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Abstract—It is shown here that adaptivity in sampling results
in dramatic improvements in the recovery of sparse signals
in white Gaussian noise. An adaptive sampling-and-refinement
procedure called distilled sensing is discussed and analyzed,
resulting in fundamental new asymptotic scaling relationships
in terms of the minimum feature strength required for reliable
signal detection or localization (support recovery). In particular,
reliable detection and localization using non-adaptive samples
is possible only if the feature strength grows logarithmically in
the problem dimension. Here it is shown that using adaptive
sampling, reliable detection is possible provided the feature
strength exceeds a constant, and localization is possible when the
feature strength exceeds any (arbitrarily slowly) growing function
of the problem dimension.

I. INTRODUCTION

In high dimensional multiple hypothesis testing problems
the aim is to identify the subset of the hypotheses that differ
from the null distribution or simply to decide if one or more
of the hypotheses do not follow the null. There is now a well
developed theory and methodology for this problem, and the
fundamental limitations in the high dimensional setting are
well understood. However, most existing treatments of the
problem assume a non-adaptive measurement process. The
question of how the limitations might differ under a more
flexible, sequential adaptive measurement process had not been
addressed, prior to our own initial work in [1], [2]. This paper
builds upon those initial results, establishing improved bounds
for sparse recovery from adaptive measurements.

For concreteness let x = (x1, . . . , xp) ∈ Rp be an unknown
sparse vector, such that most (or all) of its components xi are
equal to zero. The locations of the non-zero components are
arbitrary. This vector is observed in additive white Gaussian
noise, and we consider two problems: localization–inferring
the locations of non-zero components, and detection–deciding
whether x is the all-zero vector. Given a single, non-adaptive
noisy measurement of each entry of x, a common approach
entails coordinate-wise thresholding of the observed data at
a given level, identifying the number and locations of entries
for which the corresponding observation magnitude exceeds
a certain value. In such settings there are sharp asymptotic
thresholds that the magnitude of the non-zero components
must exceed in order for the signal to be localizable and/or de-
tectable. Such characterizations have been given in [3], [4] for
the localization problem and [5], [6] for the detection problem.
A more thorough review of these sort of characterizations is
given in Section II-A.

In this paper we investigate these problems under a more

flexible measurement process. Suppose we are able to sequen-
tially collect multiple noisy measurements of each component
of x, and that the data so obtained can be modeled as

yi,j = xi + γ
−1/2
i,j wi,j , i = 1, . . . , p, j = 1, . . . , k . (1)

In the above a total of k measurement steps is taken, j

indexes the measurement step, wi,j
i.i.d.∼ N (0, 1), and γi,j ≥ 0

quantifies the precision of the jth measurement of entry i.
When γi,j = 0 we adopt the convention that component xi

was not observed at step j. The crucial feature of this model is
that it does not preclude sequentially adaptive measurements,
in which the γi,j can depend on past observations {yi,`}`<j

1.
In order to make fair comparisons to non-adaptive mea-

surement processes, the total precision budget is limited in
the following way. Let R(p) be an increasing function of
p, the dimension of the problem (that is, the number of
hypotheses under scrutiny). The precision parameters {γi,j}
are required to satisfy

∑k
j=1

∑p
i=1 γi,j ≤ R(p). For example,

the usual non-adaptive, single measurement model corresponds
to taking R(p) = p, k = 1, and γi,1 = 1, i = 1, . . . , p. This
baseline can be compared with adaptive procedures by keeping
R(p) = p, but allowing k > 1 and variables {γi,j} satisfying
the precision budget constraint.

The multiple measurement process (1) is applicable in many
interesting and relevant scenarios. For example in gene associ-
ation and expression studies, two-stage sampling approaches
are quite popular (see [7], [8], [9] and references therein):
in the first stage a large number of genes is initially tested
to identify a promising subset of them, and in the second-
stage these promising genes are subject to further testing. Such
ideas have been extended to multiple-stage approaches; see, for
example [10]. Similar two-stage approaches have also been
examined in the signal processing literature–see [11]. More
broadly, sequential experimental design has been popular in
other fields as well, such as in computer vision where it is
known as active vision [12], or in machine learning, where it is
known as active learning [13], [14]. These types of procedures
can potentially impact other areas such as microarray-based
studies and astronomical surveying. The main contribution of

1The precision for a measurement at location i at step j may be controlled
in practice by collecting multiple independent samples and averaging to
reduce the effective observation noise, the result of which would be an
observation described by the model (1). In this case, the parameters {γi,j}
are proportional to the number of samples collected at each such step. For
exposure-based sampling modalities common in many imaging scenarios, the
precision parameters {γi,j} can be interpreted as proportional to the length
of time for which the component at location i is observed at step j.



this paper is a theoretical analysis that reveals the dramatic
gains that can be attained using such sequential procedures.

Our focus here is on a sequential adaptive sampling pro-
cedure called distilled sensing (DS). The idea behind DS is
simple: use a portion of the total precision budget to crudely
measure all components; using those measurements, eliminate
a fraction of the components that appear least promising from
future consideration; and iterate this process several times.
When the vector x is sparse the DS algorithm, whose pseu-
docode is given in Algorithm 1, is shown to gradually focus the
measurement process preferentially on non-zero components
of the signal2. As mentioned above, similar procedures have
been proposed in experimental science, however to the best
of our knowledge the quantification of performance gains had
not been established prior to our own previous work in [1],
[2] and the results shown in this paper. In this manuscript we
significantly extend our previous work by providing stronger
results for the localization problem, and an entirely novel
characterization of the detection problem.

This paper is organized as follows. Following a brief dis-
cussion of the fundamental limits of non-adaptive sampling
for detection and localization, our main results, that DS can
reliably solve the localization and detection problems for
dramatically weaker signals than what is possible using non-
adaptive measurements, are stated in Sect. II. A sketch of
the proof of the main result is given in Sect. III. Simulation
results demonstrating the theory are provided in Sect. IV, and
conclusions and extensions are discussed in Sect. V.

II. MAIN RESULTS

The main results of our theoretical analysis of DS are
stated later in this section, but first we begin by reviewing the
asymptotic thresholds for localization and detection from non-
adaptive measurements. As mentioned above, these thresholds
are now well known [3], [4], [5], [6], but here we provide
a concise summary of the main ideas, in terms that will
facilitate our comparison with DS. We then highlight some
of the surprising gains achievable using DS.

A. Non-adaptive Localization and Detection of Sparse Signals

The non-adaptive measurement model we will consider as
the baseline for comparison is as follows. We have a single
observation of x in noise:

yi = xi + wi, i = 1, . . . , p , (2)

where wi
i.i.d.∼ N (0, 1). As noted above, this is a special case

of our general setup (1) where k = 1 and γi,1 = 1, i =
1, . . . , p, implying a precision budget R(p) =

∑p
i=1 γi,1 = p.

To describe the asymptotic (large p) thresholds for localiza-
tion we need to introduce some notation. Define the false-
discovery proportion (FDP) and non-discovery proportion
(NDP) as follows.

2We assume that the non-zero components are positive for simplicity,
though it is trivial to extend the algorithm and its analysis to handle both
positive and negative components by simply repeating the entire process twice;
once as described and again with yi,j replaced with −yi,j in the refinement
step of Algorithm 1.

Definition II.1. Let S := {i : xi 6= 0} be the signal support
set, and let Ŝ = Ŝ(y) denote an estimator of S . The false-
discovery proportion is given by FDP(Ŝ) := |Ŝ\S|/|Ŝ|. In
words, the FDP of Ŝ is the ratio of the number of components
falsely declared as non-zero to the total number of components
declared non-zero. The non-discovery proportion is given by
NDP(Ŝ) := |S\Ŝ|/|S|. In words, the NDP of Ŝ is the ratio
of the number of non-zero components missed to the number
of actual non-zero components.

We focus on a specific class of estimators of S obtained by
coordinate-wise thresholding

Ŝτ (y) := {i ∈ {1, . . . , p} : yi ≥ τ > 0} , (3)

where the threshold τ may depend implicitly on x, or on y
itself. The following result establishes the limits of localization
using non-adaptive sampling, and is similar in spirit to [15],
where related results were obtained under a random signal
model. Due to lack of space the result is stated without proof.

Theorem II.2. Assume x ≥ 0 with p1−β , β ∈ (0, 1), non-zero
components of amplitude

√
2r log p, r > 0, and measurement

model (2). There exists a coordinate-wise thresholding proce-
dure that yields an estimator Ŝ(y) such that if r > β, then

FDP(Ŝ) P→ 0 , NDP(Ŝ) P→ 0 ,

as p → ∞, where P→ denotes convergence in probability.
Moreover, if r ≤ β, then there does not exist a coordinate-wise
thresholding procedure that can guarantee that both quantities
above tend to 0 as p →∞.

The detection problem, which amounts to a hypothesis test
between the null distribution x = 0 and a sparse alternative,
has also been addressed in the literature under a random signal
model [5], [6]. Consider the hypothesis testing problem:

H0 : yi
iid∼ N (0, 1), i = 1, . . . , p

H1 : yi
iid∼ (1− θ(p))N (0, 1) + θ(p)N (µ(p), 1),

i = 1, . . . , p (4)

where θ(p) = p−β and µ(p) =
√

2r log p. These hypotheses
model measurements of either the zero vector, or of a ran-
domly generated signal x (with each entry having amplitude√

2r log p independently with probability p−β , and amplitude
zero with probability 1− p−β) according to the measurement
model (2). Note that under the alternative, the signal has p1−β

non-zero components in expectation. We recall the following.

Theorem II.3. Consider the hypotheses in (4). Define

ρ(β) :=





0, 0 < β < 1/2

β − 1/2, 1/2 < β ≤ 3/4

(1−√1− β)2, 3/4 < β < 1

If r > ρ(β), then there exists a test for which the sum of
the false alarm and miss probabilities tends to 0 as p → ∞.
Conversely, if r < ρ(β), then for any test the sum of the false
alarm and miss probabilities tends to 1 as p →∞.



Theorem II.3 was proved in [6] relying heavily on the ideas
presented in [5]. Although it is stated for the random sparsity
model (4) it is possible to relate the results to the deterministic
sparsity model that we consider in the paper, namely using the
ideas presented in Chapter 8 of [16].

B. Distilled Sensing

Algorithm 1 describes the DS measurement process. The
algorithm proceeds in steps, each of these using a portion Rj

of the total precision budget R(p). At each step we retain only
the components with non-negative observations, meaning that
roughly half of the components are eliminated from further
consideration when the number of non-zero components is
very small. The key is to identify conditions under which
the crude thresholding at 0 at each step does not remove a
significant number of the non-zero components.

The following theorem summarizes the main result for DS.
In contrast to the results provided above, which require that
the signal amplitude be Ω(

√
log p) for non-adaptive localiza-

tion and detection, DS is capable of reliably localizing and
detecting much weaker sparse signals.

Theorem II.4. Assume x ≥ 0 with p1−β , β ∈ (0, 1), non-
zero components of amplitude µ(p), and sequential mea-
surement model using Distilled Sensing with k = k(p) =
max{dlog2 log pe, 0}+2 observation steps, and precision bud-
get distributed over the measurement steps so that

∑k
j=1 Rj ≤

p, Rj+1/Rj ≥ δ > 1/2, and R1 = c1p and Rk = ck p for
some c1, ck ∈ (0, 1). Then the estimator formed from the final
set of observations of the DS procedure,

ŜDS := {i ∈ Ik : yi,k >
√

2/ck}
has the following properties:

(i) if µ(p) →∞ as a function of p then as p →∞
FDP(ŜDS) P→ 0 , NDP(ŜDS) P→ 0 .

(ii) if µ(p) ≥ max
{√

4/c1, 2
√

2/ck

}
(a constant)

then

lim
p→∞

Pr(ŜDS = ∅) =
{

1 , if x = 0
0 , if x 6= 0 ,

where ∅ is the empty set.

The result (ii) is entirely novel, and (i) improves on the re-
sult stated in [2] which required µ(p) to grow faster than an ar-
bitrary iteration of the logarithm (i.e., µ(p) ∼ log log · · · log p).

III. ANALYSIS OF DISTILLED SENSING

In this section we prove the main result characterizing the
performance of DS, Theorem II.4. We begin with three lemmas
that quantify the finite sample behavior of DS.

Lemma III.1. If {yi}m
i=1

iid∼ N (0, σ2), σ > 0, then for any
0 < ε < 1/2,
(

1
2
− ε

)
m ≤

∣∣∣{i ∈ {1, . . . , m} : yi > 0}
∣∣∣ ≤

(
1
2

+ ε

)
m,

Algorithm 1: Distilled Sensing.

Input:
Number of observation steps: k;
Resource budget: R(p);
Resource allocation sequence satisfying∑k

j=1 Rj ≤ R(p);

Initialize:
Initial index set: I1 ←− {1, 2, . . . , p};

Distillation:
for j = 1 to k do

Allocate: γi,j =
{

Rj/|Ij | i ∈ Ij

0 i /∈ Ij

}
;

Observe: yi,j = xi + γ
−1/2
i,j wi,j , i ∈ Ij ;

Refine: Ij+1 ←− {i ∈ Ij : yi,j > 0};
end

Output:
Final index set: Ik;
Distilled observations: yk = {yi,k : i ∈ Ik};

with probability at least 1− 2 exp (−2mε2).

Lemma III.2. Let {yi}m
i=1

iid∼ N (µ, σ2), with σ > 0 and
µ ≥ 2σ. Define ε = σ

µ
√

2π
< 1. Then

(1− ε)m ≤
∣∣∣{i ∈ {1, 2, . . . ,m} : yi > 0}

∣∣∣ ≤ m,

with probability at least 1− exp
(
− µm

4σ
√

2π

)
.

The results follow from Hoeffding’s inequality, and from a
standard Gaussian tail inequality together with a characteriza-
tion of the Binomial distribution from Chernoff, respectively.
See [2] for details.

Now, refer to Algorithm 1 and define sj := |S⋂
Ij | and

zj := |Sc
⋂

Ij |, the number of non-zero and zero components,
respectively, present at the beginning of step j = 1, . . . , k. Let
ε > 0, and for j = 1, . . . , k − 1 define

ε2j :=
s1 + (1/2 + ε)j−1z1

2πµ2Rj
, (5)

The output of the DS procedure is quantified in the following.

Lemma III.3. Let 0 < ε < 1/2 and assume that Rj >
4

µ2

(
s1 + (1/2 + ε)j−1z1

)
, j = 1, . . . , k − 1. If |S| > 0, then

with probability at least

1−
k−1∑

j=1

exp

(
−s1

∏j−1
`=1(1− ε`)√

8π

)

−2
k−1∑

j=1

exp (−2z1(1/2− ε)j−1ε2)

∏j−1
`=1(1 − ε`)s1 ≤ sj ≤ s1 and

(
1
2 − ε

)j−1
z1 ≤ zj ≤(

1
2 + ε

)j−1
z1 for j = 2, . . . , k. If |S| = 0, then with



probability at least

1− 2
k−1∑

j=1

exp (−2z1(1/2− ε)j−1ε2)

(
1
2 − ε

)j−1
z1 ≤ zj ≤

(
1
2 + ε

)j−1
z1 for j = 2, . . . , k.

Proof: The results follow from Lemmas III.1 and III.2
and the union bound. First assume that s1 = |S| > 0. Let
σ2

j := |Ij |/Rj = (sj + zj)/Rj and ε̃j := σj

µ
√

2π
, j = 1, . . . , k.

Now, we proceed by conditioning on the outcome of all prior
refinement steps. In particular, assume that (1− ε̃`−1)s`−1 ≤
s` ≤ s`−1 and

(
1
2 − ε

)
z`−1 ≤ z` ≤

(
1
2 + ε

)
z`−1for ` =

1, . . . , j. Then apply Lemma III.1 with m = zj , Lemma III.2
with m = sj and σ2 = σ2

j , and the union bound to obtain that
with probability at least

1− exp

(
− µsj

4σj

√
2π

)
− 2 exp (−2zjε

2) (6)

(1− ε̃j)sj ≤ sj+1 ≤ sj , and
(

1
2 − ε

)
zj ≤ zj+1 ≤

(
1
2 + ε

)
zj .

Note that the condition Rj > 4
µ2

(
s1 + (1/2 + ε)j−1z1

)
along

with the assumptions on prior refinement steps ensure that
µ > 2 σj , which is required for Lemma III.2. The condition
µ > 2 σj also allows us to simplify probability bound (6), so
that the event above occurs with probability at least

1− exp
(
− sj

2
√

2π

)
− 2 exp (−2zjε

2).

Next, we can recursively apply the union bound and the
bounds on sj and zj above to obtain for j = 1, . . . , k − 1,

εj =

√
s1 + (1/2 + ε)j−1z1

2πµ2Rj
≥ ε̃j =

σj

µ
√

2π

with probability at least

1−
k−1∑

j=1

exp

(
−s1

∏j−1
`=1(1− ε`)√

8π

)

−
k−1∑

j=1

2 exp (−2z1(1/2− ε)j−1ε2) .

Note that the condition Rj > 4
µ2

(
s1 + (1/2 + ε)j−1z1

)
implies that εj < 1. The first result follows directly. If
s1 = |S| = 0, then consider only zj , j = 1, . . . , k. The result
follows again by the union bound. Note that for this statement
the condition on Rj is not required.

Remark: It is noteworthy to examine the condition Rj >
4

µ2

(
s1 + (1/2 + ε)j−1z1

)
, j = 1, . . . , k more closely. Define

c := s1/[(1/2 + ε)k−1z1]. Then the conditions on Rj are
satisfied if

Rj >
4z1(1/2 + ε)j−1

µ2
(c(1/2 + ε)k−j + 1) .

Since z1 ≤ p, the following condition is sufficient

Rj >
4p(1/2 + ε)j−1

µ2
(c(1/2 + ε)k−j + 1) .

This condition condenses several problem specific parameters
(s1, z1, and k) into the scalar parameter c, and in particular the
more stringent condition Rj > 4(c+1)p(1/2+ε)j−1

µ2 will suffice.
It is now easy to see that if s1 ¿ z1 (e.g., so that c ≤ 1),
then the sufficient conditions become Rj > 8p

µ2 (1/2 + ε)j−1,
j = 1, . . . , k. Thus, for the sparse situations we consider, the
precision allocated to each step must be just slightly greater
than 1/2 of the precision allocated in the previous step. This
is the key to guarantee the results of Theorem II.4.

A. Sketch of Proof of Theorem II.4

The proof of the main result follows from a careful ap-
plication of Lemma III.3. We provide only a sketch of the
complete proof here due to page limitations; for complete
details, see [17]. The main idea of the proof is to show
that, with probability tending to one as p → ∞, the DS
procedure retains most of the signal components (part (i) of
the theorem) or at least a significant fraction of those (part (ii)
of the theorem), while discarding a large number of the zero
components, thereby increasing the precision of the final set of
measurements dramatically. The proof proceeds by analyzing
the event

Γ =

{
z1

(
1
2
− ε

)k−1

≤ zk ≤ z1

(
1
2

+ ε

)k−1
}

⋂


s1

k−1∏

j=1

(1− εj) ≤ sk ≤ s1



 .

By using the choice of k in the Theorem and taking ε = p−1/3

we conclude that Pr(Γ) → 1 as p →∞. We now proceed by
conditioning on Γ, and we note that the output of the DS
procedure consists of a total of sk + zk independent Gaussian
random variables with variance (sk + zk)/Rk, where sk of
them have mean µ and zk have mean zero. Provided µ is large
enough, in particular µ(p) ≥ max

{√
4/c1, 2

√
2/ck

}
, we can

show that the threshold in the procedure for the computation
of ŜDS is such that, conditionally on Γ we will retain all
the sk signal components and discard all the zk non-signal
components with high probability (this ensues from Gaussian
tail bounds and a union of events bound). The proof of part
(ii) of the Theorem follows by noting that sk/s1 is bounded
away from zero, given the condition on µ above, and so if
S 6= ∅ we guarantee that ŜDS 6= ∅ with increasingly high
probability. Similarly if S = ∅ then clearly ŜDS = ∅ with
increasingly high probability. Furthermore if µ is a diverging
sequence in p we can also show that sk/s1 → 1. This ensures
that, with increasingly high probability the FDP(Ŝ) = 0 (as
the thresholding procedure is guaranteed to retain only signal
components), and that the NDP(Ŝ) = (s1 − sk)/s1 → 0.

IV. NUMERICAL EXPERIMENTS

This section presents numerical experiments with DS. We
consider three cases, corresponding to p = 214, 217, and 220,
and in each case the number of non-zero entries is given
by bp1/2c. We choose k = max{dlog2 log pe, 0} + 2 as in
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Fig. 1. FDR and NDR vs. SNR comparison. The FDR and NDR (false- and
non-discovery rates) are the average FDP and NDP over 500 independent
trials at each SNR (SNR = µ2). Thresholds were chosen to achieve FDR
= 0.05. The solid, dashed, and dash-dot lines correspond to p = 214, 217,
and 220, respectively, and in each case the number of non-zero entries is
bp1/2c. The nearly-flat curves at the bottom of the plot correspond to the
FDRs in each case, which do not differ dramatically from each other.

Theorem II.4, which corresponds to k = 6 for each of the three
cases. The precision allocation used throughout the simulations
is given by Rj = (0.75)j−1R1 for j = 2, . . . , k − 1, with
Rk = R1, and R1 chosen so that

∑k
j=1 Rj = p.

Figure 1 compares the performance of non-adaptive sensing
and DS for the cases p = 214, 217, and 220, which correspond
to the solid, dashed, and dash-dot lines, respectively. The plot
depicts the false- and non-discovery rates (average FDP and
NDP) as a function of SNR for each case, averaged over 500
independent trials. Thresholds were chosen so that the FDRs
were approximately 0.05 in each case. Not only does DS
achieve significantly lower NDRs than non-adaptive sampling
over the entire SNR range, its performance also exhibits much
less dependence on the signal dimension p.

V. CONCLUDING REMARKS

There has been a tremendous interest in high-dimensional
testing and detection problems in recent years. A well-
developed theory exists for such problems when using a single,
non-adaptive observation model [3], [4], [5], [6]. However, in
practice and theory, multistage adaptive designs have shown
promise [7], [8], [9], [10], [11]. This paper quantifies the
improvements such methods can achieve. We analyzed a
specific multistage design called Distilled Sensing (DS), and
established that DS is capable of detecting and localizing
much weaker sparse signals than non-adaptive methods. The
main result shows that adaptivity allows reliable detection and
localization at a signal-to-noise ratio (SNR) that is log p lower
than the minimum required by non-adaptive methods, where
p is the problem dimension. The results presented here can be
extended also to very sparse signals; in particular, the analysis
presented here also shows that DS enables recovery of signals
having as few as Ω(log log log p) nonzero entries.

Note that the DS procedure as described requires about 2n

total measurements: n for the first step, about n/2 for the
second, about n/4 for the third, and so on. This requirement
can be reduced by considering alternate measurement models.
For example, rather than direct measurements, each measure-
ment could be a linear combination of the entries of x. If the
linear combinations are non-adaptive, this leads to a regres-
sion model commonly studied in the Lasso and Compressed
Sensing literature [18], [19]. However, sequentially tuning
the linear combinations leads to an adaptive version of the
regression model which can be shown to provide significant
improvements, as well [20].
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