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I
magine a system with thousands or millions of independent components, all capable
of generating and communicating data. A man-made system of this complexity was
unthinkable a few decades ago, but today it is a reality—computers, cell phones, sen-
sors, and actuators are all linked to the Internet, and every wired or wireless device is
capable of generating and disseminating prodigious volumes of data. This system is

not a single centrally controlled device; rather it is an ever-growing patchwork of
autonomous systems and components, perhaps more organic in nature than any human
artifact that has come before. And we struggle to manage and understand this creation,
which in many ways has taken on a life of its own. Indeed, several international confer-
ences are dedicated to the scientific study of emergent Internet phenomena.

This article considers a particularly salient aspect of this struggle that revolves
around large-scale distributed sources of data and their storage, transmission, and
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retrieval. The task of transmitting information from one point
to another is a common and well-understood exercise. But the
problem of efficiently transmitting or sharing information from
and among a vast number of distributed nodes remains a great
challenge, primarily because we do not yet have well developed
theories and tools for distributed signal processing, communica-
tions, and information theory in large-scale networked systems.

The problem is illustrated by a
simple example. Consider a net-
work of n nodes, each having a
piece of information or data xj,
j = 1, . . . , n. These data could be
files to be shared or simply scalar
values corresponding to node
attributes or sensor measurements.
Let us assume that each xj is a scalar quantity for the sake of
this illustration. Collectively these data x = [x1, . . . , xn]T,
arranged in a vector, are called networked data to emphasize
both the distributed nature of the data and the fact that they
may be shared over the underlying communications infrastruc-
ture of the network. The networked data vector may be very
large; n may be a thousand or a million or more. Thus, even the
process of gathering x at a single point is daunting (requiring n
communications at least), and yet this global sense of the net-
worked data is crucial in applications ranging from network
security to wireless sensing. Suppose, however, that it is possible
to construct a highly compressed version of x, efficiently and in
a decentralized fashion. This would offer many obvious benefits,
provided that the compressed version could be processed to
recover x to within a reasonable accuracy.

There are several decentralized compression strategies that
could be utilized. One possibility is that the correlations
between data at different nodes are known a priori. Then dis-
tributed source coding techniques, such as Slepian-Wolf cod-
ing, can be used to design compression schemes without
collaboration between nodes (see [1] and the references there-
in for an excellent overview of such approaches).
Unfortunately, in many applications prior knowledge of the
precise correlations in the data is unavailable, making it diffi-
cult or impossible to apply such distributed source coding
techniques. This situation motivates collaborative, in-network
processing and compression where unknown correlations and
dependencies between the networked data can be learned and
exploited by exchanging information between network nodes.
But the design and implementation of effective collaborative
processing algorithms can be quite challenging, since they
too rely on some prior knowledge of the anticipated correla-
tions and depend on somewhat sophisticated communications
and node processing capabilities.

This article describes a very different approach to the decen-
tralized compression of networked data. Specifically, consider a
compression of the form y = Ax, where A = {Ai, j} is a k × n
“sensing” matrix with far fewer rows than columns (i.e., k � n).
The compressed data vector y is k × 1, and therefore it is much
easier to store, transmit, and retrieve compared to the uncom-

pressed networked data x. The theory of compressed sensing
(CS) guarantees that, for certain matrices A, which are nonadap-
tive and often quite unstructured, x can be accurately recovered
from y whenever x itself is compressible in some domain (e.g.,
frequency, wavelet, time) [2]–[5].

To carry the illustration further, and to motivate the
approaches proposed in this article, let us look at a very con-

crete example. Suppose that most
of the network nodes have the
same nominal data value, but the
few remaining nodes have differ-
ent values. For instance, the val-
ues could correspond to security
statistics or sensor readings at
each node. The networked data

vector in this case is mostly constant, except for a few devia-
tions in certain locations, and it is the minority that may be of
most interest in security or sensing applications. Clearly x is
quite compressible; the nominal value plus the locations and
values of the few deviant cases suffice for its specification.

Consider a few possible situations in this networked data
compression problem. First, if the nominal value is known to
all nodes, than the desired compression can be accomplished
simply by the deviant nodes sending a notification of such.
Second, if the nominal value is not known, but the deviant
cases are assumed to be isolated, then the nodes can simply
compare their own values to those of their nearest neighbors
to determine the nominal value and any deviation of their
own. Again, notifications from the deviant nodes provide the
desired compression. There is a third, more general, scenario
in which such simple local processing schemes can break
down. Suppose that the nominal value is unknown to the
nodes a priori, and that the deviant cases could be isolated or
clustered. Since the deviant nodes may be clustered together,
simply comparing values between neighboring nodes may not
reveal them all, and perhaps not even the majority of them
depending on the extent of clustering. Indeed, distributed
processing schemes in general are difficult to design without
prior knowledge of the anticipated relations among data at
neighboring nodes. This serves as a motivation for the theory
and methods discussed here.

CS offers an alternative measurement approach that does
not require any specific prior signal knowledge and is an effec-
tive (and efficient) strategy in each of the situations described
above. The values of all nodes can be recovered from the com-
pressed data y = Ax, provided its size k is proportional to the
number of deviant nodes. As we shall see, y can be efficiently
computed in a distributed manner, and by virtue of its small
size, it is naturally easy to store and transmit. In fact, in cer-
tain wireless network applications, it is even possible to com-
pute y in the air itself, rather than in silicon! Thus, CS offers
two highly desirable features for networked data analysis. The
method is decentralized, meaning that distributed data can be
encoded without a central controller, and universal, in the
sense that sampling does not require a priori knowledge or
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assumptions about the data. For these reasons, the advantages
of CS have already caught on in the research community, as
evidenced by several recent works [6]–[10].

CS BASICS
The essential purpose of sensing and sampling systems is to
accurately capture the salient information in a signal of interest.
Generically, such systems can be viewed as having the following
core components. First, in a preconditioning step, the system
introduces some form of sensing diversity, which gives each
physically distinct signal from a specified class of candidates a
distinct signature or fingerprint. Next, the “diversified” signal is
sampled and recorded, and finally the system reconstructs the
original signal from the sampled data. Because inadequate sam-
pling of a signal can induce aliasing, meaning that the same set
of samples may describe many different signals, the precondi-
tioning step is necessary to eliminate spurious (incorrect) solu-
tions. For example, low-pass filtering is a type of
preconditioning that maps every signal having frequency less
than the filter cutoff frequency to itself, while all higher fre-

quency components are mapped to zero, and this step is suffi-
cient to ensure that the signal reconstructed from a set of uni-
form samples is unique and equal to the original signal.

The theory of CS extends traditional sensing and sampling
systems (designed with bandlimited signals in mind) to a
much broader class of signals. According to CS theory, any
sufficiently compressible signal can be accurately recovered
from a small number of nonadaptive, randomized linear pro-
jection samples. For example, suppose that x ∈ Rn is m-
sparse (i.e., it has no more than m nonzero entries) where m
is much smaller than the signal length n. Sparse vectors are
very compressible, since they can be completely described by
the locations and amplitudes of the nonzero entries. Rather
than sampling each element of x, CS directs us to first pre-
condition the signal by operating on it with a diversifying
matrix, yielding a signal whose entries are mixtures of the
nonzero entries of the original signal. The resulting signal is
then sampled k times to obtain a low-dimensional vector of
observations. Overall, the acquisition process can be described
by the observation model y = Ax + ε , where the matrix A is a
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To illustrate the CS random projection encoding and reconstruc-
tion ideas, consider a simplification of the example described in
the introduction. Suppose that in a network of n sensors, only
one of the sensors is observing some
positive value, while the rest of the
sensors observe zero. The goal is to
identify which sensor is different using
a minimum number of observations.
Consider making random projection
observations of the data, where each
observation is the projection of the
sensor readings onto a random vector
having entries ±1 each with probabili-
ty 1/2. The value of each observation,
along with knowledge of the random
vector onto which the data was pro-
jected, can be used to identify a set of
about n/2 hypothesis sensors that are
consistent with that particular observa-
tion. The estimate of the anomalous
sensor given k observations is simply
the intersection of the k hypotheses
sets defined by the observations (see
Figure 1). It is easy to see that, on aver-
age, about log n observations are
required before the correct (unique)
estimate is obtained. Define the �0

quasi-norm ‖z‖0 to be equal to the
number of nonzero entries in the vec-
tor z. Then this simple procedure can
be thought of as the solution of the
optimization problem

arg min
z

‖z‖0 subject to y = Az. (1)

[FIG1] A simple reconstruction example on a network of n = 16 nodes. One distinguished
sensor observes a positive value while the remaining n − 1 observe zero. The task is to
identify which sensor is different using as few observations as possible. One effective
approach is to project the data onto random vectors, as depicted in the second column
(where nodes indicated in black multiply their data value by −1 and those in white by +1).
The third column shows that about n/2 hypothesis sensors are consistent with each random
projection observation, but the number of hypotheses that are simultaneously consistent
with all observations (shown in the fourth column) decreases exponentially with the
number of observations. The random projection observations are approximately performing
binary bisections of the hypothesis space, and only about log n observations are needed to
determine which sensor reads the nonzero value. 
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k × n CS matrix that describes the joint operations of diversi-
fication and subsampling, and ε represents errors due to noise
or other perturbations. 

The main results of CS theory have established that if the
number of CS samples is a small integer multiple greater than
the number of nonzero entries in x, then these samples suffi-
ciently “encode” the salient information in the sparse signal and
an accurate reconstruction from y is possible. These results are
very promising because at least 2m pieces of information (the
location and amplitude of each nonzero entry) are generally
required to describe any m-sparse signal, and CS is an effective
way to obtain this information in a simple, nonadaptive manner.
The next few subsections explain in some detail how this is
accomplished (the basic ideas are illustrated in “Random
Projection Encoding and Decoding”).

ENCODING REQUIREMENTS
Suppose that for some observation matrix A there is a
nonzero m-sparse signal x such that the observations
y = Ax = 0. One could not possibly hope to recover x in this
setting, since the observations do not provide any informa-
tion about the signal. Another similar problem arises if two
distinct m-sparse signals, say x and x′ , are mapped to the
same compressed data (i.e., Ax = Ax′). These two scenarios
describe situations where certain sparse vectors lie in the
null space of the observation matrix. 

Matrices that are resilient to these ambiguities are those that
satisfy the restricted isometry property (RIP), sometimes also
called the uniform uncertainty principle (UUP) [2], [11].
Formally, a k × n sensing matrix with unit-norm rows (i.e.,∑n

j=1 A2
i, j = 1 for i = 1, 2, . . . , k) is said to satisfy a RIP of

order s whenever

(1 − δs)
k
n

∥∥∥x
∥∥∥2

2
≤

∥∥∥Ax
∥∥∥2

2
≤ (1 + δs)

k
n

∥∥∥x
∥∥∥2

2
(2)

holds simultaneously for all s-sparse vectors x ∈ Rn for suffi-
ciently small values of δs. The RIP is so named because it
describes matrices that impose a near-isometry (approximate
length preservation) on a restricted set of subspaces (the sub-
spaces of s-sparse vectors).

In practice, sensing matrices that satisfy the RIP are easy
to generate. It has been established that k × n matrices
whose entries are independent and identically distributed
realizations of certain zero-mean random variables with vari-
ance 1/n satisfy a RIP with very high probability when
k ≥ const · log n · m [2], [3], [12]. Physical limitations of real
sensing systems motivate the unit-norm restriction on the
rows of A, which essentially limits the amount of “sampling
energy” allotted to each observation.

DECODING: ALGORITHMS AND BOUNDS
Because CS is a form of subsampling, aliasing is present and
needs to be accounted for in the reconstruction process.
The same compressed data could be generated by many n-

dimensional vectors, but the RIP implies that only one of
these is sparse. This might seem to require that any recon-
struction algorithm must exhaustively search over all
sparse vectors, but fortunately the process is much more
tractable. Given a vector of (noise-free) observations y = Ax,
the unknown m-sparse signal x can recovered exactly as the
unique solution to 

arg min
z

‖z‖1 subject to y = Az, (3)

where ‖z‖1 = ∑n
i=1 |zi| denotes the �1-norm, provided the

restricted isometry constants satisfy δm + δ2m + δ3m < 1,
which is a slightly stronger condition than necessary to
ensure that neither of the encoding ambiguities described
earlier can happen [2]. The recovery procedure can be cast as
a linear program, so it is very easy to solve even when n is
very large.

CS remains quite effective even when the samples are noisy,
which is important from a practical point of view since any real
system will be subjected to measurement inaccuracies. A variety
of reconstruction methods have been proposed to recover (an
approximation of) x when observations are corrupted by zero-
mean random noise. For example, estimates ̂x can be obtained
as the solutions of either

arg min
z

‖z‖1 subject to ‖AT(y − Az)‖∞ ≤ λ1, (4)

where ‖z‖∞ = maxi=1,...,n |z(i)| [5], or the penalized least
squares minimization

arg min
z

{∥∥∥y − Az
∥∥∥2

2
+ λ2‖z‖0

}
(5)

as proposed in [4], for appropriately chosen regularization con-
stants λ1 and λ2 that each depend on the noise variance. In
either case, the reconstruction satisfies

E

[
‖x − x̂‖2

2
n

]
≤ const ·

(
k

m log n

)−1

, (6)

where the leading constant does not depend on k, m, or n. In
practice, the optimization (4) can be solved by a linear pro-
gram, while (5) is often solved by convex relaxation—replac-
ing the �0 penalty with the �1 penalty.

The appeal of CS is readily apparent from the error
bound in (6) that (ignoring the constant and logarithmic
factors) is proportional to m/k, the variance of an estimator
of m parameters from k observations. In other words, CS is
able to both identify the locations and estimate the ampli-
tudes of the nonzero entries without any specific prior
knowledge about the signal except its assumed sparsity. For
this reason CS is often referred to as a universal approach,
since it can effectively recover any sufficiently sparse signal
from a set of nonadaptive samples.



TRANSFORM DOMAIN SPARSITY
Suppose the observed signal x is not sparse but instead a suit-
ably transformed version of it is. That is, if T is a transforma-
tion matrix then θθθ = Tx is sparse. The CS observations can be
written as y = Ax = AT−1θθθ , and if
A is a random CS matrix satisfying
the RIP, then in many cases so is
the product matrix AT−1 [12].
Consequently, CS does not require
prior knowledge or assumptions
regarding the domain in which the
networked data are compressible,
again highlighting its universality.

The sparse vector θθθ (and hence
x) can be accurately recovered from y using the reconstruction
techniques described above. For example, in the noiseless set-
ting one can solve

θ̂θθ = arg min
z

‖z‖1 subject to y = AT−1z, (7)

to obtain an exact reconstruction of the transform coeffi-
cients of x. Note that, while the samples do not require
selection of an appropriate sparsifying transform, the recon-
struction does.

In other settings, signals of interest may not be exactly
sparse, but instead most of the energy might be concen-
trated on a relatively small set of entries while the remain-
ing entries are very small. The degree of effective sparsity
of such signals can be quantified with respect to a given
basis. Formally, for a signal x let xs be the approximation of
x formed by retaining the s coefficients having largest mag-
nitude in the transformed representation θθθ = Tx. Then x is
called α-compressible if the approximation error obeys

‖x − xs‖2
2

n
≤ const · s−2α (8)

for some α = α(x, T) > 0 . This model could describe, for
example, signals whose ordered (transformed) coefficient
amplitudes exhibit a power-law decay. Such behavior is associ-
ated with images that are smooth or have bounded variation
[3], [11], and is often observed in the wavelet coefficients of
natural images. In this setting, CS reconstruction techniques
can again be applied to obtain an estimate of the transformed
coefficients directly. For example, the estimate ̂x = T−1θ̂ ,
obtained by solving

θ̂θθ = arg min
z

{∥∥∥y − AT−1z
∥∥∥2

2
+ λ‖z‖0

}
, (9)

satisfies

E

[
‖x − x̂‖2

2
n

]
≤ const ·

(
k

log n

)−2α/2α+1

, (10)

which quantifies the simultaneous balancing of the errors due
to approximation and estimation [4]. The result guarantees that
even when signals are only approximately sparse, consistent
estimation is still possible.

SPARSIFYING
NETWORKED DATA
CS can be very effective when x is
sparse or highly compressible in a
certain basis or dictionary. But,
while transform-based compres-
sion is well developed in tradition-
al signal and image processing
domains, the understanding of

sparsifying/compressing bases for networked data is far from
complete.  There are,  however,  a few promising new
approaches to the design of transforms for networked data.
It is natural to associate a graph with a given network,
where the vertices of the graph represent the nodes of the
network, and edges between vertices represent anticipated
relationships among the data at adjacent nodes. The edges
may reflect relationships due to communication links or
correlations and dependencies that are anticipated between
data at neighboring nodes. Exploiting the structure of the
connectivity is the key to obtaining effective sparsifying
transformations for networked data, and a few methods are
described below.

SPATIAL COMPRESSION
Suppose a wireless sensor network is deployed to monitor a
certain spatially varying phenomenon such as temperature,
light, or moisture. The physical field being measured can be
viewed as a signal or image with a degree of spatial correla-
tion or smoothness. If the sensors are geographically placed
in a uniform fashion, then sparsifying transforms may be
readily borrowed from traditional signal processing. Figure
2(a) illustrates a typical such situation where the underlying
graph is a regular lattice. In these settings, the sensor loca-
tions can be viewed as sampling locations and tools like the
discrete Fourier transform (DFT) or discrete wavelet trans-
form (DWT) may be used to decorrelate and sparsify the sen-
sor data. In more general settings, wavelet techniques can be
extended to also handle the irregular distribution of sam-
pling locations [13].

GRAPH WAVELETS
Standard signal transforms cannot be applied in more general
situations. For example, many network monitoring applica-
tions rely on the analysis of communication traffic levels at the
network nodes. Changes in the behavior of traffic levels can be
indicative of variations in network usage, component failures
or misconfigurations, or malicious activities. There are strong
correlations between traffic levels at different nodes, but the
topology and routing affect the nature of these relationships in
complex ways. Moreover, since network topology is rarely
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based on a regular lattice, the graphs needed to represent such
networks can be quite complex as well. Graph wavelets, devel-
oped with these challenges in mind, adapt the design princi-
ples of the DWT to arbitrary graphs [14].

To understand the construction of graph wavelets, it is
useful to first consider the Haar wavelet transform, which
is the simplest form of DWT. The wavelet coefficients are
essentially obtained as digital differences of the data at dif-
ferent scales of aggregation. The coefficients at the first
scale are differences between neighboring data points, and
those at subsequent spatial scales are computed by first
aggregating data in neighborhoods (dyadic intervals in one
dimension and square regions in
two dimensions) and then comput-
ing differences between neighbor-
ing aggregations. Other versions of
the DWT are distinguished by more
general aggregation/averaging and
differencing operations.

Graph wavelets are a generaliza-
tion of this construction, where the
number of hops between nodes in a
network provides a natural distance
measure that can be used to define
neighborhoods. The size of each
neighborhood (with radius defined
by the number of hops) provides a
natural  measure of  scale,  with
smaller sizes corresponding to finer
spatial analysis of the networked
data. Graph wavelet coefficients are
then defined by aggregating data at
different scales, and computing dif-
ferences between aggregated data,
as shown in Figure 2(b). Further
details and generalizations, along
with an application of  graph
wavelets to the analysis of network
traffic data, may be found in [14].

DIFFUSION WAVELETS
Diffusion wavelets provide an alterna-
tive approach to constructing a multi-
scale representation for data defined
on a graph. Unlike graph wavelets
that produce an overcomplete dic-
tionary, diffusion wavelets construct
an orthonormal basis for functions
supported on a graph. The diffusion
wavelet construction process pro-
duces a basis tailored to a specific
graph by analyzing eigenvectors of a
diffusion matrix derived from the
graph adjacency matrix (hence the
name “diffusion wavelets”). The

resulting basis vectors are generally localized to neighbor-
hoods of varying size and may also lead to a sparsifying repre-
sentation of data on a graph. A thorough treatment of this
topic can be found in [15]. 

One example of sparsification using diffusion wavelets is
shown in Figure 3, where the node data correspond to traffic
rates through routers in a computer network. There are several
highly localized regions of activity, while most of the remaining
network exhibits only moderate levels of traffic. The traffic data
are sparsely represented in the diffusion wavelet basis, and a
small number of coefficients can provide an accurate estimate
of the actual traffic patterns.

[FIG2] Sparsifying transformation techniques depend on graph topologies. The smoothly
varying field in (a) is monitored by a network of wireless sensors deployed uniformly over
the region, and standard transform techniques can be used to sparsify the networked data.
For more abstract graph topologies, graph wavelets can be effective. In (b), the graph (Haar)
wavelet coefficient at the location of the black node and scale three is given by the
difference of the average data values at the nodes in the red and blue regions.

[FIG3] An illustration of the compressibility of spatially correlated networked data using
diffusion wavelets. The actual networked data shown in (a) are not sparse, but can be
represented with a small number of diffusion wavelet coefficients, as seen in (b).
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NETWORKED DATA COMPRESSION IN ACTION
This section describes two techniques for obtaining projections
of networked data onto general vectors, which can be thought of
as the rows of the sensing matrix A. As described earlier, random
projections are a useful choice
when the underlying data is sparse,
since consistent estimation is possi-
ble without prior knowledge of the
sparsifying (or compressing) basis
or representation. In addition, a
variety of methods exist to sparsify
data on arbitrary networks.

The first approach described
below assumes that the network is
any general multihop network.
This model could explain, for example, wireless sensor net-
works, wired local area networks, weather or agricultural
monitoring networks, or even portions of the Internet. In the
multihop setting the projections can be computed and deliv-

ered to every subset of nodes in the network using
gossip/consensus techniques, or they might be delivered to a
single point using clustering and aggregation. The second
more specific approach described below is motivated by many

wireless sensor networks where
explicit routing information is dif-
ficult to obtain and maintain. In
this setting, each sensor instead
contributes its measurement in a
joint fashion by simultaneous
transmission to a distant process-
ing location, and the observations
are accumulated and processed at
that (single) destination point.

CS FOR NETWORKED DATA STORAGE AND RETRIEVAL
In general multihop networks, CS projections of the form
yi = ∑n

j=1 Ai, jxj can be computed in an efficient decentralized
fashion because each compressed data value yi is a simple linear

combination of the values at each node.
Two simple steps are required for the
computation and distribution of each CS
sample yi, i = 1, . . . , k:

■ Step 1: Each of the n sensors,
j = 1, . . . , n, locally computes the
term Ai, jxj by multiplying its data
with the corresponding element of the
compressing matrix. The compressing
matrix can be generated in a distrib-
uted fashion by letting each node
locally generate a realization of Ai, j

using a pseudorandom number gener-
ator seeded with its identifier (in this
example, the integers j = 1, . . . , n
serve as this identifier). Given the
identifiers of the nodes in the network,
the requesting node can also easily
reconstruct the random vectors
{Ai, j}k

i=1 for each sensor j = 1, . . . , n.
■ Step 2: The local terms Ai, jxj

are s imultaneously aggregated
and distributed across the net-
work using randomized gossip,
which is a simple iterative decen-
tralized algorithm for computing
l inear  funct ions  such  as
yi = ∑n

j=1 Ai, jxj (see Figure 4).
Because each node only exchanges
information with its immediate
neighbors in the network, gossip
algorithms are resilient to failures
or changes in the network topology.
Moreover, when randomized gossip
terminates, the value of yi is avail-
able at every node in the network,

[FIG4] Randomized gossip: (a) depicts one gossip iteration, where the color of a node
corresponds to its local value. To begin, the network is initialized to a state where each
node has a value xi(0), i = 1, . . . , n. Then in an iterative, asynchronous fashion, a random
node a is “activated” and chooses one of its neighbors b at random. The two nodes then
“gossip”—they exchange their values xa(t) and xb(t), or in the CS setting the values
multiplied by pseudo-random compression vector elements, and perform the update
xa(t + 1) = xb(t + 1) ← (

xa(t) + xb(t)
)
/2, while the data at all the other nodes remains

unchanged. (b) shows an example network of 100 nodes with (left) random initial values,
(middle) after each node has communicated five times with each of its neighbors, and
(left) after each node has communicated 50 times with each of its neighbors. It can be
shown that for this simple procedure, xi(t) converges to the average of the initial values,
1/n

∑n
j=1 xj(0), at every node in the network as t tends to infinity as long as the random

choice of neighbors is sufficient to ensure that information will eventually propagate
between every pair of nodes.
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so the network data cannot be
compromised by eliminating a sin-
gle server or fusion center.
In many scenarios, gossip algo-

rithms are efficient since they use net-
work resources to simultaneously route
and compute information. For example,
in networks with power-law degree dis-
tributions, such as the Internet, an opti-
mized gossip algorithm uses on the
order of kn transmissions to compute
all of the samples [16]. Generally
k � n, so this is much more efficient
than exhaustively exchanging raw data
values which would take about n2

transmissions. In addition, the gossip
procedure ensures that the samples are
known at every node, so a user can
query any node in the network, request
the compressed data values, and compute ̂x via one of the recon-
struction methods outlined earlier. Of course, one could replace
gossip computation with aggregation up a spanning tree or
around a cycle, if the network provides reliable routing service.
This may be more efficient if it is known ahead of time that the
compressed data values will only be retrieved at one location.
For more on using gossip algorithms to compute and distribute
compressed data representations in multihop networks, see [7].

CS IN WIRELESS SENSOR NETWORKS
Sensor networking is an emerging technology that promises
an unprecedented ability to monitor the physical world via a
spatially distributed network of small, inexpensive wireless
devices that have the ability to self-organize into a well-con-
nected network. A typical wireless sensor network, as shown
in Figure 5, consists of a large number of wireless sensor
nodes, spatially distributed over a region of interest, that can
sense (and potentially actuate) the physical environment in a
variety of modalities, including acoustic, seismic, thermal,
and infrared. A wide range of applications of sensor networks
are being envisioned in a number of areas, including geo-
graphical monitoring, inventory management, homeland
security, and health care.

The essential task in many applications of sensor net-
works is to extract some relevant information from distrib-
uted data and wirelessly deliver it to a distant destination,
called the fusion center (FC). While this task can be accom-
plished in a number of ways, one particularly attractive
technique leverages the theory of CS and corresponds to
delivering random projections of the sensor network data
to the FC by exploiting recent results on uncoded (analog)
coherent transmission schemes in wireless sensor net-
works [17]–[20]. The proposed distributed communication
architecture—introduced in [6] and [8] and refined in
[21]—requires only one (network) transmission per ran-
dom projection and is based on the notion of so-called

“matched source-channel communication” [19], [20]. Here,
the CS projection observations are simultaneously calculat-
ed (by the superposition of radio waves) and communicated
using amplitude-modulated coherent transmissions of ran-
domly weighted sensed values directly from the nodes in
the network to the FC via the air interface. Algorithmically,
sensor nodes sequentially perform the following steps in
order to communicate k random projections of the sensor
network data to the FC:

■ Step 1: Each of the n sensors locally draws k elements of
the random projection vectors {Ai, j}k

i=1 by using its network
address as the seed of a pseudorandom number generator.
Given the seed values and the addresses of the nodes in the
network, the FC can also easily reconstruct the random vec-
tors {Ai, j}k

i=1 for each sensor j = 1, . . . , n.
■ Step 2: The sensor at location j multiplies its measurement
xj with {Ai, j}k

i=1 to obtain a k-tuple

vj = (
A1, j xj , . . . , Ak, j xj

)T
, j = 1, . . . , n, (11)

and all the nodes coherently transmit their respective vjs in
an analog fashion over the network-to-FC air interface using
k time slots (transmissions). Because of the additive nature of
radio waves, the corresponding received signal at the FC at
the end of the kth transmission is given by

y =
n∑

j=1

vj + ε = Ax + ε, (12)

where ε is the noise generated by the communication receiv-
er circuitry of the FC.
The steps above correspond to a completely decentralized

way of delivering k random projections of the sensed data to
the FC by employing k (network) transmissions. Another
possibility for realizing the same goal is to assume that the
sensors are capable of local communications and that a

[FIG5] An illustration of a wireless sensor network and fusion center. A number of sensor
nodes monitor the river water for various forms of contamination and periodically report
their findings over the air to the fusion center. CS projection observations are obtained by
each sensor transmitting a sinusoid with amplitude given by the product of the sensor
measurement and a pseudorandom weight. When the transmissions arrive in phase at the
fusion center, the amplitude of the resulting received waveform is the sum of the
component wave amplitudes.

Receive Antenna Plane

Sensor Network Monitoring River Water

Fusion Center
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route which forms a spanning tree
through the network to some
nominated clusterhead has been
established. Then, each sensor
node can locally compute
{vi, j = Ai, jxj}k

i=1 and these values
can be aggregated up the tree to
obtain v = Ax at the clusterhead
which then encodes and transmits
this vector to the FC. The main
difference here is that the wireless method described above
can be implemented without any complex routing informa-
tion and as a result might be a suitable and scalable option
in many sensor networking applications (see “Digital Versus
Analog Communications: Which is Better?”).

CONCLUSIONS AND EXTENSIONS
This article described how CS techniques could be utilized
to reconstruct sparse or compressible networked data in a
variety of practical settings, including general multihop
networks and wireless sensor networks. CS provides two
key features, universal sampling and decentralized encod-
ing, making it a promising new paradigm for networked
data analysis. The focus here was primarily on managing
resources during the encoding process, but it is important

to note that the decoding step
also poses a significant challenge.
Indeed,  the study of  e f f ic ient
decoding algorithms remains at
the forefront of current research
[23]–[25].

In addition, specialized measure-
ment matrices, such as those result-
ing from Toeplitz-structured
matrices [26] and the incoherent

basis sampling methods described in [27], lead to significant
reductions in the complexity of convex decoding methods.
Fortunately, the sampling matrices inherent to these methods
can be easily implemented using the network projection
approaches described above. For example, Toeplitz-structured
CS matrices naturally result when each node uses the same ran-
dom number generation scheme and seed value, where at ini-
tialization each node advances its own random sequence by its
unique (integer) identifier. Similarly, random samples from any
orthonormal basis (the observation model described in [27]) can
easily be obtained in the settings described above if each node is
preloaded with its weights for each basis element in the corre-
sponding orthonormal transformation matrix. For each observa-
tion, the requesting node (or fusion center) broadcasts a
random integer between 1 and n to the nodes to specify which
transform coefficient from the predetermined basis should be
obtained, and the projection is delivered using any suitable
method described above.

Finally, it is worth noting that matrices satisfying the RIP
also approximately preserve additional geometrical structure
on subspaces of sparse vectors, such as angles and inner
products, as shown in [28]. A useful consequence of this
result is that an ensemble of CS observations can be “data
mined” for events of interest [29], [30]. For example, consid-
er a network whose data may contain an anomaly that origi-
nated at one of m candidate nodes. An ensemble of CS
observations of the networked data, collected without any a
priori information about the anomaly, can be analyzed “post-
mortem” to accurately determine which candidate node was
the likely source of the anomaly. Such extensions of CS theo-
ry suggest efficient and scalable techniques for monitoring
large-scale distributed networks, many of which can be per-
formed without the computational burden of reconstructing
the complete networked data.
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