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Abstract—High-rate data communication over a multipath in the rate (multiplexing gain) and/or reliability (divéss
wireless channel often rquires that the channel re§ponseeb gain) of communication [2]. The impact of fading versus
known at the receiver. Training-based methods, which probe - gy esity/multiplexing gain on performance critically gends
the channel in time, frequency, and space with known signals - . .
and reconstruct the channel response from the output signa] " the amount of channel state |nformat|qn (CSI) available
are most commonly used to accomplish this task. Traditional t0 the system. For example, knowledge of instantaneous CSI
training-based channel estimation methods, typically comrising at the receiver (coherent reception) enables exploitatibn
of linear reconstruction techniques, are known to be optimé delay, Doppler, and/or spatial diversity to combat fadimbile

for rich multipath channels. However, physical arguments @d g, ther gains in rate and reliability are possible if (evemtjal)
growing experimental evidence suggest that many wireleshan- csSli ilable at the t itt 1
nels encountered in practice tend to exhibit a sparse multigth is available at the transmitter as well [1].

structure that gets pronounced as the signal space dimensiaets |n_pr§0tice, CSl is seldo_m—if ever—available to com-
large (e.g., due to large bandwidth or large number of antenas). munication systems a priori and the channel needs to be

In this paper, we formalize the notion of multipath sparsity (periodically) estimated at the receiver in order to reap th
and present a new approach to estimating sparse (or effecely anefits of additional DoF afforded by multipath propagatio

sparse) multipath channels that is based on some of the recen A h t | f thod I | d
advances in the theory of compressed sensing. In particulait is S SUCh, WO classes of methods are commonly employe

shown in the paper that the proposed approach, which is terma to estimate multlpath Channe|S at the receiver.trﬁining-
as compressed channel sensing, can potentially achieve aget based channel estimatianethods, the transmitter multiplexes

reconstruction error using far less energy and, in many insances, signals that are known to the receiver (henceforth referred
'Sat‘jgfé’séggszzng‘g’iﬁ;h tf;:gﬂt_]kcl)%tsdmtated by the traditional least- 14" a5 training signals) with data-carrying signals in time,
q 9 o _ frequency, and/or code domain, and CSI is obtained at the
_Index Terms—Channel estimation, compressed sensing, Dant- receiver from knowledge of the training and received signal
zig selector, least-squares estimation, multiple-antersnchannels, iy channel estimatiomethods, CSI is acquired at the
orthogonal frequency division multiplexing, sparse chanel mod- . . o . )
eling, spread spectrum, training-based estimation. receiver by making use of the stgtlstlcs_ of datg—ca_rrwggashs
only. Although theoretically feasible, blind estimatiorethods
typically require complex signal processing at the receare
o often entail inversion of large data-dependent matricdschy
A. Motivation and Background also makes them highly prone to error propagation in rapidly
In a typical scattering environment, a radio signal emitrarying channels. Training-based methods, on the othed,han
ted from a transmitter is reflected, diffracted, and scatterrequire relatively simple receiver processing and oftem l®
from the surrounding objects, and arrives at the receiver @scoupling of the data-detection module from the channel-
a superposition of multiple attenuated, delayed, and phaggtimation module at the receiver, which reduces receiver
and/or frequency-shifted copies of the original signalisThcomplexity even further. As such, training-based methads a
superposition of multiple copies of the transmitted signalvidely prevalent in modern wireless systems [3] and we
called multipath signal components, is the defining charatherefore focus exclusively on them in the sequel; see [4] fo
teristic of many wireless systems, and is both a curse aad overview of blind approaches to channel estimation.
a blessing from a communications viewpoint. On the one One of the first analytical studies of training-based estima
hand, thismultipath signal propagatiorleads to fading— tion methods for multipath channels was authored by Cavers
fluctuations in the received signal strength—that severdly 1991 [5]. Since then, there has been a growing body
impacts the rate and reliability of communication [1]. Omf literature devoted to the design and analysis of traiing
the other hand, research in the last decade has shown tiwded methods for various classes of channels. These works
multipath propagation also results in an increase in thetrarm often highlight two salient aspects of training-based rod#h
of degrees of freedom (DoF) available for communicatiomamely, sensingand reconstruction Sensing corresponds to
which—if utilized effectively—can lead to significant gain the design of training signals used by the transmitter tdb@ro
o ) . i the channel, while reconstruction is the problem of praogss
WUB is with the Program in Applied and Computational Mathéma h di h | h .
ics, Princeton University, Princeton, NJ 08544. JH is witte tDepart- the correspon 'ng channe _o_utput at the receiver to recover
ment of Electrical and Computer Engineering, Rice UnitgrsHous- the CSI. The ability of a training-based method to accuyatel
ton, TX 77005. AMS and RN are with the Department of Electricagstimate the channel depends critically on both the design o
and Computer Engineering, University of Wisconsin-Madisdviadison, . . . .
WI 53706 (baj wa@mt h. princeton. edu, jdhaupt @i ce. edu, ~ raining signals and the application of effective recamstion
akbar @ngr. w sc. edu, nowak@ngr . wi sc. edu). strategies. Much of the work in the channel estimationditer
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ture is based on the implicit assumption ofieh underlying [23], respectively, and to doubly-selective single-antenhan-
multipath environment in the sense that the number of DoF trels using single-carrier waveforms in [21], [27]. Hereeaf
the channel are expected to scale linearly with the sigredesp the main differences between the approaches of [21] and [27]
dimension (product of signaling bandwidth, symbol dunatio is that [21] attempts to exploit the sparsity of the channel i
and minimum of the number of transmit and receive antennas)e delay domain only.
As aresult, training-based methods proposed in such woeks a In contrast to the MP-based approach of [20]-[23], [25],
mainly comprised of linear reconstruction techniques,olvhi [27], Raghavendra and Giridhar proposed a modified least-
are known to be optimal for rich multipath channels, therelsgquares (LS) estimator in [24] for sparse frequency-setect
more or less reducing the problem of channel estimation $ingle-antenna channels using multi-carrier waveforntse T
that of designing optimal training signals for various cheln idea behind the approach in [24] was to reduce the signakspac
classes [5]-[12]. of the LS estimator by using a generalized Akaike infornmatio
Numerous experimental studies undertaken by various m@iterion to estimate the locations of nonzero channel.taps
searchers in the recent past have shown though that wirelEgsally, a somewhat similar idea was employed most recently
channels associated with a number of scattering envirotemein [26] for sparse frequency-selective single-antennancbks
tend to exhibitsparsestructures at high signal space dimendsing single-carrier waveforms. In particular, one of they k
sion in the sense that majority of the channel DoF end wifferences between [24] and [26] is that [26] attempts to
being either zero or below the noise floor when operatirgstimate the locations of nonzero channel taps by trangfigrm
at large bandwidths and symbol durations and/or with larglee tap detection problem into an equivalent on-off keying
plurality of antennas [13]-[18]. However, traditionalitiamg- detection problem.
based methods that rely on linear reconstruction schemes at
the receiver seem incapable of exploiting the inherent low-
dimensionality of such sparse channels, thereby leading to
overdutilization of the key communication resources of gger By leveraging key ideas from the theory of compressed
latency, and bandwidth. A number of researchers have toiedsensing [29], various researchers have recently proposed n
address this problem in the recent past and proposed tgainiraining-based estimation methods for different classés o
signals and reconstruction strategies that are tailorethéo sparse single- and multiple-antenna channels thgpranably
anticipated characteristics of sparse multipath chand€ls- more effective than their LS-based counterparts in thetlimi
[27]. But much of the emphasis in these studies has beehlarge signal space dimension [30]-[38]. In particul&e t
directed towards establishing the feasibility of the pregub training-based methods detailed in [30], [34], [35], [3&ve
sparse-channel estimation methods numerically rathem tHazeen analytically shown to achieve a target reconstruction
analytically. A major drawback of this approach is that therror scaling using far less energy and, in many instances,
methods detailed in the previous investigations lack a tijuarlatency and bandwidth than that dictated by the LS-based
tative theoretical analysis of their performance in terhthe methods. As in the case of previous research, the exactenatur
reconstruction error. of training signals employed by the proposed methods in{30]
[38] varies with the type of signaling waveforms used for
sensing (e.g., single- or multi-carrier signaling waveiey and
the class to which the underlying multipath channel belongs
As is the case with so many other research problems in wife-g., frequency- or doubly-selective channel). Howe\er,
less communications, the area of sparse-channel estim@® common theme underlying all these training-based metheds i
a history that dates back to the early nineties. Histoscallthe use of sparsity-inducing mixed-norm optimizationenid,
the problem of sparse-channel estimation using trainagetd such as the basis pursuit [39], Dantzig selector [40], assida
methods was first explored in the literature in the context §41], for reconstruction at the receiver. These criterizeha
underwater acoustic communications. Specifically, pr@uhptarisen out of recent advances in the theory of sparse signal
by the fact that typical underwater acoustic channels hakecovery, which is more commonly studied under the rubric
impulse responses with large delay and Doppler spreasfscompressed sensing these days. In the spirit of compmtesse
but only a few dominant echoes, an adjustable complexigensing, we term this particular approach to estimatingsspa
recursive least-squares estimation algorithm that ignéihe multipath channels asompressed channel sensif€CS); the
weakest dimensions (“taps”) of the channel was proposedalogy here being that CCS requires far fewer communicatio
in [19] for doubly-selective single-antenna channels gisirresources to estimate sparse channels than do the tradlition
single-carrier waveforms. Afterwards, inspired by thetfad-S-based training methods.
that digital television channels and broadband channels inThe goal of this paper is to complement this existing work
hilly terrains also exhibit sparse structures, Cotter arab Ron sparse-channel estimation by providing a unified summary
proposed a sparse-channel estimation method based onahé¢he key ideas underlying the theory of CCS. In order
matching pursuit (MP) algorithm [28] for frequency-seleet to accomplish this goal, we focus on four specific classes
single-antenna channels using single-carrier wavefo28$ [ of multipath channels within the paper, namely, frequency-
[22]. Later, the MP-based sparse-channel estimation rdetho and doubly-selective single-antenna channels, and rectaes
[20] was extended to frequency-selective single- and pleki and frequency-selective multiple-antenna channels. &cn ef
antenna channels using multi-carrier waveforms in [25] anldese four channel classes, the discussion in the papesdecu
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. . . TABLE |
on the nature of the training signals used for probing a §Parsc; assiricATIoN OF WIRELESS CHANNELS ON THE BASIS OF CHANNEL

channel, the reconstruction method used at the receiver for AND SIGNALING PARAMETERS

recovering the CSI, and.quannflcatlon of the recqnstrmtlo Channel Classification] Wrmas | Tvman
error in the resulting estimate. In terms of modeling of the ,

. . Nonselective Channels| <« 1 <1
sparse channels within each channel class, we use a virtual - Selective Ch N )
representation of physical multipath channels that regmss requency-selective thannelp - = <
the expansion of the time-frequency response of a channel Time-Selective Channely <1 21
in terms of multi-dimensional Fourier basis functions. gt i Doubly-Selective Channely  >1 > 1

worth noting though that the main ideas presented in the
paper can be generalized to channel models that make use

of a basis qther than the Fourier one, provided the eXpanSWHereH(x(t)) is the N z-dimensional channel outpu,( f) is
basis effectively exposes the sparse nature of the undgrlyje (element-wise) Fourier transform of théq-dimensional
multipath environment and can be made available to the omitted signak(t), and H(t, f) is the N x Ny time-
receiver a priori. Finally, most of the mathematical claims varying frequency response matrix of the channel. The matri

the paper are stated without accompanying proofs in orderItp(t’f) can be further expressed in terms of the underlying
keep the exposition short and accessible to general aLﬁjieq)chysiCm paths as

Extensive references are made to the original papers inhwhic

the claims first appeared for those interested in furthexildet Ny

H(ta f) = Z BnaR(eR’n)a?(GT’n)e_jQﬂ'TnfejQWUnt (2)
n=1

D. Organization which represents signal propagation o9&y paths! here,(-)"

The rest of this paper is organized as follows. In Section denotes the Hermitian operation agg is the complex path
we review a widely-used modeling framework in the commuwgain, 6 ,, the angle of arrival (AoA) at the receiveir,, the
nications literature that provides a discretized appration angle of departure (AoD) at the transmittey, the (relative)
of the time-frequency response of a physical channel. Thdelay, andv,, the Doppler shift associated with tmeth path.
framework plays a key role in subsequent developments in thee N1 x 1 vectorar(fr) and theNgr x 1 vectorag(6r)
paper since it not only exposes the relationship between tienote the array steering and response vectors, respgctive
distribution of physical paths within the angle-delay-ptay for transmitting/receiving a signal in the directiép /6 and
space and the sparsity of channel DoF, but also sets #re periodic ind with unit period [45]> We assume that the
stage for the application of compressed sensing theory doannel is maximally spread in the angle sp&ée,,,, 61.,) €
sparse-channel estimation. In Section I, we first formli [—1/2,1/2] x [-1/2,1/2], while 7, € [0, Tpmaz] and v, €
the notion of sparse multipath channels by making use pf~“ze=, “=e=] in the delay and Doppler space, respectively.
the modeling framework of Section Il and then characterizdere,r,,,, andv,,,, are termed as the delay spread and (two-
the performance of LS-based training methods for variosgled) Doppler spread of the channel, respectively. Esitiga
classes of sparse channels. In Section IV, we succincdlychannel having,.qzVmq: > 1 can often be an ill-posed
summarize the performance advantages of CCS over tragiieblem even in the absence of noise [46]. Instead, we |heit t
tional LS-based methods and provide a brief review of thdiscussion in this paper to underspread channels, cheratie
theory of compressed sensing. We devote the discussionbnT,,q.Vmax < 1, Which is fortunately true of many wireless
Section V and Section VI to exploring the specifics of CCS fathannels [47§ 14.2]3
sparse frequency-/doubly-selective, single-antennanratia Finally, throughout the paper we implicitly consider sig-
and sparse nonselective/frequency-selective, muléiptenna naling over wireless channels using symbols of durafion
channels, respectively. Finally, we conclude in Sectiohbyl and (two-sided) bandwidthl’, x(¢) = Oy, Vt ¢ [0,7] and
discussing some of the finer technical details pertainingp¢o X(f) = On..V f & [-W/2,WW/2], thereby giving rise to a
results presented in the paper. temporal signal spacef dimensionN, = TW [49]. Note
that these signaling parameters, together with the delay an
Doppler spreads of a channel, can be used to broadly classify
wireless channels as nonselective, frequency seleciive t
A. Physical Model selective, or doubly selective; see Table | for a definitién o

Il. MULTIPATH WIRELESSCHANNEL MODELING

Consider, without loss of generality, a multiple-antenna,. , .
. . Time-varying frequency responses of multipath channeksnatorrespond
channel with half-wavelength spaced linear arrays at tRsuperposition of a small number of strong paths (speadattering) and
transmitter and receiver. Leé¥r and Ny denote the number a huge number of weak paths (diffuse scattering) [43]. Fromaalytical

; ; ; ; viewpoint, as opposed to the channel measurement viewg@naccurately
of transmit and receive antennas, respecuvely. Itis coaty captures the effects of both specular and diffuse scagténithe limit of large

to model a multipath wireless chanrn®d as a linear, time- n,, (also, see [44]).
varying system [1], [42]. The corresponding (complex) base 2The normalized anglé is related to the physical angle (measured with

band transmitted signal and channel output are related as respect to array broadside) @&s= d sin(¢)/A, whered is the antenna spacing
and )\ is the wavelength of propagation; see [45] for further detai

o Fit 3It is worth mentioning here though that part of the discussio this
H(x(t)) = / H(t, )X (f)e?* It df (1) paper is also applicable to underwater acoustic commuaicahannels, even
R though they may not always be underspread [48].



each of these classes. As noted earlier, we limit oursetvteei {H, (i, k, ¢, m)}. From (3), the total number of these coeffi-
sequel to primarily discussing frequency- and doubly«tele cients is given byD = Np Ny L(2M+1), whereNg, Ny, L =
channels in the single-antenna settidgr(= Ngp = 1) and to  [W4.| + 1, @and M = [Tvpq./2] represent the maximum
nonselective and frequency-selective channels in theiphedt number ofresolvable AoAs, AoDs, delays, and (one-sided)
antenna setting. Doppler shifts within the angle-delay-Doppler spread of th
channel, respectiveR.Further, the notation in (4) signifies
that each coefficientl, (i, k, ¢, m) is approximately equal to
the sum of the complex gains of all physical paths whose
While the physical model (2) is highly accurate, it isangles, delays, and Doppler shifts lie within angle-delay-
difficult to analyze and estimate owing to itsonlinear Doppler resolution binof size Adr x Afp x AT x Av
dependence on a potentially large number of parameteghtered around the sampling pOIfﬂRzﬁTmTw/m) —
{(Bns0r.n, 01,0, Tn,vn)}. However, because of the finite(;/Ny k/Np,¢/W, m/T) in the angle-delay-Doppler space;
(transmit and receive) array apertures, signaling baritiwidwe refer the reader to [51] for further details (also, see Ejg
and symbol duration, it can be well-approximated by a line@ other words, the virtual representatidf(¢, f) effectively
(in parameters) counterpart, known asigtual or canonical captures the underlying multipath environment comprising
channel modelwith the aid of a four-dimensional Fourierqf N, physical paths throughD resolvable paths, thereby

series expansion [42], [45], [50]-[52]. reducmg the task of estimatin®( to that of reconstructing
On an abstract level, virtual representation of a multihe virtual channel coefficientsH, (i, k, £, m)}.

path channel provides a discretized approximation of
its time-varying frequency responsH(t, f) by uniformly I1l. SPARSEMULTIPATH WIRELESSCHANNELS
sampling the angle-delay-Doppler space at the Nyquist ra}g Modeling
(A@R,AGT,AT,AV) = (1/NR,1/NT,1/VV, 1/T) SpECifi- ' . . . .
cally, partition theN, paths into the following subsets: _ Thg virtual represe_ntatlon of a multipath _ereless chann_el
signifies that the maximum number of DoF in the channel is
SRJ' = {n : 6‘R,n S (Z/NR - A@R/2,i/NR+ AGR/Q]},

D = NgNrL(2M + 1) = TrmawVmaz NeNTTW  (5)
ST,k = {n : GT,n S (k/NT — A@T/Q, k/NT + AGT/Q]},
Seo=1{n:m € (t/W — Ar/2,0/W + Ar/2]}, and which corresponds to the maximum number of angle-delay-
" " ’ ’ Doppler resolution bins in the virtual representation, and
Svm = An:ve € (/T = Av/2,m/T + Av/2]}. reflects the maximum number of resolvable paths within the

B. Virtual Representation

Then the virtual representation @1 is given by four-dimensional channel spread. However, the actuaffec-
tive number of DoF, in the channel that govern its capacity

Nr N L1 and diversity corresponds to the numberdafminantvirtual

=X Z (i, k, £;m) x channel coefficients! = |{(i, k,¢,m) : |H, (i, k,¢,m)| > €}|.

=1 k=1 (=0 m=—M Here, ¢ is an appropriately chosen parameter whose value

ap (L) al (i) e~ I2m f pi2m Bt (3) depends upon the operating received signal-to-noise ratio
Nr

Nr (SNR). An intuitive choice fore is the standard deviation
H, (i, k,0,m) ~ Z B fng(i/Ng —0r.,) x  Of the receiver noise_, meaning onl_y channel coefficien_tg wit
NESR.iNST RNSs ¢NSym power above the noise floor contribute to the DoF. Trivially,

% _ - _ _ we haved < D and, by virtue of (4)d = D if there are at
Jivr (k/Np = Oz sine(m = Tvn, £ = W) (4) least N, > D physical paths distributed in a way within the
and it approximate$I(¢, f) in the sense [42], [45], [50]-[52] channel spread such that each angle-delay-Doppler risolut
bin is either populated by (i) at least one strong (specpiatt),
/H(t, NX(fe?>™taf ~ / H(t, f)X(f)e??mItdf. and/or (i) numerous weak (diffuse) paths whose aggregate
R R energy is above the noise floor (see Fig. 1), or it is in the
Here, the smoothing kernelfy, (fr) and fn,(0r) in (4) (close) proximity of another such resolution bin.
are the Dirichlet kernelsfxy(6) = & S-%1e927 while ~ Much of the work in the existing channel estimation liter-
the two-dimensionakinc kernel is defined asinc(z,y) = ature is based on the implicit assumption of a rich scatgerin
e~ sin(rx) sin(my) /(7%xy). The approximation in (4) is environment in which there are sufficiently many specular
due to the sidelobes of the Dirichlet asigic kernels induced and diffuse paths uniformly distributed within the anglgay-
by the finite signaling parameters, and the approximatidas g&oppler spread of the channel so thatz D for any choice
more accurate with increasirig, W, Nz, and N.* of the received SNR and the signaling parameters. Numerous
Note that due to the fixed angle-delay-Doppler sampling §fst and recent channel measurement campaigns have shown,
(2), which defines the spatio-temporal Fourier basis famsti however, that propagation paths in many physical channels
in (3), H(t, f) is a linear channel representation that isend to be distributed as clusters within their respectivane
completely characterized by thertual channel coefficients nel spreads [13]-[18]. Consequently, as we vary the spatio-
temporal signaling parameters in such channels by inergasi
“Note that in the case of a doubly-selective single-anterfrenmel, the

virtual representation (3) is similar to the well-known erpntial basis Swith a slight abuse of notation, we definBV7rn.:] = 0 and
expansion model [535 III-A]. [TVmaz/2] =0 for Wrmas < 1 andTvmaz < 1, respectively.
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Fig. 1. An idealized illustration of the virtual channel repentation (VCR) and the channel sparsity pattern (SR)h Equare represents a resolution bin
associated with a distinct virtual channel coefficient. Toil number of these squares equals The shaded squares represent the&R,corresponding
to thed < D dominant channel coefficients, and the dots represent ties gantributing to each dominant coefficient. (a) VCR andiigBelay-Doppler:
{Hy(¢,m)}s,. (b) VCR and SP in angle{Hy, (i, k)}s,- (c) VCR and SP in angle-delay-Dopplef, (i, k, £,m)}s,. The paths contributing to a fixed
dominant delay-Doppler coefficient], (¢,, mo), are further resolved in angle to yield the conditional SRungle: { (i, k, £o,M0)} s, (20, m0)-

the number of antennas, signaling bandwidth, and/or symhlre¢ limit ourselves in the sequel to discussing exactly
duration, a point comes wherafr, Afr, AT, and/or Av  sparse channels; the understanding here being that thengnsu
become smaller than the interspacings between the miitipahalysis can be generalized to effectivétgparse channels in
clusters, thereby leading to the situation depicted in Eig.general and-compressible channels in particular.
where not every resolution bin of siZ&fg x Afr x AT x Av Finally, while statistical characterization of a sparsarutel
contains significant contributions from physical pathBhis 7 is critical from a communication-theoretic viewpoint,hest
implies that wireless channels with clustered multipatimpo- Bayesian (random) or non-Bayesian formulatiortéfsuffice
nents tend to have far fewer thdh dominant virtual channel from the channel estimation perspective. In this paper, we
coefficients when operated at large bandwidths and symistick to the non-Bayesian paradigm and assume that both the
durations and/or with large plurality of antennas. We rafer channel sparsity pattex,; and the corresponding coefficients
such channels asparse multipath channetad formalize this {H, (i, k, ¢, m)}s, are deterministic but unknown.
notion of multipath sparsity in the following definition.

Definition 1 {-Sparse Multipath Channels)fSuppose that g sensing and Reconstruction
Sq = {(i,k,L,m) : |Hy(i,k,¢,m)| > €} denotes the set of
indices of dominant virtual channel coefficients of a multip
wireless channel for some appropriately choseWe say that
the channel igffectivelyd-sparse if the number of its effective x(t) = X4 (t) + Xdgata(t), 0<t < T )
DoF satisfiesl = |Sq| < D. Similarly, we say that the channel
is exactlyd-sparse if the same holds fer= 0. In either case,
the corresponding set of indicé; is termed as thehannel
sparsity pattern

It is worth mentioning here that, even in the best
scenarios, real-world multipath wireless channels carnieg

In wireless systems that rely on training-based methods for
channel estimation, the transmitted symbol takes the form

wherex;,.(t) and xqqt4(t) represent the training signal and
data-carrying signal, respectively. Because of the lityeaf
‘H, and under the assumption &, (¢) being orthogonally
0rinultiplexed with x4+ (t) In time, frequency, and/or code
domain, the resulting signal at the receiver can often b&-par

exactly d-sparse due to a multitude of reasons. Neverthelegg,ned into two noninterfering components: one correspund

analyzing training-based methods for exactly sparse aHann® ’.(”(t) and the_other correspondlng Bata(t). IN ord-er to
enables us to develop insight into the estimation of effeti estimate’H, training-based methods ignore the received data

sparse channels. As an illustration, rearrange Fheirtual and focus only on the training component of the received

channel coefficients oH by decreasing order of magnitude."Signal’ given by

|Hy(7(1))| > [Hy(7(2))] > - -+ > |Hy(m(D))]. Now suppose yir(t) = H(xer(8) + 2er(t), 0 <t < T + Tonaw (8)

that thej-th largest rearranged coefficient obeys . ] ) N )
where z;,-(t) is an Ngr-dimensional complex additive white

|Hv(7r(j))\ < Rj Vs (6) Gaussian noise (AWGN) signal that is introduced by the

receiver circuitry.

for some R > 0 ands < 1. In the literature, objects that As a first step towards estimatiry, the (noisy) received

satisfy (6) are termed as-compressibleand it is an easy training signaly.,(¢) is matched filtered with the transmitted

exercise to show that-compressible objects are effectivelywaveforms at the receiver to obtain an equivalent disdigte-

(R/e)/*-sparse for any > 0 [40]. In other words, results representation of (8). The exact form of this represemtatio

obtained for exactlyl-sparse objects can always be extendetbpends on a multitude of factors such as selectivity of the

to s-compressible objects by taking= (R/e)'/*. As such, channel (nonselective, frequency selective, etc.), typthe
signaling waveform used for sensing (single- or multi-ieajr

8Note that Fig. 1 is an idealized representation in whichl¢taéage effects
due to the Dirichlet andinc kernels in (4) have been ignored. "We refer the reader to [54] for a Bayesian formulation of spathannels.



and number of transmit antennas. While this gives rise totlze de-facto standard for reconstruction in much of thetiexgs
large number of possible scenarios to be examined, each channel estimation literature. In particular, with soméafe
corresponding to a different combination of these factirs, exceptions such as [19]-[27], many training-based methods
turns out that in each case elementary algebraic manipakati proposed in the past make use of the minimum least-squares
of the matched-filtered output result in the following geaier (LS) error criterion—or its Bayesian counterpart, the mmom

linear form at the receiver [30], [32], [34], [35] mean squared error criterion, for a Bayesian formulation of
‘H—to obtain an estimate dff, fromY
[yl yNR 1/ X hyy ... hv,NR}Jr
Y H® = arg min 1/ XH (10)
{Zl ZNR:| - 9 This is a well-known problem in the sta‘usucal estimation
— literature [55] and its closed-form solution is given B}® =

V' Nr/E XY, whereXT is the Moore—Penrose pseudoinverse
Here,£/Nr is the average training energy budget per trangf X. In order to ensure that (10) returns a physically meaning-
mit antenna(& being defined as€ = jo % (t)]|3dt), the ful estimate—in the sense thHES equalsH, in the noiseless
vectorsh, ;,i = 1,..., Ng, are Ny L(2M + 1)-dimensional setting—reconstruction based on the LS error criteriothfer
complex vectors comprising of the virtual channel coeffitie requires that the sensing mat has at least as many rows
{H,(i,k,£,m)}, and we let the AWGN matriZ have zero- asD/Ng, resulting in the following form fod:s

mean, unit-variance, independent complex-Gaussianesntri

Thus, £ is a measure of the training SNR at each receive HS — | Nt (XHX)~'xHY (11)
antenna. Finally, thesensing matrixX is a complex-valued N €

matrix having D/Nr = NpL(2M + 1) columns that are where it is assumed that the number of receive training
normalized in a way such thiX||% = D/Ng, where| - ||z  dimensionsV,, is such thatX has full column rank. It can be
denotes the Frobenius norm. The exact form and dimensig®wn in this case that the accompanying reconstructiam err
of X (and hence the dimensions & and Z) in (9) are of a LS-based channel estimation method is

completely determined by, (¢) and the class to whictH trace((XHX)~1) - No N

belongs; concrete representationsXfcorresponding to the E[A (HY)] = (( ; ) - NeNr (12)
various training signals and channel configurations studie _ _
the paper can be found in Sections V and VI. where we have used the notatidnH) = ||H, — HJ|% in

As noted in Section I-A, training-based channel estimatidhe above equation. This expression can be simplified furthe
methods are characterized by the two distinct—but hightgrough the use of the arithmetic—harmonic means inegyalit
intertwined—operations of sensing and reconstructione Thesulting in the following lower bound for the reconstrocti
reconstruction aspect of a training-based method involv@gor (see, e.g., [56, Th 4.7])
designing either a linear or a nonlinear procedure thatyres .
an estimate o, at the receiver from the knowledge &fX, E[A(HY)] > (_) (ﬁéi\;RxH;(VRJZT @D 5NT (13)
andY: H®' = H*' (€, X,Y), where the notation is meant to ( )
signify the dependence #° on £, X, andY. The resulting Where the equality in(e) holds if and only if X has or-
estimate also has associated with it a reconstruction given thonormal columns, while(b) follows from the fact that
by E [|[H, — HS||2], whereE denotes the expectation withtracgX"X) = || X[|3 = D/Ng. Consequently, an optimal
respect to the distribution oZ. The corresponding sensingtraining signal for LS-based estimation methods is the bae t
component at the transmitter involves probing the chanrehds toX"X = Iy, (21+1), and much of the emphasis in
with a training signal of fixed energy and temporal dimensiorthe previously proposed LS-based training methods has been
that reduces this reconstruction error the most. Spedifial on designing training signals that are not only optimal ia th
training signalx,,(t) has associated with it the concepts ofeconstruction error sense, but are also spectrally efticie
temporal training dimensiongefined asM;, = #{temporal the receive training dimensions sense [5]-[12].
signal space dimensions occupied Ry.(¢)}, and receive
training dimensionsdefined asV;, = M, x Ng, as a measure |V. COMPRESSEDCHANNEL SENSING. MAIN RESULTS
of its spectral efficiency. Therefore, given fixed training e
ergy budget and receive training dimensiorf$,, dedicated
to x;-(t), the effectiveness of any particular training-bas

method is measured |relstterms of the minimum reconstructlggsed linear reconstruction strategies, such as the oridjn (

error, ml(n E [|H, — H{¥|[%], achieved by that method. .y ecaiver to obtain an estimatel®f. Second, because of
Traditional training-based methods such as those in [2}-[1their reliance on linear reconstruction procedures, thimimg

have been developed under the implicit assumption that thignals used in these methods must be such that the resulting

number of DoF(, in H is roughly the same as the maximunsensing matrixX has at leastD/Ngr rows. As noted in

possiblenumber of its DoFd ~ D. One direct consequence ofTable I, depending upon the type of signaling waveforms

this assumption has been that linear procedures have becased for training and the channel class to whighbelongs,

The preceding discussion brings forth several salient-char
eacteristics of traditional training-based methods suckthase
§ [5]-[12]. First, these methods more or less rely on LS-



this requirement often translates into the condition the t ing methods. The training signals and reconstruction
number of receive training dimensions dedicatedxi(t) procedures specified by CCS for the signaling and
must be at least as large as the maximum number of DoF in  channel configurations studied in the paper ensure that
H: Ny, = Q(D);® see Sections V and VI for further details A(HS®) = O(d- (N1 /&) -log D) with high probability.

on this condition. Third, regardless of the eventual chate [R2] CCS is often more spectrally efficient than the LS-

training signals, the reconstruction error in these meghisd based methods. Assume that the conditional sparsity

given byE[A(HL®)] = Q(D - (N7 /€)). of each AoA is equal to the average AoA sparsity:
In the light of the above observations, a natural question |S4(i)] = d/Ng,i = 1,..., Ng. Then while LS-based

to ask here ishow good is the performance of traditional methods require thalv,, = Q(D) for certain signal-

LS-based training methoddd fact, if one assumes that ing and channel configurations, CCS only requires that

is not sparse(in other wordsd = D) then it is easy to Ny, = Q(dxpolylog factop for the same configurations.

argue the optimality of these methods [55]: H);° in this Conversely[R1] and[R2] together imply that CCS achieves
case is also the maximum-likelihood estimate lf, and a target reconstruction error scaling using far less enangy
(ii) the reconstruction error lower bound (13) is also thi many instances, latency and bandwidth than that dictated
Cramer—Rao lower bound, which—as noted earlier—can B¢ the traditional LS-based training methods.
achieved through an appropriate choice of the trainingadign Table Il provides a compact summary of the CCS scal-
However, it is arguable whether LS-based channel estimatipg results as they pertain to the six signaling and channel
methods are also optimal for the case whhiis either configurations studied in the paper and compares them to
exactly or effectivelyd-sparse. In particular, note that exactlthe corresponding results for traditional LS-based trajni
d-sparse channels are completely characterize2tlgyarame- methods. One thing to point out in this table is the CCS
ters, which correspond to the locations and values of nenzgondition N, = Q(d? - log D) when using single-carrier
virtual channel coefficients. Our estimation theory inarit signaling waveforms for estimating single-antenna chinne
therefore suggests that perhale\ (HS™)] = Q(d - (N1 /€))  This conditionseemso be nonexistent for LS-based methods.
and, for signaling and channel configurations that requirgote, however, that in order to make the columnXads close
Ny = Q(D) in the case of LS-based estimation methodg orthonormal as possible—a necessary condition for the LS
Ny = Q(d) are the actual fundamental scaling limits imased reconstruction to achieve the lower bound of (13)—
sparse-channel estimation. traditional LS-based training methods implicitly requiteat

In the sequel, we present new training-based estimatighe temporal signal space dimensions be as large as possible
methods for six particular signaling and channel confidorast N, ~ co. As such, the CCS condition is in fact a relaxation
(see Table Il) and show that our intuition is indeed correef this implicit requirement for LS-based methods.
(modulo polylogarithmic factors). In particular, a key fie®  Asis evident from the preceding discussion and analysss, th
of the proposed approach to estimating sparse multipaibaling performance of CCS is a significant improvement over
channels—first presented in [30] and [32] for frequencyhat of traditional LS-based training methods when it comes
and doubly-selective single-antenna channels, respgtand to sparse-channel estimation. And while we have purposely
later generalized in [33]-[35], [37], [38] to other channehvoided providing concrete details of the CCS framework
classes—is the use of a sparsity-inducing mixed-norm ogp to this point so as not to clutter the presentation, the
timization criterion for reconstruction at the receiveratth rest of the paper is primarily devoted to discussing the exac
is based on recent advances in the theory of compressegn of training signals and reconstruction proceduresl ise
sensing [29]. This makes the proposed approach—termedGasS for the configurations listed in Table Il. However, since
compressed channel sensing (CCS)—fundamentally differerCS builds on top of the theoretical framework provided by
from the traditional LS-based training methods: the formeompressed sensing, it is advantageous to briefly revieve som
relies on a nonlinear reconstruction procedure while tkterla facts about compressed sensing before proceeding further.
utilize linear reconstruction techniques. Note that a nemb
of researchers in the recent past have also proposed variR
training-based methods for sparse multipath channelsatieat ) _ )
based on nonlinear reconstruction techniques [19]-[2fg T Compressed sensing (CS) is a relatively new area of the-
thing that distinguishes CCS from the prior work is tha@retical research that lies at the_z |ntersect|on_of a nu_ml_f)er 0
the CCS framework is highly amenable to (scaling) analysRther research areas such as signal processing, statstits
Specifically, in order to give a summary of the results to comg®Mmputational harmonic analysis; see [57]-[59] for a talor
define theconditionalsparsity pattern associated with théh ~ OvVerview of some of the fognda‘uonal (_jev_elopments in CS.. In
resolvable AoA to beS, (i) = {(i, k, £,m) : (i, k, £, m) € Sq}. order to review the_ thec_)reucal underpinnings of CS, casrsid
Then it is shown in the sequel that in the limit of large signdhe following classical linear measurement model

space dimension: ri= 0+, i=1,....n (14)
[R1] The performance of CCS in terms of the reconstruc-

T . .
tion error is provably better than the LS-based traif¥n€re (-)" denotes the transpose operatiah, < C” is a
knownmeasurement vectof € C? is an unknown vector, and

8Recall Landau's notationf,, = Q(gn) if Ico > 0,m0 : Y > no, fn > i €CIS either stochastic noise or determmlstlc perturbatlo_n.
¢o gn; alternatively, we can also writg, = O(fy). This measurement model can also be written compactly using
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TABLE Il
SUMMARY AND COMPARISON OF CCSRESULTS FOR THE SIGNALING AND CHANNEL CONFIGURATIONS STUIED IN THE PAPER'

. ) ) Traditional LS-Based Method Compressed Channel Sending
Channel Classification Signaling Waveform — —
Recon. Error Condition Recon. Error Condition
Frequency-Selective Single-Antenng ~ Single-Carrier [30] =L — =4 .logD No = d? -log D
(D=1L) Multi-Carrier [30]-[32] -2 Nip = D <4 .1ogD | Niy=d-log® N,
Doubly-Selective Single-Antenna Single-Carrier [34] =2 — < £ logD N, = d? -log D
(D= L(2M +1)) Multi-Carrier [32]-[34] -2 Nip = D <4 .1ogD | Ney=d-log® N,
Nonselective Multiple-Antenna D-N 4N D
(D = NpNp) [35] » D0z Ni = D < LT logD | Nir=d-logd
Frequency-Selective Multiple-Antenng . . D-N d-N. 5
(D = NgNrL) Multi-Carrier [35], [38] > TT N = D < £T ‘logD | Nir = d-log® N,

a Displayed using Hardy’s notation for compactnegs: > g. and f,, = gn for fn, = Q(gn) and f, = O(gn), respectively.
b The results in the first column hold with probability that apgches one with increasing channel and signal space diomsns
¢ The last two conditions in the second column are for the cdsenwhe conditional sparsity of each AoA equals the averagi gparsity.

the matrix-vector representatiom: = W60 + 5. Here, the entries are drawn independently fron\&0, %) distribution,
measurement matri® is comprised of the measuremenor (ii) its rows are first sampled uniformly at random (wittiou
vectors as its rows and the goal is to reliably reconstfuctreplacement) from the set of rows opa p unitary matrix with
from the knowledge of and . entries of magnitudé®(1/,/p) and then scaled by a factor of
One of the central tenets of CS theory is thaf ifs sparse /p/n. Then, for everyis € (0, 1), it has been established that
(has only a few nonzero entries) or approximately spardec RIP(S,ds) with probability exceeding —e~°(") in the
(when reordered by magnitude, its entries decay rapidight former case ifn = Q(S -log £) [65], while ¥ € RIP(S,ds)
a relatively small number—typically much smaller than-of  with probability exceeding — p*O(éé) in the latter case as
appropriately designed measurement vectors can captlse méng asn = (S - log® p) [66].°
of its salient information. In addition, recent theoretiessults As noted earlier, there exist a number of CS reconstruction
have established tha in this case can be reliably reconprocedures in the literature that are based on the RIP charac
structed fromr by making use of either tractable mixed-nornerization of measurement matrices. The one among them that
optimization programs [39]-[41], efficient greedy algbrits s the most relevant to our formulation of the sparse-chlanne
[28], [60], or fast iterative thresholding methods [61]2]6 estimation problem—and one that will be frequently referre
see [63] for the references of other relevant CS recon#édrnuctto in the sequel—goes by the nameRdntzig selecto(DS)
procedures. As one would expect, proofs which establish tag]. In particular, there are three main reasons that we hav
certain reconstruction procedures reliably reconstéuct the  chosen to make the DS an integral part of our discussion on
end depend only upon some property of the measuremef CCS framework. First, it is one of the few reconstruction
matrix ¥ and the level of sparsity (or approximate sparsityhethods in the CS literature that are guaranteed to perform
of 6. In particular, one key property o that has been near-optimally vis-a-vis stochastic noise—the otheringpe
very useful in proving the optimality of a number of CShe risk minimization method of Haupt and Nowak [67]
reconstruction procedures is the so-caltestricted isometry and the lasso [41], which also goes by the name of basis
property (RIP) [64]. pursuit denoising [39]. Second, unlike the method of [67],
Definition 2 (Restricted Isometry Propertylet ¥ be an it is highly computationally tractable since it can be récas
n x p (real- or complex-valued) matrix having urfi§-norm as a linear program. Third, it comes with the cleanest and
columns. For each intege¥ € N, we say that¥ satisfies most interpretable reconstruction error bounds that wenkno
the RIP of order S with parametég € (0,1)—and write for both sparse and approximately sparse signals. It ishwort
¥ € RIP(S,ds)—if for all 6 : (/0o < S mentioning here though that some of the recent results in the
2 2 2 literature seem to suggest that the lasso also enjoys many of
(1=95)[10] < |[ O] = (1 +95)|10]]2 (15) the useful properties of the DS, including the reconstaucti
where|| - ||» denotes thé,-norm of a vector and - ||, counts error bounds that appear very similar to those of the DS [68],
the number of nonzero entries of its argument. [69]. As such, making use of the lasso in practical settings
Note that the RIP of orde§ is essentially a statement aboutan sometimes be more computationally attractive because o
the singular values of all x S submatrices of. And while no the availability of a wide range of efficient software packsg
algorithms are known to date that can explicitly check the Risuch as GPSR [70] and SpaRSA [71], for solving it. However,
for a given matrix in polynomial time, one of the reasons thaince a RIP-based characterization of the lasso that phrall
has led to the widespread applicability of CS theory in vasio that of the DS does not exist to date, we limit ourselves in
application areas is the revelation that certain probsttuli o _
In fact, the actual condition in the latter case only reqiitbatn =

constructions of matrices satisfy the RIP with high prob_t;pi (S log2 (p) log (S log p) log2(S)) [66]; for the sake of compactness, how-
For example, let the: x p matrix ¥ be such that either (i) its ever, we use the lax requirement= Q(S - log® p) in the paper.



this paper to discussing the DS only. The following theoremy. COMPRESSEDCHANNEL SENSING: SINGLE-ANTENNA

which is a slight modification of the results of [40], stathe t CHANNELS

reconstruction error performance of the DS &my 0 < C?.1°
Theorem 1 (The Dantzig Selector [40]et 8 € C? be a

deterministic but unknown signal and @6 + n = r € C»

be a vector of noisy measurements, whererthep matrix ¥

A. Estimating Sparse Frequency-Selective Channels

For a single-antenna channel that is frequency-seledtiee,
virtual representation (3) of the channel reduces to

has unitls-norm columns and the complex AWGN vectpis 3 L-1 o,
distributed a<’ ' (0,,, 0°1,,). Further, let® € RIP(2S, d25) H(f)= Z H,()e 327w/ 17)
for somed,s < 1/3 and choose\ = /202(1 + a)logp for =0

any a > 0. Then the estimat®>* obtained as a solution t0 and the corresponding received training signal is [cf. (8)]
the optimization program

L-1
0°° = argmin [0]; st [T —Th) < X (DS)  yu(t)m Y Ho(O)zu(t — /W) +
6cCr =0

satisfies 2ir(t), 0 <t < T+ Traz- (18)

DS i 0—0,,)1)\> In general, two types of signaling waveforms are commonly
16°° - 0|3 < ¢  Inin (A\/E‘F 16 = 6] NG H ) (16) employed to communicate over a frequency-selective chan-
. nel, namely, (single-carriegpread spectrun(SS) waveforms
with probability at least —2 (/7(1 + a)logp - pa) . Here, and (multi-carrier)rthogonal frequency division multiplexing
| - |l1 and | - ||s denote thef;- and £~-norm of a vector, (OFDM) waveforms. We begin our discussion of the CCS
respectivelyf,,, is the vector formed by setting all but the ~framework for sparse frequency-selective channels bysiogu
largest (in magnitude) entries of the true sigAab zero, and first on SS signaling and then on OFDM signaling.
the constant; = 16/ (1 — 36,5)°. 1) Spread Spectrum Signaling: In the case of SS signaling,
In the sequel, we will often make use of the shortharil® training signal.(t) can be represented as
notation °° = DS(¥,r,)\) to denote a solution of the No—1
optimization program (DS) that takes as inp# r, and T (t) = VE Z rog(t —nT.), 0<t<T (19)
A. A few remarks are in order now concerning the perfor- n=0

mance of (DS). First, note that (16) is akin to saying that . o . 20
if ¥ € RIP(2S,555) then 8°° more or less recovers§ Whereg(t) is a unit-energychip waveform(/ |g(1)|*dt = 1),

. ; . . T.=~1/W is the chip duration, andz, } represents thév,-
largest (in magnitude) entries @f that are above the noise ;. . . . : - .
floor o2. In particular, (16) implies that: (i) I8 is S-sparse dimensional spreading code associated with the trainongasi

. that also has unit energy_  |x,|?> = 1). In this case, chip-
then ||0°° — 0]|3 = O(So?logp), which has roughly the N /n - . _
same scaling behavior as the usual parametric errofdf matched filtering the received training signal (18) yieltle t

[55]; and (i) If @ is s-compressible andS > (R/o)'/* discrete-time representation [30]

then [|8°° — 0|3 = O(R*(0?)'~*/?logp), which has the y=VEx+h)+z — y=VEXh,+z (20)
same scaling behavior as the minimax errorsf@mompressible ] ] ] .

objects [40]. Second, the probability deviation bound (@&) Where = denotes discrete-time convolutioh,, & Chis tjt;e

be converted into a similar-looking bound on the expectdgctor of virtual channel coefficientsH, ()}, andx € C™
value of||8°° —6||2 at the expense of some extra work. This i comprised of the spreading code,}. Further, define
due to the well-known fact that, for positive random variabl Vo = No + L — 1. Thenz is an AWGN vector distributed as
X, we haveE[X] = fOt Pr{X > t}dt. Third, although the CN(QNO,IND), vyh|IeX is anNoleToephtz (convolutmn:_;tl)
parameter in Theorem 1 affects the upper bound (16) an@atrix whose first row and first cquTmn can be explicitly
the accompanying probability of failure differently, itenot written as|z, 07 | and {XT 0}_1} , respectively.

affect the scaling behavior of the reconstruction erroisTi& Note that (20) is the single-antenna version of the stan-
because of the fact that the upper bound (16) increases ogétd form (9). Therefore, from (13), the reconstructioroerr
linearly with increasing:, whereas the probability of failure scaling of LS-based training methods in this case is given by
decreases exponentially with increasingAn obvious choice E[A(h'S)] = Q(L/E). We now describe the CCS approach
for a in this regard isa = 1, which results in the probability to estimating frequency-selective channels using SS kigpa

of failure 2(v/mwlogp - p)~'. Finally, note that the statementwhich was first described in [30]. In particular, we show that
of Theorem 1 assumes thét € RIP(2S5,25) almost surely. for d-sparse channels it leads to an improvement of a factor
However, if this is not true then in this case Theorem 1 simppf aboutL/d (modulo alog factor).

implies that (16) is satisfied with probability at leakt—

2max {2(y/7(1 + a)logp-p*)~', Pr{® ¢ RIP(2S,025)}}. CCS-1— SS Training and Reconstruction

We are now ready to discuss the specifics of CCS for spars
multipath channels.

Sraining: Pick the spreading codéz, } Moo ! associated

with z,.(¢t) to be a sequence of independent and identi-
10We refer the reader to the discussion following [56, Th. P an  Cally distributed (i.i.d.) .Rademac.hler variables takinduea
outline of the differences between Theorem 1 and the restdted in [40]. +1/+/N, or —1/+/N, with probability 1/2 each.
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Reconstruction: Fix any ¢ > 0 and choose the parameteof {W{]i [1 w}b»l WZ(LA)} ‘ne Str} as its rows,
tr o

A= /26(1 +a)log L. The CCS estimate di, is then given wherewy = e 9%, andz NOCN(ON Iy, )1
as follows:h™ = DS(VEX,y,\). Note that the form ofX in the case of OFDM signaling
] ) imposes the condition that;,. > L for X to have full column

The following theorem summarizes the performance of CCS¢dny 1n order to estimate a frequency-selective chanriefus
in terms of the reconstruction error scaling. ~ OFDM signaling, LS-based methods—such as [6]—therefore

Theorem 2:Pickdzq € (0,1/3), c3 € (0,03,/4), and define yequire that N, = (L) and, from (13), at best yield
cg = 48/(05; — 4cp). Next, suppose that the number ofgjA(ytsy] = Q(L/€). In contrast, we now outline the CCS
temporal signal space dimensions (= TW) = c3d® log L. approach to this problem—described initially in [30]-[32]
Then, under the assumption that, o < d, the CCS estimate 5nq quantify its advantage over traditional LS-based imgin
of h, satisfies methods for sparse channels.

d
A (M) <cj- - log L (21) Ccs-2-OFDM Training and Reconstruction
. N 1y Training: Pick S;,—the set of indices of pilot tones—to
with probability > 1 — 2max {2(7r(1 + a)log L - L**) . be a set ofV,, indices sampled uniformly at random (without
—c2Ney b Here, the absolute constant > 0 is defined replacement) fron;S =10,1, - No — 1} ) )
xp(— Gz )} any Reconstruction: Same as in CCS-1 (but with the sensing
asco = 4y/2(1 +a)/(1 — 3624). matrix X specified as above).

Note that the frequency-selective channel beiirgparse
simply means that/h,[lo < d < L. Therefore, the proof Below, we summarize the performance of CCS-2 in terms of
of this theorem essentially follows from the statement @fe reconstruction error scaling.

Theorem 1 and [30, Th. 2] (also, see [56, Th. 3.5]), where Theorem 3:SupposeN,,d > 2 and pickdaq € (0,1/3).
it was shown thabPr{X ¢ RIP(2d,d2a)} < exp(—222) for  Next, let the number of pilot tone¥,, > 2c4dlog® N,. Then
any b4 € (0,1/3), providedN, > c3 d* log L. the reconstruction error dics satisfies (21) with probability

Remark 1: Theorem 2 is stated above in its entire generality; |east] — 2 max 2(7T(1 +a)logL- Lza)—1/27 10N0—c56§d _

and, in its current form, depends on three key parameteffi.o . . - o are absolute numerical constants that do not
024, c2, and a. Nevertheless, it is instructive to specify ONQepend on\,,., N,, or d
79 4Vos .

possible choice ,Of these pargmeters so as to be a little mor he proof of this theorem follows trivially from Theorem 1
concrete regarding the scaling performance of CCS-1. Iy the fact thafX in this case corresponds to @lumn

this regard, note that the first term in theax expression g nmarixof a matrix whose (appropriately normalized) rows

in Theorem 2 is upperbounded by for any a > 1. It 510 randomly sampled from aN, x N, unitary DFT matrix.
therefore makes intuitive sense to choase 1 and pickes Therefore, from the definition of RIP and [66, Th. 3.3],

_C_]Vo —1 . . . e
such that we havexp(—%52) < L~'. This in turn requires Pr{X ¢ RIP(2d, 654)} < 10N, 562, for any daq € (0,1/3),

4d?
that co = 45,/8 and therefore if one pickés; = 1/4 then . 5

A . . > .
Theorem 2 implies that\ (hS®) < 1024 - £ - log L with provided i, 2 2cadlog” Ny
probability exceeding—2L~" aslong asV, > 1536-d°log L. g Estimating Sparse Doubly-Selective Channels
Note that explicit values of the numerical constants cap als
be obtained in a similar manner for subsequent theorems
the paper. It is worth pointing out here though that extensiv
simulations carried out in [30]-[34], [36], [37] suggestath . L1 M ol g gmmy
actual values of the CCS numerical constants are in fact much H (4, f) = Z Z H, (¢, m)e72miw el 4 (23)
smaller than the ones predicted by the CCS theory. (=0m=-M

2) OFDM Signaling: If OFDM signaling is used for and the received training signal can be written as

communication then the training signal takes the form L-1 M o
yer(t) m Y Y Hy(m)el* F g, (t— /W) +

24 (t) = \/Z\i o ogm)eT L 0<t< T (22) (=0 m=—M

i In the case of a single-antenna channel that is doubly-
eﬂective, the virtual representation (3) reduces to

neSe, 2ir(t), 0 <t <T+ Trpae - (24)
where g(¢) is simply a prototype pulse having unit energy,Signaling waveforms_ that are often used to communic_ate
S; € S =1{0,1,...,N,—1} is the set of indices gfilot tones OVer & doubly-selective channel can be broadly categorized

used for training, andV,,—the number of receive training@S (Single-carrier) SS waveforms and (multi-carrishort-

dimensions—denotes the total number of pilot tones in thi§ne Fourier (STF) waveforms, which are a generalization of

case,N,, = |S;,|, and is a measure of the spectral eﬁicienZgFDM wave_forms for doubly—_selectwe channels [72], [73].

of z;,(t). Finally, matched filtering the received training signaP€low, we discuss the specifics of the CCS framework for

(18) with the OFDM basis waveformg(t)ei2#t1s and SParse doubly-selective channels as it pertains to botn8iS a
tr . .

collecting the output into a vector again yields the staddaP 1 Signaling waveforms.

form [1]: y = VEXh, + z. The d'ﬁerence _here 1S Fhat 11Note thatX has this particular form as long & > Tmae [1], Which

X is now an Ny x L sensing matrix that is comprisedalso impliesN, > L.



11

1) Spread Spectrum Signaling: The SS training signal Therefore, this theorem in essence is a direct consequénce o
z4-(t) in the case of a doubly-selective channel has the safi3d, Th. 2] (also, see [56, Th. 3.9]), where it was establishe
form as in (19). The difference here is that the chip-matehethat Pr{X ¢ RIP(2d, 524)} < exp(—<2e) for any value of
filtered output in this case looks different from the one i)(2 the parameted,, < (0,1/3), providedN, > c; d?log L.
Specifically, define agaiv, = N,+L—1. Then chip-matched 2) STF Signaling: In the case of STF signaling, which is

filtering the received training signal (24) yields [34] a generalization of OFDM signaling to counteract the time
L-1 M selectivity of doubly-selective channels [72], [73], thaiting
yn = VE Z Z H, (0, m)e?™ ¥o "z, 4 + signalx,.(t) is of the form
=0 m=—M g )
s n=0,1,, Ny— 1. (25)  2(t) =/ 5 > gt = nT,)e*™™ et e [0,T] (28)
"

o . . . . n7m)esm
Nevertheless, it is established in [34l]I-A] that this received

training data can be represented into the standard formy(9)\ghere g(¢) is again a prototype pulse having unit energy,
collecting it into a vectoly € CN> and algebraically manipu- Ser © S = {0,1,..., Ny — 1} x {0,1,..., Ny — 1} is
lating the right-hand side of (25). That ig,= v/& Xh, + z, the set of indices of STF pilot tones used for training, and
whereh, € CL2M+1) js the vector of channel coefficientsVir—a measure of the spectral efficiencyf. (t)—denotes

{H,(¢,m)}, z ~CN(0g ,1y ), and the sensing matriX is the total number of pilot tonesN,. = |S;.|. Here, the
an N, x L(2M + 1) block matrix of the form parametersl, € [Tmaz; 1/Vmaz] @ndWo € [Vimaz, 1/Tmax]
correspond to the time and frequency separation of the STF
X=X_ym ... Xo ... Xul- (26) basis waveformgg(t —nT,)e/2™mWt} in the time-frequency

. plane, respectively, and are chosen so thdt/, = 1 [73].
Here, each blockX,, has dimensionsV, x L and is of the Finally, the total number of STF basis waveforms availabte f
formX,, = W, T, whereW , is anN, x N, diagonal matrix communication/training ar&V;N; = N,, whereN; = T/T,
given byW,, = diagwy™ %, wy™ L, .. owy™ M) andT  and Ny = W/,
is an N, x L Toeplitz matrix whose first row and first column For sufficiently underspread channels, corresponding to
TmazVmaz < 0.01, it has been shown in [73] that matched

2
are given by|z, 07 | and|x" ol | ,respectively. mazx ) - . . .
Note that {under the} assumption that the douny—seIecti%erlng the received training signal (24) with the STF Isasi

channel is undersprede,,,.vmaqz < 1), We have the condi- waveforms{g(t — nT,)e’*""Wol}s, yields

tion TW > TyaeVmazTW = N, > L(2M + 1). This—

combined with the form oX—ensures that the sensing matrix Yn,m = N, Hym + 2nm s (n,m) € Sir (29)

in this case has full column rank and training-based methods . _

can use the LS criterion (10) without further conditionsule  Where the STF channel coefficients are relatedt, f)
ing in E[A(hS)] = Q(L(2M +1)/€). Below, we describe the @S Hum = H(t, £)] , 1y—ur. muwe)- AS Shown in [32] and
CCS approach to estimating doubly-selective channelsggusi$4. § 1V-A], collection of this matched-filtered output into a
SS signaling, first presented in [34], and provide an uppggctory € CVe- followed by simple manipulations yields the
bound on the corresponding reconstruction errord@parse Standard formy = /€ Xh,, + z, wherez ~ CA'(Oy,,, In,,)
channels that is significantly better th@iZ(2M +1)/€).  and theNy. x L(2M + 1) matrix X is comprised of

1 n-(M— .
CCS-3- SS Training and Reconstruction {\/W [W%;M th(M Vo “N, M} ®
Training: Same as specified in the case of CCS-1. - me(L-1)] .
Reconstruction: Fix any ¢ > 0 and choose the parameter [1 W, e Wiy } t(n,m) € S"}

A= +/2€(1+ a)log L(2M + 1). The CCS estimate df,, is

. 2 " ) -
then given as followshe® = DS(VE X, y, \). as its rows? Consequently, traditional LS-based training

methods impose the conditiaW;,, = Q(L(2M + 1)) in order
to satisfy the requirement th& has full column rank in this
setting and yield—at bestEfA(h:®)] = Q(L(2M + 1)/€).

e now describe the CCS approach to estimatirgparse
) doubly-selective channels using STF signaling, which mby o
< d, the CCS estimate has a lower reconstruction error scaling than the LS-based
; approach but is also spectrally more efficient in the limit of

ccs 2 O large signal space dimension.
A7) =6 & log L(2M +1) 27) Remark 2:Note that the main difference between [32] and

: " ~ [34, § IV-A] is that [32] choosesT, and W, such that
with probability 2711/2 2 max {2(7T(1 +a)log L2M +1) T,W, > 1 and uses two sets of bi-orthogonal waveforms at
(L(2M + 1))2“) ,exp(— e )}_ Here, the numerical the transmitter and receiver. The overall effect of thisngei

442
constantcy > 0 is the same as defined in Theorem 2. 1 _ .
. . . . Here, ® is used to denote the Kronecker product; also, since we have
Note that the key ingredient in the proof of this theorem,i 7. ¢ 17 .. 1/vmae] aNdWo € [Vmas, 1/Tmaz], this implies that

is characterizing the RIP of the sensing matrix given in (26); > 2M +1 and N; > L.

Theorem 4:Pickd24 € (0,1/3), ¢6 € (0,03,/8), and define
cr = 128/(63, — 8cs). Next, suppose that the number o
temporal signal space dimensioNs > c7 d? log L(2M + 1).
Then, under the assumption thit, ||o
of h, satisfies
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that it makes the approximation in (29) more accurate at théstributed asC A/ (Oy ., In;). As shown in [35,§ Ill], pre-

expense of some loss in spectral efficiency [72]. multiplying they,,’s in this case withA" and row-wise stack-
ing the resulting vectors into amf;,. x Ny matrix Y yields
CCS-4- STF Training and Reconstruction the standard linear form (9 = /& XH, + Z, where the

Training: Pick S;,—the set of indices of pilot tones—to entries ofZ are independently distributed &3\ (0,1). Here,
be a set ofV,, indices sampled uniformly at random (withoutx is an Az, x N, matrix of the form

replacement) fron$ = {0,1,...,N,—1}x{0,1,..., N;—1}.
Reconstruction;: Same as in CCS-3 (with the sensing X —

T
. > X0 X1 ... X]Wt,‘—l} Ar (33)
matrix X specified as above).

where (-)* denotes the conjugation operation. In order to
Theorem 5:SupposeN,,d > 2 and pickdzq € (0,1/3). estimate nonselective MIMO channels, traditional LS-base
Next, let the number of pilot tonesV,, > 2c4dlog® N,. methods such as those in [9], [10] therefore require that
Then the reconstruction error diS®™ satisfies (27) with M. = Q(N7) so as to ensure tha& has full column rank and
probability exceeding — 2 max {2(7r(1 +a)log L(2M +1)- produce an estimate that satisfigle (H;®)] = Q(NrNZ/E).
o —1/2 Cos? _ In particular, note that the conditiaW,,, = Q(Nr) means that
(L(2M +1)) ) , 10N, ™ ”}- Here, the numerical con- | S-based methods in this case require the number of receive
stantscy, cs > 0 are the same as described in Theorem 3. training dimensions to satisfy. = M Nr = Q(NrN7).
Note that [32] and [34, Th. 3] specify the conditiondn contrast, we now describe the CCS approach to this
under which the sensing matriX arising in this setting problem ford-sparse channels and quantify its performance in
satisfies RIP, and Theorem 5 follows immediately from thaérms of the reconstruction error scaling and receive itigin
characterization. This concludes our discussion of the C@8nensions. Before proceeding further, however, recall the
framework for single-antenna channels; see Table Il for cnditional sparsity pattern associated with thé resolvable
summary of the results presented in this section. AoA s S4(i) = {(i,k) : (i,k) € Sq}, and define thenaximum
conditional AoA sparsity ag = max; |Sz(i)|.
VI. COMPRESSEDCHANNEL SENSING:
MULTIPLE-ANTENNA CHANNELS CCS-5- Training and Reconstruction
A. Estimating Sparse Nonselective Channels Training: Pick {x,,n =0,..., M. — 1} to be a training

The virtual representation of a nonselective multiplesinp Sequence of i.i.d. Rademacher vectors in which each entry
multiple-output (MIMO) channel is of the form [cf. (3)] ~ independently takes the valuel//M;, or —1/v/M;, with
Nm Np . probability 1/2 each.
H=— ZZH (i, k)ag <L) al (i) (30) Reconstruction: Fix any a > 0 and choose the parameter
v Nrp )~ A = /26(1+ a)(log NrkNr)/Nr. The CCS estimate of the
Npr x Ni matrix H, is then given as followsHS® =

[DS(\/g/NTX,yl,)\) DS(\/g/NTX,yNR,)\)}-

ARHTAY

Here,Ar andAr areNgx Ng and Nt x Nt unitary matrices
(comprising of{ar(x)} and {aT(NLT)} as their columns),

_ . Theorem 6:Pick d,;7 € (0,1/3), cs € (0,057(3 — d54)/48),
respectively, andd, = [hm hu,NRll IsanNr x Nr  and definecy = 3841og (12/0,4)/(362; — 63, — 48¢s). Next,

matrix of virtual channel coefficients in which thi¢h column |et the number of training time slotd/,,. > codlog Np.
h,; € CN7 consists of the coefficientsH, (i, k) } associated Then, under the assumption th@f;ﬁ [h,.illo < d, the CCS

with the i-th resolvable AoA. estimate ofH, satisfies
Generally, the training signal used to probe a nonselective d-N
MIMO channel can be written as A(HSS) < 2. L log NgpNr (34)

g Mt n M, ¢
tr
Xir(t) =/ E Xn g\t = 37 ; 0<t< W (31) with probability exceeding —2 max { 2(7(1+a)log Ng Ny -
NT n=0

—1/2
whereg(t) is a unit-energy prototype pulse, the (vector-value(ﬁWRNT)Qa) anP(—CSMtr)}- Here, the constanty > 0
training sequence is denoted by,, € CN7} and has energy is the same as in Theorem(@ith d,; in place ofdy).
>, Ixnll3 = Np, and M;,—the number of temporal training  The proof of this theorem is provided in [56, Th. 4.12],
dimensions—denotes the total number of time slots dedica@nd is based on [65, Th. 5.2] and a slight modification
to training in this setting. Trivially, matched filtering ¢h of the proof of Theorem 1 in [40]. Before concluding this
received training signat,, (t) = Hx,, (t)+z..(t) in this case discussion, it is worth evaluating the minimum number of
with time-shifted versions of the prototype pulse yields receive training dimensions required for the CCS approach t
z succeed in the case of sparse nonselective MIMO channels.
Yn=1/—Hx, +2,, n=0,..., M, — 1 (32) From the structure of the training signal in CCS-5, we
Nr have thatN;. = M;.Ng = Q(dNg - log Nr/d) for CCS,
where {y,, € CN=} is the (vector-valued) received trainingwhich—modulo the logarithmic factor—always scales better
sequence and the AWGN vectof%,} are independently than N;. = Q(NgNr) for traditional LS-based methods. In
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particular, for the case when the scattering geometry if suesolvable AoA, whileX is an M,,. x Ny L matrix comprising
that tr_le conditional AoA sparsity is equal to t_he average Aoéf { |1 wnsz-l o wx};(kl) ® XZ,mAi} :(n,m) € Str}
sparsity(d = d/Ng), we have from the previous argumentgs its rows.

that CCS requiresV;, = Q(d - log Ngp Nt /d). Once again, the form of the sensing matkxhere dictates

that M;. = Q(NrL) for the traditional LS-based methods

B. Estimating Sparse Frequency-Selective Channels such as those in [11], [12] to obtain a meaningful estimate of
From (3), the virtual representation of a frequency-salect He, and we have from (13) tha{A(H;?)] = Q(NeN7L/E)
MIMO channel can be written as in that case. Note that in terms of the receive training

1 dimensions, this implies that the LS-based methods require
i) — AHT (AP 127 35 Ny = Q(NgrNrL) for fre_quency-selectwe MIMO chan_nels_.
(f) ; rH, (O)Aze v (35) In contrast, we now provide the CCS approach to estimating

. i . ) d-sparse channels using block OFDM signaling and quantify
where the unitary matriceA r and Ar are as given in (30), jis performance advantage over traditional methods. The fo
and H,(¢) = [hv_rl(é) ... hy,n,(0)| is @an Ny x Nr |owing discussion once again makes use of the definition of
matrix in which thei-th columnh, ;(¢) € CN7 consists of maximum conditional sparsity within the AoA spread of the
the coefficientd H, (i, k, £)}. As in the case of single-antennachannel:d = max; [{ (i, k,¢) : (i, k,£) € Sg}|.
channels, both SS and OFDM waveforms can be used to
communicate over a frequency-selective MIMO channel. FQCS -6 - OFDM Training and Reconstruction
the sake of this exposition, however, we limit ourselves to aTraining: Pick S, to be a set ofM,, ordered pairs

block OFDM signaling structure similar to the one studied iEampIed uniformly at random (without replacement) from
[11,§ IV-B] and [12,§ IV]. S the setS = {0,1,...,Ny — 1} x {0,1,...,N; — 1} and
Specifically, we assume that th¥,-dimensional symbol efine the corresponding sequenceldf. training vectors as

consists ofN; > Nr (vector-valued) OFDM symbols. Sincey,  _ /N 737 o < (n.m) € S..} wheree: denotes
signaling using a block ofV; OFDM symbols is essentially t{henﬁh standze;{d E);\srs+élel(”r1ént)@fVT 'tr}’ ’

STF signaling with parametef, = T'/N; and W, = N /T, Reconstruction: Fix any a > 0 and choose the parameter

we make use of the STF formulation developed in Section V &o _ \/25(1 + a)(log NN+ L)/Nr. The CCS estimate of
carry out the analysis in this section. In particular, tzéning the No L x Ny matrix H, is then given as followsHSs —

signal in this case can be written using the notation in (28)
TDS(\/ E/NrX,y1,A) ... DS(y 5/NTX,YNRJ\)]

Xer(t) = 1/ Ni Z Xp.m g(t — nT,)el?™mWet  (36)
T (nm)esir Theorem 7:SupposeN,,d > 2 and pickd,; € (0,1/3).

whereS,, ¢ § = {0,1,...,N,—1} x{0,1,..., Ny —1} here Next, choose the number_ of pilotNtothr > 2¢4dlog” N,
is again the set of indices of pilot tones used for traininigilev 1"eN, under the assumption that, "} [[h, i[lo < d, the CCS
{%Xn.m € CN7} is the (vector-valued) training sequence havingStimate ofH, satisfies
energyy_ s, [xnml3 = Nr. The main difference here from
the single-antenna formulation is that we ugg.—instead of A (HSS) < (2. d-Nr. log NgNrL. (38)
N.;.—to denote the total number of pilot tones (equivalently, €
the number of temporal training dimensions);, = |S;,.|.*3

From [73], matched filteringr;,.(t) = H(x:-(t)) + z:-(t)  With probability at leastl — 2 max {2(#(1 +a)log NgNpL-
in this case with{g(t — nT,)e/2™mWeotl 4 vyields

—1/2 Cend2- .
(NgNrL)?*® , 10N, 0, Here, the absolute numerical
y R H. x 1z (n,m) € S 37) constants:4, c5 > 0 are the same as described in Theorem 3,
n,m — NT man,m mn,m ) T

while ¢y = 4/2(1 4 a)/(1 — 3d5g).

where the AWGN vectors{z, ,,} are independently dis- The proof of this theorem is omitted here for brevity, but
tributed asC V' (O, I, ), while the (matrix-valued) channeldepends to a large extent on first characterizing the RIP
coefficients are related ﬁ(f) asH,, ~ ﬁ(f)‘f_ w - Asin of the sensing matrixX arising in this setting using the
the case of nonselective MIMO channels, we can pre-multiphfoof technique of [34, Th. 3] and then essentially follows
the received training vectorg,, ,,’s with A% and row-wise along the lines of the proof of Theorem 6 in [56]. One key
stack the resulting vectos" y,, . to yield an},, x N ma- observation from the description of the training signal\aho
trix Y. Further, as in [35§ IV], the right-hand side of (37) can iS that N;, = €(d Ng - log” NrNy) for CCS. In particular,
be manipulated to express this matrix into the standard foffif the case of conditional AoA sparsity being equal to the
@)Y = /& XH, + Z. Here,H, — Lh hy average AOA sparsity (and sinck; > Nr), this implies

. = Nt v . yIly = v,l - v,Ng

is the N+ L x Nr channel matrix in which théth column con- that CCS requiresN;, = )(d - log” No) in this setting

sists of the coefficient§ H, (i, k, £)} associated with the-th as opposed taVi, = (NrNrL) for traditional LS-based
training methods—a significant improvement in terms of the

13Note that the number of temporal and receive training diromssis the rainiNg spectral eﬁ|C|_enCy when operating at large bauithe
same in the case of single-antenna channels. and with large plurality of antennas.
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VII. DISCUSSION sparse channels also. Second, extensive numerical siongat
carried out in [30]-[34], [36], [37] for a number of practia
There is a large body of physical evidence that suggests thg@fevant scenarios have established that the performahce o
multipath signal components in many wireless channels te@ds is markedly superior to that of traditional methods Hase
to be distributed as clusters within their respective cleinrpn the LS criterion and of nontraditional methods based on
spreads. Consequently, as the world transitions from eingMusIC and ESPRIT algorithms [75]. Note that the fact that
antenna communication systems operating at small bankisvidarametric methods such as MUSIC and ESPRIT are not opti-
(typically in the megahertz range) to multiple-antennasongna| for estimating sparse channels is hardly surprisings fEh
operating at large bandwidths (possibly in the gigahenged, because it is possible for a channel to have a small number of
the representation of such channels in appropriate bas#s stesolvablepaths but still have a very large number of underly-
to look sparse. This has obvious implications for the deng physicalpaths, especially in the case of diffuse scattering.
sign and implementation of training-based channel estimat Third, as noted in Section IlI-A, one expects the represimta
methods. Since—by definition—theffectiveintrinsic dimen- of real-world multipath channels in certain bases to be only
sion, d, of sparse multipath channels tends to be much smallgfectively sparse because of practical constraints such a
than their extrinsic dimensioi), one expects to estimate thenmihe leakage effect, diffuse scattering, and nonideal siltr
using far fewer communication resources than that dictatg¢k transmitter and receiver. While our primary focus irs thi
by traditional methods based on the LS criterion. Equaliyaper has been on characterizing the scaling performance of
importantly, however, sparsity of multipath channels diss CCs for exactly sparse channels, it works equally well for
implications for the design and implementation of the commigffectively sparse channels thanks to the near-optimaireat
nication aspects of a wireless system that is equipped witlbfthe Dantzig selector. Finally, and perhaps most impaigtan
limited-rate feedback channel. First, if the channelrmaation for the success of the envisioned wireless systems, CCS
module at the receiver yields a sparse estimate of the changh be leveraged to design efficient training-based methods
(something which LS-based reconstruction fails to accashpl for estimating sparseetworkchannels—a critical component
then—even at a low rate—that estimate can also be reliallj/ the emerging area of cognitive radio in which wireless
fed back to the transmitter. Second, this reliable knowdedgransceivers sense and adapt to the wireless environment fo
of the channel sparsity structure at both the transmitter agnhanced spectral efficiency and interference management.
the receiver can be exploited by agile transceivers, sutheas
ones in [74], for improved communication performance.
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- . . _ [3] L. Tong, B. M. Sadler, and M. Dong, “Pilot-assisted wes$ transmis-
Conflguratlons as opposed W = Q(D) for LS-based sions,” IEEE Signal Processing Magvol. 21, no. 6, pp. 12-25, Nov.
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