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ABSTRACT
Estimating the level set of a signal from measurements is a task that
arises in a variety of fields, including medical imaging, astronomy,
and digital elevation mapping. Motivated by scenarios where ac-
curate and complete measurements of the signal may not available,
we examine here a simple procedure for estimating the level set of
a signal from highly incomplete measurements, which may addi-
tionally be corrupted by additive noise. The proposed procedure is
based on box-constrained Total Variation (TV) regularization. We
demonstrate the performance of our approach, relative to existing
state-of-the-art techniques for level set estimation from compressive
measurements, via several simulation examples.

Index Terms— TV norm, Compressive sensing, FISTA

1. INTRODUCTION

Let x ∈ Rp represent our signal of interest. A γ-level set of x
is defined as the set of locations where the value of the signal x
exceeds some specified threshold γ; i.e. S∗ = S∗(γ) = {j : x(j) ≥
γ}, j = 1, ..., p. Identification of level sets plays a crucial role in a
variety of applications such as medical imaging where, for example,
level sets can indicate presence of pathologically significant features
such as tumors [1, 2].

If x is known exactly, the level set estimation task is of course
trivial. Here, our focus is on settings where x itself may not be di-
rectly available; instead, we only have access to linear measurements
of x, which may be noisy and/or incomplete. Consider, for example,
the case where complete noisy measurements of the signal of interest
are available, such that measurements are of the form

y = x+ n, (1)

where y ∈ Rp and n ∈ Rp is an i.i.d. noise vector. In this case, a
simple approach to level set estimation would entail coordinate-wise
thresholding, estimating from the noisy measurements the regions
where x exceeds the specified threshold γ.

In more interesting settings, measurements may come in the
form of noisy linear projections of the unknown signal,

y = Ax+ n, (2)

where A ∈ Rk×p is a projection matrix and n ∈ Rk is addi-
tive i.i.d. noise. Such models describe, for example, the measure-
ments obtained in magnetic resonance imaging (MRI) applications,
which correspond to samples of the Fourier-domain representation
of the signal; similar models describe observations obtained in to-
mographic imaging applications.

Generally speaking, the condition k < p describes settings
where the number of measurements is less than the ambient di-
mension of the signal being acquired, a condition that may be
imposed, for example, by sampling strategies designed to adhere
to physical resource constraints. Problems involving recovery of
high-dimensional signals from undersampled data comprise the
essential focus of current research into compressive sensing (CS)
(see, eg, [3, 4]), where more “exotic” measurement operators, such
as (pseudo-)random projections, have been examined extensively.
The essential goal in CS is typically to recover (or estimate) the
unknown signal from a reduced number of measurements; here, we
examine the problem of estimating a level set of x from compressive
measurements.

1.1. Prior Work

Recent work [1] initiated the study of level set estimation from com-
pressive measurements, and proposed a strategy for estimating the
level set directly from the compressive measurements without per-
forming the reconstruction step. The approach outlined in [1] com-
prises an extension of the level set estimation technique developed
in [5], which was designed for the setting where measurements are
complete, but noisy, as described by the model (1).

The approach proposed and analyzed in [5] is based on a
complexity-regularized level set estimator of the form

Ŝ = arg min
S∈S

R̂(S) + αΦ(S), (3)

where S is a class of candidate estimates, R̂(S) is an empirical mea-
sure of the estimator risk based on p noisy measurements of the sig-
nal, given by

R̂(S) =
1

p

∑
i

(γ − yi)
[
I{i∈S} − I{i/∈S}

]
, (4)

where I{E} = 1 if event E is true and 0 otherwise, and Φ(S) is a
carefully designed tree-based complexity regularization term which
penalizes improbable level sets based proportional to their depth in
a recursive dyadic representation of the signal domain. Here, α > 0
is a parameter that controls the relative influence of each term in the
overall cost function. The empirical risk function R̂(S) is devised as
a surrogate for the true excess risk of a candidate level set S which
is defined as

E(S) =
1

p

∑
i∈4(S∗,S)

|γ − xi| (5)



where4(S∗, S) = {i ∈ (S∗∩S̄)∪(S̄∗∩S)} denotes the symmetric
difference, and S̄ is the complement of S. The essential idea behind
this formulation is that estimates having small excess risk are likely
close to the true level set, and while (5) cannot be evaluated directly
from data (since S∗ is unknown), the empirical surrogate (4) can.

Now, the approach in [1] is concerned with estimating level sets
from compressive measurements, and to that end, proceeds in a man-
ner similar in spirit to the approach of [5], with an additional “pre-
processing” step. Given the measured data y, the authors of [1] sug-
gest forming the “proxy” observations

z = AT y = x+ (ATA− I)x+ATn︸ ︷︷ ︸
ñ

, (6)

which take the form of a signal plus signal-dependent-noise ñ. The
procedure of [5] is then applied to the proxy observations z, rather
than y. The analysis in [1] comprises a careful treatment of the
signal-dependent noise term ñ, under the framework proposed in [5].
We refer the reader to [1, 5] for further details and analysis of these
existing level set estimation approaches.

1.2. Contributions

In this paper we examine an alternative approach, and demonstrate
that level sets can be estimated from compressive measurements
quickly and accurately using estimation-based techniques. Our
method entails solving an optimization problem with total variation
(TV) regularization, subject to additional constraints on the solution
set. Our main contribution here is to demonstrate the effectiveness
of this estimation-based approach to compressive level set estima-
tion relative to a simple thresholding-based approach, as well as the
state-of-the-art approach in [1].

The remainder of the paper is organized as follows. In Sec-
tion 2, we discuss the optimization problem to be solved for level
set estimation, and briefly describe an algorithm for solving the TV
regularization problem that is based on the Fast Iterative Shrinkage
and Thresholding Algorithm (FISTA) [6, 7]. We evaluate the per-
formance of our approach via simulation, and these results are pre-
sented in Section 3. Finally, conclusions and directions for future
work are discussed in Section 4.

2. TV REGULARIZATION FOR LEVEL SET ESTIMATION

In this section, we describe an estimation-based algorithm for level
set estimation using total variation (TV) regularization. TV regu-
larization (proposed initially in [8]) is now a standard approach in
many image denoising and deblurring problems, and fast algorithms
have been developed for solving TV minimization problems (see,
eg., [7]). Suppose we collect noisy projection measurements of (a
vectorized version of) the image of interest, according to the model
(2). As above we denote by x ∈ Rp the signal being acquired. Now,
suppose p = mn for some integers m,n > 0, and let us denote by
X the reshaped m× n image whose vectorized representation is x.
The discrete penalized version of the TV minimization problem we
consider here consists of solving a convex minimization problem of
the form,

X̂ = arg min
Z

1

2
‖Az − y‖22 + α‖Z‖TV, (7)

where A ∈ Rk×p is the linear measurement operator, z ∈ Rp is the
vectorized representation of Z ∈ Rm×n, and y ∈ Rk. Here, ‖ · ‖TV

Algorithm 1 FISTA: Level Set Estimation

Input: L = λmax(ATA); α > 0; l, u ∈ R (l < u)
Initialize: ρ = 1/L; t1 = 1; x0 = r1 = 0

while not converged do
1 : xg = rk − ρ∇f(rk)
2 : Xg = reshape(xg,m, n)
3 : Xk = proxρ(α‖X‖TV)(Xg)
4 : xk = reshape(Xk, p, 1)
5 : xk = project(xk, l, u)

6 : tk+1 =
(

1 +
√

1 + 4(tk)2
)
/2

7 : rk+1 = xk +
(
(tk − 1)/tk+1

)
(xk − xk−1)

end while

could be either the isotropic TV function, given by

‖X‖TV,iso

=

m−1∑
i=1

n−1∑
j=1

√
(Xi,j −Xi+1,j)

2 + (Xi,j −Xi,j+1)2

+

m−1∑
i=1

|Xi,n −Xi+1,n|+
n−1∑
j=1

|Xm,j −Xm,j+1| (8)

or the `1−based, anisotropic TV, which is defined by

‖X‖TV,`1 =

m−1∑
i=1

n−1∑
j=1

{|Xi,j −Xi+1,j |+ |Xi,j −Xi,j+1|}

+

m−1∑
i=1

|Xi,n −Xi+1,n|+
n−1∑
j=1

|Xm,j −Xm,j+1|.

The regularization parameter α > 0 provides a tradeoff between fi-
delity to measurements and complexity of the solution, as quantified
by the TV norm.

We pose our level set estimation approach in terms of the solu-
tion of a box-constrained TV minimization

X̂ = arg min
z

1

2
‖Az − y‖22 + λ‖Z‖TV,

such that l ≤ zi ≤ u, i = 1, ..., p, (9)

where l and u are the upper and lower values every element of the
solution x can take. In general, [l, u] may describe the range of
allowable pixel amplitudes; for γ-level set estimation, we choose l
to be just slightly less than γ, since for this task we are ultimately
uninterested in those pixels whose values are less than γ.

Algorithm 1 describes the procedure that we employ here, which
is based on the Fast Iterative Shrinkage and Thresholding Algorithm
FISTA [6, 7]. Our optimization takes the general form

min
x
f(x) + g(x), (10)

where f(x) = 1
2
‖Ax − y‖22 and g(X) = α‖X‖TV + δC(X), and

δC is the indicator function on C. The efficiency of our FISTA-based
approach relies on us being able to quickly obtain the quantityXk =
proxρ(α‖X‖TV)(Xg); in general, for a continuous convex function
g(x) and ρ > 0,

proxρ(g)(x) := arg min
u

{
g(u) +

1

2ρ
‖u− x‖22

}
. (11)
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Fig. 1. Sample grayscale images and their corresponding level sets.
Panel (a) depicts an elevation map of St. Louis with pixel intensities
in [0, 255], and panel (b) depicts its γ = 70 level set. The image
in panel (c) is a magnetic resonance angiography image, also having
pixel intensities in [0, 255], and its γ = 60 level set is shown in panel
(d).

Here, we solve this by... The function ∇f(x) denotes the gradi-
ent of the function f at the point x, which here is simply given by
∇f(x) = AT (Ax− y). The function project(x, l, u) is given by

project(x, l, u) =

 x if l ≤ x ≤ u,
l if x < l,
u if x > u.

(12)

where l and u are as described above. The reshape(x,m, n) step
simply takes a vector/matrix and reshapes it to dimension m × n.
Standard termination criteria can be specified (eg., terminate when
the difference between successive estimates is sufficiently small).

3. EXPERIMENTAL RESULTS

We performed level set estimation experiments with two different
test images1, shown in Fig. 1(a) and (c). Measurements of a par-
ticular 128 × 128 test image X were obtained via the noisy linear
model y = Ax + n, where x ∈ Rp (p = 1282) is the vectorized
representation of the image X , and A ∈ Rk×p. The images used
for experiments are in 8-bit binary format, meaning that their pixels
take integer values in [0, 255]. Here the entries of A are generated
as i.i.d. realizations of N (0, 1/k) random variables, and the addi-
tive noise components of y are i.i.d. N (0, σ2). We consider several
settings, corresponding to several different choices of the number of
measurements k and noise standard deviation σ.

We compare the approach outlined here (using the isotropic TV
norm) with the state of the art approach in [1]. As discussed above,
for the proposed approach we choose l slightly smaller than the tar-
get level (specifically, l = γ− 5 here) and choose u = 255. In addi-
tion, both our approach, as well as the method in [1], are dependent

1The St. Louis elevation map image in Fig. 1(a) is available at
www.usgs.gov/features/lewisandclark/Mapping.html;
the magnetic resonance angiography image in Fig. 1(c) is available at
en.wikipedia.org/wiki/Magnetic resonance angiography.
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Fig. 2. Excess risk of image from Fig.1(a) where the −− denotes
our approach proposed here, -◦- is the approach from [1] and -.-
is the simple thresholding-based approach in a noise-free (σ = 0)
setting.

on choice of an algorithmic parameter α > 0. Following the eval-
uation methodology described in [1], we choose these parameters
clairvoyantly, and display the results obtained using the parameters
that result in the minimum excess risk, as defined in (5).

Fig.2 shows a plot of excess risk vs. number of projection mea-
surements for estimates of the γ = 70 level set of the image in
Fig. 1(a) obtained using the approach described here, the state of the
art approach from [1], and direct thresholding of proxy observations
defined in (6), in a noise-free setting. The results show that the ap-
proach outlined here achieves a much lower excess risk for the same
number of noisy measurements. Figures 3 and 4 provide a visual
comparison of our approach with the approach of [1] when estimat-
ing the γ = 70 and γ = 60 level sets, respectively, of two different
images. Estimates obtained using each approach, for several differ-
ent values of k (number of measurements) and different noise levels
are shown. Here, as above, the estimates shown for each case corre-
spond to the clairvoyantly-chosen algorithmic parameter α yielding
minimum excess risk in each case. Note that the TV-based approach
proposed here performs fairly well even when the number of mea-
surements obtained are much smaller than the ambient dimension —
see, in particular, Fig.4(e) and (f).

4. CONCLUSIONS

We proposed a simple box-constrained total variation (TV) based op-
timization approach for level set estimation from compressive mea-
surements. A fast algorithm based on FISTA was discussed, and sim-
ulation results demonstrate the effectiveness of this approach, rela-
tive to existing techniques, in the compressive level set estimation
problem. Future work in this direction will entail a more exhaustive
simulation-based study of this technique for a variety of test images,
as well as examination of the performance of this approach from
other forms of undersampled data, such as subsampled Fourier data,
which arises in tomographic and magnetic resonance imaging appli-
cations.
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