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ABSTRACT

The essential taskin nearly all applications of sensor networks is
to extract relevant information about the sensed data and deliver it
to a desired destination. Theoverall goal in the design of sensor
networks is to execute this task with least consumption of network
resources. In this regard, the relevant metrics of interest are 1) the
latency (bandwidth) involved in network data acquisition; and 2) the
energy-distortion (E-D) tradeoff: given some desired distortion level
D, how much energyE does the sensor network consume in ex-
tracting and delivering relevant information up to distortionD at a
(usually) distant destination. It is generally recognized that given
sufficient prior knowledge about the sensed data, there exist distrib-
uted processing and communication schemes that have a very fa-
vorable E-D tradeoff in the sense thatD ց 0 asn→ ∞ while E
grows at most sub-linearly with the number of nodes(n) in the net-
work. However, it is not known whether such schemes exist when
little or no prior knowledge about the sensed data is available. In
this paper, we present a distributed matched-source channel commu-
nication scheme that naturally integrates the operations of process-
ing and communications in a sensor network and is universal in the
sense that it provides us with a consistent estimation scheme such
thatE grows sub-linearly withn even when little prior knowledge
about the sensed data is assumed. This universality, however, comes
at the price of increased latency (bandwidth) and a less favorable E-
D tradeoff and we quantify this price by comparing our scheme to
the case when sufficient prior information about the sensed data is
available.

1. INTRODUCTION

Sensor networking is an emerging technology that promises an un-
precedented ability to monitor and manipulate the physical world via
a spatially distributed network of small and inexpensive wireless sen-
sor nodes that have the ability to self-organize into a well-connected
network. Theessential taskin nearly all applications of sensor net-
works is to extract relevant information about the sensed data and
deliver it to a desired destination. Theoverall goalin the design of
sensor networks is to execute this task with least consumption of net-
work resources. Consequently, a major challenge in sensor network-
ing applications is the development of efficient distributed methods
for processing and communication of information from within the
network to a given destination. In this regard, the relevant metrics
of interest are 1) the latency (bandwidth) involved in network data
acquisition; and 2) the energy-distortion (E-D) tradeoff: given some
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desired distortion levelD, how much energyE does the sensor net-
work consume in extracting and delivering relevant information up
to distortionD at a (usually) distant destination.

It is generally recognized that given sufficient prior knowledge
about the sensed data (e.g., statistical/topological characterization of
the sensor network data, homogeneity of the sensor network data
etc.), there exist distributed processing and communication schemes
that have a very favorable E-D tradeoff in the sense thatD ց 0
asn→∞ while E grows at most sub-linearly with the number of
nodes(n) in the network (see, e.g., [1, 2, 3, 4]). However, it is not
known whether such schemesalwaysexist when little or no prior
knowledge about the sensed data is available (see, e.g., Section 2).

In this paper, we propose a distributed matched-source channel
communication scheme, based in part on recent results in wireless
communications [1, 2, 5] and compressive sampling theory [6, 7, 8],
that is universal in the sense that it provides us with a consistent
estimation scheme such thatE grows sub-linearly withn without
requiring any prior knowledge about the sensed data. Moreover, this
scheme naturally integrates the operations of processing and com-
munications, thereby reducing the amount of processing and com-
munications required inside the network and provides us with a sys-
tem that often acts less like networks and more like coherent ensem-
bles of sensors, thereby reducing the overhead of network-centric
functions such as routing etc. The added flexibility and universality
of the proposed scheme, however, comes at the price of increased la-
tency (bandwidth) and a less favorable E-D tradeoff and we quantify
this price by comparing our scheme to the case when sufficient prior
information about the sensed data is available.

1.1. Problem Formulation

In this section, we formally define the problem considered in the
paper. In the following sections, we shall elaborate on the technical
details of the proposed scheme. To begin, consider a wireless sensor
network withn nodes where each node takes a noisy sample of the
form

xj = x∗j + wj , j = 1, . . . , n (1)

andwj is assumed to be zero mean, independent and identically dis-
tributed (i.i.d) Gaussian measurement noise (in space and time) with
varianceσ2

w. We can consider this data as a vectorx ∈ R
n such

thatx = x∗ + w, wherex∗ ∈ R
n is the noiseless data vector and

w ∼ N
�
0, σ2

wIn

�
. We further assume that|x∗j | ≤ B, j = 1, . . . , n,

for some known constantB > 0, which is determined by the sensing
range of the sensors.

Given x, the goal of the sensor network is to compute a re-
constructionbx of the noiseless data vectorx∗ at a distant destina-
tion and the reconstruction to have a small latency,L = number



of network-to-destination channel uses, and expected squared error,

D = E

h
1
n

bx− x∗
2
i
, while at the same time consuming minimal

amount of energyE.
Assumptions:In order to facilitate our analysis, we shall make

the following assumptions:
A1: Each sensor is equipped with a single isotropic antenna.
A2: Let dj , j = 1, . . . , n, be the distance between the sensor at
locationj and the destination. The destination is assumed to be far
away from the sensor network so thatd1 ≈ · · · ≈ dn ≈ d and there-
fore, the path losses of all sensors are identical.
A3: The sensors communicate with the destination over a narrow-
band Additive White Gaussian Noise (AWGN) wireless channel of
bandwidthW Hz at some carrier frequencyfc, wherefc ≫W , and
each channel use is characterized by (real) transmission over a pe-
riod of T = 1/2W seconds.
A4: x∗ lies in anm-dimensional subspace ofR

n, wherem ≪ n.
That is, letΨ , {ψi}n

i=1 be an orthonormal basis ofRn and de-
note byθi = ψT

i x
∗ the coefficients ofx∗ in this new basis. Then,

x∗ =
Pm

i=1 θi ψi (perhaps after re-labeling the indicesi). ♦
While A1-A3 are quite self-explanatory and in line with the real-

world scenarios,A4 requires a few words of explanation. Indeed, in
most real-world scenarios, we do not expectx∗ to be sparse in any
basis ofRn. However, it is well known that data collected at nearby
nodes in a dense sensor network is expected to be highly correlated
[9] and thus, shall admit anearly sparse representation in a com-
pressing basis. The fact that many real-life signals are compressible
is evidenced by the success of familiar compression standards such
as JPEG, MPEG and MP3. Therefore, it is quite reasonable to as-
sumex∗ to becompressiblein some basis ofRn. However, to moti-
vate the proposed scheme we shall restrict ourselves in this paper to
signals that are completely sparse in some basis (m ≪ n non-zero
coefficients in some transform domain) and shall make the transition
from sparse to compressible signals in a future contribution.

1.2. Distributed Projections of Sensor Network Data

In this section, we develop the basic communication structure of our
proposed scheme. At the heart of our approach is an efficient (dis-
tributed) method of estimating projections of the noiseless sensor
network data onto any normalized vector inR

n by using only a fixed
amount of energy (independent ofn). However, before describing
this procedure in detail, we shall define the notion of aSparsity Map.

Definition 1 (The Sparsity Map):Let q ∈ R
n andSp : R

n →
P({1, . . . , n}), whereP(X) means power set ofX. We callSp

the sparsity map ofq if Sp(q) = {j ∈ {1, . . . , n} : qj 6= 0} and
|Sp(q)| is a counting measure onSp(q). ♦

Now, let ϕ ∈ R
n, where

ϕ2
= 1, andυ =

Pn
j=1 ϕjx

∗

j

be the projection ofx∗ ontoϕ. Using the notion of sparsity map,
let us denote|Sp(ϕ)| = nϕ. Since

ϕ2
= 1, we have|ϕj |2 ≈ϕ2

/nϕ = 1/nϕ ∀ j ∈ Sp(ϕ). Then, given anyEo > 0 andx as
in (1), the destination can compute an estimate(bυ) of υ in E ∼ Eo

amount of energy, such thatE
�
|bυ − υ|2

�
= σ2

w +
σ2

z

Eo
, by making

the sensor network sequentially perform the following steps:
S1: The destination transmitsϕj to the sensor at locationj, where
j = 1, . . . , n. Given the nature of the problem, we can assume the
downlink (from the destination to the sensor network) to be error
free. Thus, each sensor receivesϕj in an error free manner1.

1Note that theϕj ’s can also be made available to the sensors using other
methods and feedback from the destination to the sensors is not really neces-
sary. See the discussion in Section 3 for more details

S2: The sensor at locationj multiplies its measurementxj with�√
Eo ϕj

�
to obtainyj =

√
Eo ϕjxj . Moreover,E

�
|yj |2

�
≤

Eo(B2+σ2

w)
nϕ

� Eo

nϕ
if j ∈ Sp(x∗) ∩ Sp(ϕ); E

�
|yj |2

�
=

Eo σ2

w

nϕ
if

j ∈ Sp(x∗)c ∩ Sp(ϕ); andE
�
|yj |2

�
= 0 if j /∈ Sp(ϕ). Thus,

E
�
|yj |2

�
� Eo

nϕ
∀ j ∈ Sp(ϕ).

S3: All the sensors coherently transmit their correspondingyj in
an analog fashion over the network-to-destination AWGN channel,
effectively transforming it into an AWGN MAC channel, and the
received signal at the destination is given by2

r =
nX

j=1

yj + z =
√
Eo

 
nX

j=1

ϕjxj

!
+ z (2)

=
√
Eo (υ + ew) + z (3)

wherez ∼ N (0, σ2
z) is the channel additive white Gaussian noise

and ew ∼ N
�
0, σ2

w

�
. ♦

In essence, the combination ofS1-S3 corresponds to obtaining at
the destination a noisy projection of the data vectorx ontoϕ. Thus,
at the end ofS3, the destination can estimateυ asbυ = r/

√
Eo and

the resulting distortion is given by

Dυ = E
�
|bυ − υ|2

�
= σ2

w +
σ2

z

Eo
(4)

where the first term in the above expression is due to the measure-
ment noise (unaffected byEo) and the second term is due to the
communication noise that decays as1/Eo. Moreover, since a to-
tal of nϕ nodes transmitted during this distributed projection, each
with energy� EoT

nϕ
, the total energy consumed in obtainingbυ at the

destination is given by

E �
�
EoT

nϕ

�
nϕ ∼ Eo (5)

From (4), it is clear that one way of reducing the distortion of
the projection coefficientbυ is to increaseEo. If, however, there are
some constraints on the maximum allowableEo, then the destination
can repeat the above procedure overp independent channel uses to
obtain{bυk}p

k=1 and then calculatebυ as bυ = 1
p

Pp
k=1 bυk. For a

fixedEo, this procedure would give us the following latency (L) and
E-Dυ relations

Dυ = σ2
w +

σ2
z

pEo
(6)

E ∼ (pEo) (7)

L = p (8)

2. MAIN RESULTS

In this section, using the scheme of distributed projections as a basic
building block, we shall derive results for latency (L) and E-D trade-
off first under the assumption that the destination has perfect knowl-
edge of the subspace in whichx∗ lies and then under the assumption
that the destination has little or no knowledge of the subspace in
whichx∗ lives.

2Because ofA2, we can ignore the effect of path loss on the received
signal as it would just be a constant uniform attenuation (independent ofn)



2.1. Signal Reconstruction: Known Subspace

Let Ψ , {ψi}n
i=1 be an orthonormal basis ofR

n such thatx∗ =Pm
i=1 θi ψi (perhaps after re-labeling the indicesi), where each co-

efficientθi is computed as a projection (inner-product) of the form
θi = ψT

i x
∗ =

Pn
j=1 ψijx

∗

j . Then, under the assumption that the
destination has perfect knowledge of the subspace in whichx∗ lies,
we have the following latency (L) and E-D relations.

Theorem 1. If the destination knowsΨ as well as which elements
ψi ∈ Ψ give the sparse representation ofx∗ then (a) There exists an
estimation scheme such that∀ σ2

z > 0, Eo > 0, andk (= pm) ≥
m, wherep ∈ N

D =
m

n

�
σ2

w +
mσ2

z

k Eo

�
(9)

E ∼ (k Eo) (10)

L = k (11)

and; (b) if Φ is any other orthonormal basis ofRn such thatx∗ =Pm
i=1 ηi φi and the destination knowsΦ as well as which elements

φi ∈ Φ give the sparse representation ofx∗ then again the results of

(a) hold. Moreover, (c) Ifσ2
w ≪ m σ2

z

k Eo
then(9) reduces to

D ≈ m

n

�
mσ2

z

k Eo

�
(12)

Sketch of Proof: (c) follows trivially from (a). For (a), the desti-
nation computesm distributed projections ofx onto{ψi}m

i=1 over
m independent channel uses. The destination can also repeat this
procedurep times, as described in Section 1.2, for each of them ba-
sis elements. Thus, at the end ofk = pm projections (and channel
uses), the destination has access tom projection coefficients{bθi}m

i=1

such thatE
h
|bθi − θi|2

i
= σ2

w+
σ2

z

p Eo
. Therefore, the destination can

estimatex∗ asbx =
Pm

i=1
bθiψi and the resulting distortion is given

by

D = E

�
1

n

bx− x∗
2
�

=
1

n

mX
i=1

E

h
|bθi − θi|2

i
(13)

=
m

n

�
σ2

w +
σ2

z

pEo

�
=
m

n

�
σ2

w +
mσ2

z

k Eo

�
(14)

Moreover,E ∼ (k Eo) andL = k follow trivially from Section 1.2
and the fact that we are computing a total ofk projections.

For (b), letΦ , {φi}n
i=1 be any other orthonormal basis ofR

n

(known to the destination) such thatx∗ =
Pm

i=1 ηiφi (perhaps after
re-labeling the indicesi), where each coefficientη(i) is computed as
an inner product of the formηi = φT

i x
∗ =

Pn
j=1 φijx

∗

j . Then, if
the destination wants to reconstructx∗ by projectingx onto{φi}m

i=1

using the above procedure, it is easy to see that the above results
would still hold. ♦

When there is significant measurement noise, it is obvious from
(9) that the distortion scaling is limited by the measurement noise
term in D i.e.,

�
m
n

�
σ2

w ≤ D. In that case, a stronger result can be
obtained as stated in the following Corollary.

Corollary 1. If σ2
w > 0 and σ2

w ∼ σ2
z , then (9) in Theorem 1

reduces toD ∼
�

m
n

�
and it is possible to achieve this distortion

scaling by usingE ∼ m andL ∼ m.

Proof: Put(kEo) = m in Theorem 1 and the result follows. ♦
An important implication of Theorem 1 is that allm-dimensional

orthonormal bases that span the subspace in whichx∗ lies are equiv-
alent in terms of the latency (L) and E-D tradeoff and thus, for the
purposes of reconstruction ofx∗, using any one of these bases is as
good as using any other basis. Generally speaking, however, even
if the destination knows the basis ofR

n in which x∗ is sparse, it is
highly unlikely that it will know ahead of time whichm of the basis
elements give the sparse representation ofx∗ and this is where the
universalityof the following scheme comes into play.

2.2. Signal Reconstruction: Unknown Subspace

Let us now assume that the destination has little or no knowledge of
the subspace in whichx∗ lives. As mentioned in Section 2.1, this
includes the scenario where the destination knows the basis ofR

n

in which x∗ is sparse but does not know which of them elements
of that basis to use. In that case, the destination employs state-of-
the-art compression techniques based on random projections of the
data to efficiently summarize the information inx, resulting in the
following latency (L) and E-D relations.

Theorem 2. If the subspace ofRn in whichx∗ lies is not known to
the destination then there exists a constantC1 > 0 and an estimation
scheme such that∀ Eo > 0, andk ∈ N such that(m logn) < k ≤
(n logn)

D ≤ C1

�
m logn

k

�
(15)

E ∼ (k Eo) (16)

L = k (17)

Moreover, (b) In the case of little or no measurement noise i.e.,σ2
w =

0, similar results hold with slightly different constantC1.

Sketch of Proof: The destination generatesk length-n random vec-
tors {φi}k

i=1 such that the componentsφij , j = 1, . . . , n, of φi

are i.i.d random variables (independent ofwj) which take the values
±1/

√
n with equal probability. Thus,E [φij ] = 0 andE

�
φ2

ij

�
=

1/n. The destination now computesk distributed (random) projec-
tions ofx onto{φi}k

i=1 overk independent channel uses. Thus, at
the end ofk projections, the destination has access to thek noisy
random projections ({ηi}k

i=1 : ηi = φT
i x

∗ + φT
i w + ezi, whereezi ∼ N

�
0, σ2

z/Eo

�
) of noisy data that lies in anm-dimensional

subspace. And since the destination has access to the original ran-
dom vectors{φi}k

i=1, it is easy to see from the theory developed by
Haupt and Nowak in [8] thatx∗ can be easily reconstructed from
{ηi}k

i=1 such that the resulting distortion behaves like

D = E

�
1

n

bx− x∗
2
�

(18)

≤ C1

�
m logn

k

�
, (19)

whereC1 > 0 is a constant. Rather than reworking the proof of this
statment, we refer the reader to [8] for further details. Similarly, (b)
follows from Corollary 2 in [8]. Moreover,E ∼ (k Eo) andL = k
follow trivially from Section 1.2 and the fact that we are computing
a total ofk projections. ♦

As a motivation for Theorem 2, consider the following simple
example. Supposex∗ is a spatially non-sparse vector of lengthn
(Sp(x

∗) = n) with only one non-zero coefficient of amplitude
√
n



in some transform basisΨ , {ψi}n
i=1 such that

x∗2
/n = 1.

This is an example of the case where we know the basis in whichx∗

is sparse but do not know which elements of the basis to use. One
naive approach to this problem is to require each sensor to digitally
transmit its measurement to the destination, where the reconstruction
is then performed. Alternatively, all the sensors might collabora-
tively process their measurements to reconstructx∗ in-network and
then transmit the result to the destination. Both approaches, how-
ever, while providing us with consistent estimates, would require at
leastE ∼ n andL = n.

Another approach to this problem could be random transform
point sampling where the destination computes a distributed projec-
tion of the data ontoψi andi is selected uniformly at random from
the set{1, . . . , n}. Ignoring the distortion due to the measurement
noise, the squared reconstruction error is0 if the spike inΨ domain
corresponds toψi and1 otherwise and the probability of not finding
the spike ink trials is

�
1 − 1

n

�k
, giving an average squared error

of
�
1 − 1

n

�k
.1 + (k/n).0 =

�
1 − 1

n

�k
. If n is large, we can ap-

proximate this byD =
�
1 − 1

n

�k ≈ e−k/n. Therefore, for any
k < n, we haveD → 1 asn → ∞ while E andL ∼ k, and for
k = n, we haveD = e−1 whileE andL ∼ n (grow linearly with
n). However, Theorem 2 guarantees us a consistent estimator even
in this situation (m = 1) by takingk = nα (0 < α < 1), resulting
in D �

�
log n
nα

�
�
�
n−α

�
, whileE andL ∼ nα (grow sub-linearly

with n).

2.3. Cost of Universality

It is important to realize that the added flexibility and universality of
the scheme proposed in Theorem 2 comes at the price of increased
latency (L) and a less favorable E-D tradeoff. For example, an im-
mediate consequence of Theorem 2 is that using this scheme, the
destination needs to expend at leastE ∼ (m logn) amount of en-
ergy and would incur a latency of at leastL ∼ (m logn) for barely
consistent estimator ofx∗, whereas if one had knowledge of the sub-
space in whichx∗ lied then, assumingσ2

w ∼ σ2
z (Corollary 1), one

would only requireE ∼ m and getD ∼
�

m
n

�
.

In particular, ifσ2
w ≪ m σ2

z

k Eo
, then Theorem 2 and (12) in Theo-

rem 1 reveal that:
1) For a fixed projection energy budgetEo and total energy budget
E, the distortion incurred without knowledge of the signal subspace
is about a factor ofn/m times larger than if one does know the sub-
space.
2) For a fixed distortionD, the total energy budgetE and the latency
L in data acquisition without knowledge of the signal subspace is
about a factor ofn/m times more than if one does know the sub-
space.

Similarly from Corollay 1, ifσ2
w > 0 andσ2

w ∼ σ2
z , then for the

distortion of the universal scheme to be equivalent to the distortion of
the known subspace case (D ∼ m/n), the destination must expend
E ∼ n energy and incur a latency ofL ∼ n; again a factor of about
n/m times more than if one does know the subspace.

3. DISCUSSION AND EXTENSIONS

In this paper, we have described and analyzed a universal matched-
source channel communication scheme for reconstruction of sensor
network data at a distant destination. Our scheme is universal in
the sense that it provides us with a consistent estimation scheme
such thatE grows sub-linearly withn without requiring any prior
knowledge about the sensed data. Moreover, this scheme naturally

integrates the operations of processing and communications, thereby
reducing the amount of processing and communications required in-
side the network and provides us with a system that often acts less
like networks and more like coherent ensembles of sensors, thereby
reducing the overhead of network-centric functions such as routing
etc. The universality of our proposed scheme, however, comes at the
price of increased latency (L) and a less favorable E-D tradeoff by
a factor of aboutn/m, which is a direct consequence of not hav-
ing sufficient prior knowledge about sensed data, forcing us to probe
the entiren-dimensional space instead of focusing our energy on the
m-dimensional subspace in whichx∗ lives.

At the heart of our approach is an efficient (distributed) method
of estimating projections of the noiseless sensor network data onto
any normalized vector inRn by using only a fixed amount of energy
(independent ofn). Depending upon the structure of the normalized
vector, this approach may require the destination to be able to ad-
dress each sensor individually. Pre-storage of individual elements of
the normalized vector in each sensor node is another option which
might not be always feasible because of node failures, changes in the
structure of sensed data etc. If, however, the sensor network employs
the universal scheme based on random projections then the informa-
tion can be efficiently generated by each sensor by using the seed of
a pseudo-random generator and the addresses of the nodes in order
to draw the elements of the random vectors{φi}k

i=1. Similarly, the
destination can easily reconstruct the vectors{φi} given the seed
values and the number of nodes in the network.

An important consequence of our proposed scheme is that it re-
quires phase synchronization amongn nodes during each projection
– something that might not always be feasible. An interesting exten-
sion of our system involves applying this scheme to disjoint subsets
of x and reconstructingx∗ from that. Our other future work includes
extensions to compressible signals and studying the effect of imper-
fect node synchronization on the proposed scheme.

4. REFERENCES

[1] M. Gastpar and M. Vetterli, “Source-channel communication in
sensor networks,” inProc. IPSN’03, Apr. 2003, pp. 162–177.

[2] M. Gastpar and M. Vetterli, “Power-bandwidth-distortion scal-
ing laws for sensor networks,” inProc. IPSN’04, Apr. 2004, pp.
320–329.

[3] W. U. Bajwa, A. Sayeed, and R. Nowak, “Matched source-
channel communication for field estimation in wireless sensor
networks,” inProc. IPSN’05, Apr. 2005, pp. 332–339.

[4] M. Gastpar and M. Vetterli, “Power, spatio-temporal bandwidth,
and distortion in large sensor networks,”IEEE J. Select. Areas
Commun., vol. 23, no. 4, pp. 745–754, Apr. 2005.

[5] K. Liu and A. Sayeed, “Optimal distributed detection strategies
for wireless sensor networks,” inProc.42nd Allerton Conf. on
Commun., Control and Comp., Oct. 2004.

[6] E. Cand̀es, J. Romberg, and T. Tao, “Robust uncertainty prin-
ciples: Exact signal reconstruction from highly incomplete fre-
quency information,” Submitted, Jun. 2004.

[7] D. L. Donoho, “Compressed sensing,” Manuscript, Sep. 2004.

[8] J. Haupt and R. Nowak, “Signal reconstruction from noisy ran-
dom projections,” Submitted to IEEE Trans. Info. Th., Mar.
2005.

[9] S. Pradhan, J. Kusuma, and K. Ramchandran, “Distributed com-
pression in a dense microsensor network,”IEEE Sig. Proc.
Mag., vol. 19, no. 2, pp. 51–60, Mar. 2002.


