly.
 – http://www1.umn.edu/oscai/

• 3 days of grace period for homework submission (3 days for the whole semester)

• No extra work will be accepted for improving the final grade

• More policies on the syllabus (pdf)
A Simple “Computer”

Pull-up resistor needed?

http://media.digikey.com/photos/Lumex%20Photos/SSA-LXH1025GD.jpg

http://www.doc.ic.ac.uk/~ih/doc/nxt-i2c/voti_switches_big.jpg
and w5, w4, w4
mov #0x9FFF, w4
mov w4, PORTB

Fig from the PIC24FJ64GA004 manual