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ABSTRACT
Compressive sampling (CS), or “Compressed Sensing,” has
recently generated a tremendous amount of excitement in the
image processing community. CS involves taking a relatively
small number of non-traditional samples in the form of ran-
domized projections that are capable of capturing the most
salient information in an image. If the image being sampled
is compressible in a certain basis (e.g., wavelet), then under
noiseless conditions the image can be much more accurately
recovered from random projections than from pixel samples.
However, the performance of CS can degrade markedly in the
presence of noise. In this paper, we compare CS to conven-
tional imaging by considering a canonical class of piecewise
smooth image models. Our conclusion is that CS can be ad-
vantageous in noisy imaging problems if the underlying im-
age is highly compressible or if the SNR is sufficiently large.

Index Terms— Image sampling, random projections

1. INTRODUCTION

Compressive Sampling (CS), or “Compressed Sensing,” has
recently generated a tremendous amount of excitement in the
image processing community. CS involves taking a relatively
small number of non-traditional samples in the form of pro-
jections of the signal onto random basis elements or random
vectors (random projections). Recent results show that such
observations can contain most of the salient information in the
signal. It follows that if a signal is compressible in some basis,
then a very accurate reconstruction can be obtained from these
observations [1, 2, 3]. Our own work shows that compressible
signals can be accurately recovered, at the usual nonparamet-
ric rates, from random projections that are also contaminated
with zero-mean additive noise [4]. In noiseless settings, CS
reconstructions are much more accurate than reconstructions
obtained from an equivalent number of conventional point
samples, illustrating the utility of CS.

The main contribution of this work is examination of the
feasibility of CS as an imaging method through a careful com-

This work was supported by the National Science Foundation, grant nos.
CCR-0310889 and CNS-0519824.

parison of its performance with more standard (pixel-based)
sampling schemes. The remainder of the paper is organized
as follows. In Section 2 we define the imaging problem being
considered. Section 3 gives an overview of the known per-
formance results of CS, in terms of the average squared error
rates. Section 4 describes the class of images being consid-
ered. The performance of CS relative to conventional meth-
ods is predicted theoretically in Section 5. An example is
presented in Section 6 and conclusions are given in Section 7.

2. PROBLEM STATEMENT

The imaging problem being considered is described as fol-
lows. Let f∗ = f∗(x, y), x, y = 1, . . . ,

√
n, be an image

defined on an n-point uniform Cartesian grid on [0, 1]2 where
n is a perfect square. For the sake of notational simplicity, we
will consider f∗ as a vector (perhaps a raster-scanned repre-
sentation of the original) and write f∗ = f∗i , i = 1, . . . , n.
The goal is to sample f∗ and obtain a reconstruction, de-
noted f̂ = f̂i, i = 1, . . . , n, that minimizes the average mean
squared reconstruction error given by

E

[
‖f∗ − f̂‖22

n

]
= E

[∑n
i=1(f

∗
i − f̂i)2

n

]
,

where the expectation is over the distribution on the noise (if
present) and/or randomization of the sampling process, as de-
scribed below. Note that this goal is non-trivial in the presence
of noise and/or when the number of samples taken is smaller
than the number of pixels.

In this paper we are interested in reconstruction from k ¿
n samples. First consider the problem in a noiseless setting,
and a general form of sampling defined by

yj =
n∑

i=1

φj,if
∗
i , j = 1, . . . , k,

where φj,i are projection vectors, chosen a priori and non-
adaptively by the user, and satisfying the energy constraint∑n

i=1 φ2
j,i = ‖φj‖22 = 1. For example, choosing φj,i = 1 for

some index i and φj,i = 0 for all other indices is equivalent



to the jth observation being a point or pixel sample of f∗.
Many other possible sampling schemes are possible within
this framework, including the randomized patterns discussed
in the next section. In noisy imaging environments, the ob-
servation model changes slightly. Noisy observations are

yj =
n∑

i=1

φj,if
∗
i + wj , j = 1, . . . , k, (1)

where the wj represent errors in the sampling process. In this
paper, we assume that wj , j = 1, . . . , k, are i.i.d. zero-mean
Gaussian noises with variance σ2.

3. COMPRESSED SENSING THEORY

In Section 2 we defined a general form of sampling that can be
used to describe many classical sampling schemes. The key
to the success of Compressed Sensing (CS) is to employ ran-
dom, white-noise projection vectors. This approach, coupled
with tractable reconstruction algorithms, can lead to amazing
results for signals that are compressible. The basic intuition
behind CS is that each white-noise projection spreads its en-
ergy (in expectation) over the entire signal space, effectively
“illuminating” the entire signal. But more is true. Roughly
speaking, it turns out that k white-noise projections simulta-
neously sample all possible k-dimensional signal subspaces
with high probability. Image reconstructions from white-
noise samples are based on the idea of finding a reconstruc-
tion that fits the samples and also has a sparse representation
in a good approximating basis. We state some formal conse-
quences of this remarkable result below and refer the reader
to the existing literature for further details [1, 2, 3, 4, 5].

Suppose that the image f∗ is well approximated in a cer-
tain representation in the following sense. Let f∗(m) denote
the best m-term approximation of f∗ in terms of this rep-
resentation (e.g., an orthonormal basis). Suppose that the
squared approximation error behaves like

‖f∗ − f∗(m)‖22
n

≤ CA m−2α (2)

for some α ≥ 0 and number CA ≥ 0 that is a constant or
logarithmic (in m) factor. The parameter α quantifies the de-
gree to which f∗ is compressible in the given representation.
We say that the approximation error scales as m−2α if a re-
lationship like the one in (2) holds. Throughout the paper, in
our inequalities we will focus on the polynomial behavior and
constants or logarithmic factors (like log m, log n, log k) will
be absorbed into a common factor out front.

With respect to the choice of representation, it is clear that
any m-term or m-component reconstruction of f∗ will ex-
hibit a worst-case reconstruction error no better than the ap-
proximation error rate for the optimal m-term approximation.
Remarkably, in noiseless conditions CS performs almost as
well the optimal approximation. Specifically, suppose the φj,i

are generated as i.i.d. Rademacher random variables (±1/
√

n
each with probability 1/2). Sampling using vectors of this
form will be called Rademacher sampling. It can be shown
that k Rademacher samples combined with a linear program-
ming reconstruction technique based on a good approximat-
ing basis produces a reconstruction f̂k satisfying

E

[
‖f̂k − f∗‖22

n

]
≤ CCS k−2α

where CCS > 0 includes a logarithmic factor. These results
were developed in [1, 2, 3]. Note that the error decays at the
same rate as the optimal k-term approximation.

When noise is present in the measurements, as described
by the observation model in (1), existing bounds suggest that
the reconstruction error rate degrades. A reconstruction from
k noisy Rademacher samples combined with an mixed l2-l0
(squared data-fitting error plus l0-norm of coefficients in the
approximating basis) reconstruction criterion produces a re-
construction satisfying the error bound

E

[
‖f̂k − f∗‖22

n

]
≤ CNCS k

−2α
2α+1

as shown in [4], where again CNCS > 0 includes a logarithmic
factor. Alternatively, one can arrive at similar results via a re-
construction based on linear programming [5]. Note that the
error decay can be much slower in the noisy case. Nonethe-
less, it is easy to see that CS can still impressively outperform
conventional pixel sampling by considering an image with a
very small number of non-zero pixels at arbitrary locations
[4]. In this case, undersampling in the pixel domain will prob-
ably miss most of these pixels leading to an very large error,
whereas the CS error decays as shown above.

4. PIECEWISE CONSTANT IMAGE CLASS

In order for CS to be a viable option, it should offer some
provable advantage over classical imaging methods in more
general situations. To this end, we compare the theoretical
performance of CS to classical pixel-sampling for piecewise
constant images. Specifically, we consider the class of images
composed of constant regions separated by one-dimensional
boundary curves (edges). Results similar to those stated be-
low also hold for more general piecewise smooth images,
provided the images are sufficiently smooth away from the
boundaries. However, to keep the presentation and analysis
simple, we work with the piecewise constant class.

The defining feature of the piecewise constant class is the
following. If the image domain is partitioned into m squares
of equal size, then the boundary curve (edges) occupy no
more than C

√
m of the squares for some constant C > 0 (i.e.,

the curve is one-dimensional). We will also consider the spe-
cial subclass of images whose boundary curves are pixelized
versions of twice-continuously differentiable functions.



Images in this class are compressible using a number of
compressing bases or representations. The best m-term pixel
or Fourier approximation of a given image in this class has
a squared approximation error that scales as m−1/2 (we will
discuss the pixel approximation error in a bit of detail below).
Wavelets provide a more compact representation of images in
this class, yielding an approximation error that scales as m−1

[6, 7]. The improved rate can be attributed to the fact that
an optimal dyadic wavelet partition can be chosen such that
the boundary is tiled with small dyadic squares of sidelength
m−1 and so that the total number of dyadic squares is no more
than some small constant multiple of m [8, 7]. If we con-
sider the subclass of images with twice-continuously differ-
entiable boundary curves, then it is know that wedgelets [8],
curvelets [6], and contourlets [9] yield an approximation error
that scales like m−2. This improvement is possible because
these more sophisticated representations essentially provide
a piecewise linear approximation to the boundary, leveraging
the additional smoothness of the curves.

Let us examine the approximation capabilities of conven-
tional pixel sampling in a bit more detail. Consider taking k
pixel samples of the original image, where the samples are
arranged on a uniform Cartesian grid of dimension

√
k ×

√
k

(k is a perfect square). The n-pixel reconstruction will have
to be formed by “upsampling” the k-pixel subimage back to
an n-pixel image. Note that in the vicinity of the boundary
there is no guaranteed local smoothness or regularity between
pixels. Thus, a reasonable upsampling method is to simply
fill regions of the n-pixel reconstruction with the value of the
nearest sampled pixel. The reconstruction will then consist
of k square cells each with area 1/k. The boundary will pass
through on the order of

√
k of these cells, and the reconstruc-

tion will have O(1) error in each of these “boundary” cells.
Therefore approximation error of this method scales as k−1/2.

(a) True Boundary (b) Other Candidates

Fig. 1. Potential failures of cell average samples.

Another common form of image acquisition is based on
integration pixel samples. In this situation, the image is par-
titioned into k square cells and the average is computed over
each cell. On one hand, it might seem that integration sam-
pling provides more information than pure pixel (point) sam-
ples. However, the images in Fig. 1 show that this is not
the case in this image class. Fig. 1(a) depicts the bound-
ary of an image in the class being considered, along with

the partition cells corresponding to the integration sampling
process. In cells containing the boundary, samples will be
approximately 1/2 assuming the constant portions on either
side of the boundary are of 0 and 1, respectively. Many re-
constructions other than the true boundary are consistent with
the observed data (e.g., a horizontal line or a shifted version
of the true boundary, as shown in Fig. 1(b)). The two alter-
nate reconstructions will exhibit O(1) error on the boundary
cells, and will lead to an approximation error rate that scales
as k−1/2 by the above argument.

5. RECONSTRUCTION ERROR COMPARISON

We are now in the position to compare CS with pixel sampling
for the piecewise constant image class. First let us consider
pixel sampling. In the noiseless case, we obviously get the
approximation rate k−1/2. The approximation error places
an upper bound on the reconstruction error that is attainable
when noise is present. If the pixel samples described above
are denoised using any method, the reconstruction error can
be no better than k−1/2.

Now consider CS. In noiseless CS, the reconstructions
achieve the approximation error rates dictated by the com-
pressing basis or representation scaling like k−2α while
in noisy settings the reconstruction error bound scales like
k
−2α
2α+1 , as reviewed in Section 3. The approximation rates

reviewed in Section 4 show that for the piecewise constant
image class, wavelet, wedgelet and curvelet approximations
all yield α = 1/2. In the subclass of piecewise constant
images with smoother boundaries (twice-continuously differ-
entiable), then wedgelets, curvelets and contourlets (but not
wavelets) yield α = 1.

The reconstruction error results are presented in Table 1.
CS(1) refers to the basic piecewise constant class and CS(2)
refers to the subclass with smoother boundaries. We assume
that CS employs an optimal basis or representation for recon-
struction in each case (e.g., wavelet in CS(1) and curvelet in
CS(2)). We see that in half of the situations considered, CS
offers no advantage. When the SNR is high (close to noise-
less situation) or when the boundary is sufficiently smooth,
CS provides in improvement in the reconstruction error rate
over what is possible using any pixel sampling scheme. It is
our experience that most “real-world” images exhibit an ap-
proximation decay like α = 1/2, and that rates approaching
α = 1 are relatively uncommon (apart from the simple im-
ages considered in our study). Thus, our analysis suggests
that CS offers an advantage over conventional pixel sampling
primarily in very high SNR imaging regimes.

6. SIMULATION EXPERIMENTS

To verify the that the theoretical bounds provide meaningful
predictions in practice, we simulate the various schemes con-
sidered above. We compare the performance of pixel sam-



Pixel Sampling CS(1) CS(2)

Noiseless k−1/2 k−1 k−2

Noisy k−1/2 k−1/2 k−2/3

Table 1. Reconstruction error bounds for different sampling
schemes applied to piecewise constant images, assuming k
observations and ignoring logarithmic factors.

pling to CS using Haar wavelet and wedgelet representations.
For the wedglet-based reconstructions we use the code devel-
oped by Prof. Rebecca Willett [10], which we highly recom-
mend, combined with the reconstruction algorithm described
in [4]. The methods are evaluated in two settings, low-noise
(SNR=9dB) and high-noise (SNR=3dB). The reconstruction
error as a function of number of projections is plotted on log-
log axes, for which power-law relationships yield linear rela-
tionships. The original signal, along with error plots for both
noise settings are shown in Fig. 2. Note that our analysis fo-
cused on the decay rates, not constants, so attention should be
paid solely to the slopes in Fig. 2. As predicted by the theory,
the CS methods can sometimes outperform pixel sampling,
especially at higher SNR. Further, using a reconstruction ba-
sis/representation that best approximates the class of images
being considered (wedgelets in this case) provides even more
of an advantage for CS.

(a) Original Image
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(b) 3dB Results
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(c) 9dB Results

Fig. 2. Original Image and Reconstruction Errors. Pixel sam-
pling error is shown with a solid line. The dashed line repre-
sents CS with a wavelet basis reconstruction, and the dotted
line shows the error for CS with a wedgelet reconstruction.

7. CONCLUSIONS

We have shown that CS can be a useful imaging tool in vari-
ous noise regimes when the underlying signal is compressible
in a known basis or representation. However, many (perhaps
most) “real-world” images exhibit an approximation error de-
cay exponent close to α = 1/2 and thus our analysis suggests
that CS offers an advantage over conventional pixel sampling
primarily in high SNR imaging regimes.
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