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Abstract—Reliable wireless communications often requires
accurate knowledge of the underlying multipath channel. This
typically involves probing of the channel with a known training
waveform and linear processing of the input probe and chan-
nel output to estimate the impulse response. Many real-world
channels of practical interest tend to exhibit impulse responses
characterized by a relatively small number of nonzero channel
coefficients. Conventional linear channel estimation strategies,
such as the least squares, are ill-suited to fully exploiting the
inherent low-dimensionality of these sparse channels. In contrast,
this paper proposes sparse channel estimation methods based
on convex/linear programming. Quantitative error bounds for
the proposed schemes are derived by adapting recent advances
from the theory of compressed sensing. The bounds come within
a logarithmic factor of the performance of an ideal channel
estimator and reveal significant advantages of the proposed
methods over the conventional channel estimation schemes.

I. CHANNEL SENSING AND ESTIMATION

Optimal demodulation and decoding in wireless communi-
cation systems often requires accurate knowledge of channel
impulse response functions. Typically, an impulse response is
estimated by probing the channel with known training wave-
forms and comparing the transmitted and received signals.
The importance of channel identification is underscored by the
number of research papers dedicated to this topic. Searching
for “channel estimation” turns up more than 36 000 articles
in Google Scholar and over 700 IEEE journal articles in
IEEE Xplore.

There are two salient aspects to this channel identification
problem, namely,sensingandestimation. Sensing corresponds
to the design of waveforms used to probe the channel. Es-
timation is the problem of processing the input probe and
channel output to recover the impulse response. The ability
to accurately identify a channel critically depends on boththe
design of appropriate probes and the application of effective
estimation methods. In particular, probing schemes and estima-
tion strategies that are tailored to the anticipated characteristics
of the underlying channel yield better estimates than generic
procedures. Grappling with these issues is central to most of
the papers written on this topic.

Multipath wireless channels tend to exhibit impulse re-
sponses dominated by a relatively small number of clusters
of significant paths, especially when operating at large band-
widths and signaling durations and/or with numbers of antenna
elements [1]–[3]. These are often called “sparse” channels,
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since most of the channel coefficients are either zero or nearly
zero. In the simplest setting, which is the primary focus of this
paper, consider frequency-selective channels (channels with a
large delay spread relative to the inverse of the communication
bandwidth) with most of the impulse response energy localized
to relatively small regions in delay. Sparse channel modelsof
this type have received considerable attention lately [4]–[6].

This paper tackles the problem of sensing and estimat-
ing sparse (single-antenna) frequency-selective channels. A
number of authors have recently addressed this problem [4]–
[6]. Lacking from the previous investigations is a quantita-
tive theoretical analysis of the performance of the proposed
sparse channel estimation methods. The main results of this
paper adapt recent advances from the theory of compressed
sensing to devise quantitative error bounds for convex/linear
programming based sparse channel estimation schemes. The
bounds come within a logarithmic factor of the performance of
an ideal channel estimator and clearly reveal the relationship
between the input probes and the accuracy of the channel
estimates.

II. M ULTIPATH WIRELESSCHANNEL MODELING

In this section, we review mathematical models for multi-
path wireless channels. In particular, the so-called “virtual
channel model” is a discrete approximation of the continuous-
time channel at the delay resolution dictated by the channel
bandwidth. The virtual channel model captures the relationship
between clustering of physical paths and sparsity of dominant
channel coefficients and sets the stage for the application of
compressed sensing theory and methods.

We consider single-antenna communication channels, which
are often characterized as linear, time-varying systems [7]. The
corresponding (complex) basedband transmitted and received
signals are related as

y(t) =

∫ Tm

0

h(t, τ)x(t − τ)dτ + z(t) (1)

whereh(t, τ) is the time-varying channel impulse response,
and x(t), y(t) and z(t) represent the transmitted, received
and additive white Gaussian noise (AWGN) waveforms, re-
spectively. The maximum delay spreadTm is defined as the
maximum possible nonzero delay. The focus of this paper is
the identification of frequency-selective channels. A channel
is said to be (purely) frequency-selective if (i) the channel
impulse response remains constant over the time duration
of interest, i.e.,h(t, τ) ≈ h(0, τ) = h(τ); and (ii) the
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Fig. 1. A schematic illustrating the virtual representation of a single-antenna,
frequency-selective channel. The virtual channel coefficients{βj} correspond
to uniformly-spaced samples of a smoothed version of the channel impulse
response taken at the virtual delays{τ̂j = j/W} in the delay space.

channel delay spread is large relative to the inverse of the
communication bandwidthW , i.e., TmW ≥ 1.

A. Virtual Channel Modeling

Frequency-selective channels generate multiple delayed and
attenuated copies of the transmitted waveform. For such
“multipath” channels,h(τ) is modeled as

h(τ) =

Npath∑

i=1

αiδ(τ − τi) (2)

and the transmitted and received waveforms are related by

y(t) =

Npath∑

i=1

αix(t − τi) + z(t) (3)

which corresponds to signal propagation alongNpath physical
paths, whereαi ∈ C and τi ∈ [0, Tm] are the complex path
gain and the delay associated with thei-th physical path,
respectively.

The discrete path model (2), while realistic, is difficult to
analyze and identify due to nonlinear dependence on the real-
valued delay parameters{τi}. However, because the commu-
nication bandwidthW is limited, the continuous-time channel
can be accurately approximated by a discrete counterpart,
known as a virtual channel model, with the aid of sampling
theorems and/or power series expansions—see, e.g., [7], [8].
The key idea behind virtual channel modeling is to provide
a discrete approximation of frequency-selective channelsby
uniformly sampling the physical multipath environment in
delay at a resolution commensurate withW , i.e.,

y(t) ≈
p−1∑

j=0

βjx(t − j/W ) + z(t) (4)

βj ≈
∑

i∈Sτ,j

αi sinc(j − Wτi) (5)

wherep = ⌈TmW ⌉ + 1, sinc(a) = sin(πa)/πa and Sτ,j =
{i : τi ∈ [j/W − 1/2W, j/W + 1/2W )} denotes the set of
all physical paths whose delays lie within the delay resolution
bin of width ∆τ = 1/W centered around thej-th resolvable
virtual delay, τ̂j = j/W . Henceforth,{βj} are termed as the
virtual channel coefficients in the delay space. The expression
(5) states that the coefficientβj approximately consists of the
sum of gains of all paths whose delays lie within thej-th

delay resolution bin, as illustrated in Fig. 1. Note that this
approximation gets more accurate with increasingW , due to
higher delay resolution.

B. Discrete-Time Representation

The continuous-time received signaly(t) can be sampled at
a rate of1/W at the receiver to obtain an equivalent discrete-
time representation of (4)

y = x ∗ β + z =⇒ y = Xβ + z (6)

where ∗ denotes the discrete convolution operator,β ∈ Cp

is the vector of channel coefficients, andx, y, andz are the
vectors of samples ofx(t), y(t) and z(t), respectively. The
dimensions ofx, y andz are dictated by the input signaling
duration Ts, where x(t) = 0 for all t 6∈ [0, Ts]. We use
n (= ⌈TsW ⌉) to denote the number of nonzero samples of
x(t), resulting inx ∈ Cn and y, z ∈ Cn+p−1. Finally, the
matrixX is an(n+p−1)×p (Toeplitz-structured) convolution
matrix formed from vectorx.

In the following, we shall modelβ as a deterministic but
unknown vector. In practical communication systems, thereis
also a power constraint on the transmitted signalx(t) that
can be readily translated into an average power constraint
on the entries ofx. Without loss of generality, we assume
that maxk E[|xk|2] ≤ 1 and the entries ofz correspond
to an independent and identically distributed (i.i.d.) complex
Gaussian white noise sequence. We denote their distribution
asCN (0, σ2), whereσ2 > 0 is the noise power.

The virtual representation of a frequency-selective channel
captures its essential characteristics in terms of the channel
coefficients{βj}. Identifying a frequency-selective channel,
therefore, becomes equivalent to designing the (discrete)input
probe x and estimatingβ from the outputy. Three types
of input probes are commonly employed for channel sensing,
namely, impulses, pseudo-random inputs, and multitone sig-
nals. Channel estimates are usually obtained by solving the
least squares (LS) problem (or a variant of it)

β̂LS = (XHX)−1XHy. (7)

It is easy to show that the mean squared error (MSE) of an
LS channel estimator obeys

E

[
‖β̂LS − β‖2

ℓ2

]
= trace((XHX)−1)σ2. (8)

III. SPARSEMULTIPATH CHANNELS

Channel measurement results dating as far back as 1987 [1]
and as recent as 2007 [9] suggest that multipath components
tend to be distributed in clusters rather than uniformly over the
channel delay spread. These clusters of paths physically corre-
spond to large-scale objects in the scattering environment(e.g.,
buildings and hills in an outdoor propagation environment),
while multipath components within a cluster arise as a result
of scattering from small-scale structures of the corresponding
large-scale reflector (e.g., windows of a building, trees ona
hill).
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Based on the interarrival times between different multipath
clusters within the delay spread, wireless channels can be
categorized as either “rich” or “sparse”. In a rich multipath
channel, the interarrival times are smaller than the inverse of
the communication bandwidthW . Sparse multipath channels,
on the other hand, exhibit interarrival times that are larger than
1/W . Therefore, similar to the setting in Fig. 1, not every
delay bin of width∆τ = 1/W contains a multipath com-
ponent in this case. In particular, since a channel coefficient
consists of the sum of gains of all paths falling within its
respective delay bin, sparse frequency-selective channels tend
to have far fewer nonzero channel coefficients thanp at any
fixed (but large enough) bandwidth. We formalize this notion
of multipath sparsity as follows.

Definition 1 (Sparse Multipath Channels):Let W be the
operating bandwidth andp = ⌈TmW ⌉ + 1 be the number
of resolvable paths (channel coefficients) within the channel
delay spread. We say that a multipath channel isS-sparse if
‖β‖ℓ0 = S < p, where‖ · ‖ℓ0 counts the number of nonzero
entries in a vector.

Many real-world channels of practical interest, such as
underwater acoustic channels [10], digital television channels
[11] and residential ultrawideband channels [2], in fact, tend
to be sparse or approximately sparse, withS ≪ p. However,
conventional LS based channel estimation schemes, while ap-
propriate for rich channels, fail to capitalize on the anticipated
sparsity of the abovementioned channels. To get an idea of the
potential MSE gains to be had by incorporating the sparsity
assumption into the channel estimation strategy, we compare
the performance of an LS based channel estimator to that of
a channel estimation strategy that has been equipped with
an oracle. The oracle does not reveal the trueβ, but does
inform us of the indices of nonzero entries ofβ. Clearly this
represents an ideal estimation strategy and one cannot expect
to attain its performance level. Nevertheless, it is the target
that one should consider.

We begin with an application of arithmetic-harmonic means
inequality to the MSE expression in (8) and note that

E

[
‖β̂LS − β‖2

ℓ2

]
≥ p2σ2

trace(XHX)
=

p σ2

‖x‖2
ℓ2

(9)

with equality if and only ifXHX = ‖x‖2
ℓ2

Ip. Now let T⋆ ⊂
{1, . . . , p} be the set of indices of nonzero entries ofβ and
suppose that an oracle provides us withT⋆. Then an ideal
channel estimatorβ⋆ can be obtained fromy by first forming
a restrictedLS estimator

βT⋆
= (XH

T⋆
XT⋆

)−1XH
T⋆

y (10)

where XT⋆
is a submatrix obtained by extracting theS

columns ofX corresponding to the indices inT⋆, and then
settingβ⋆ to βT⋆

on the indices inT⋆ and zero on the indices
in T c

⋆ . Clearly, the MSE of this oracle channel estimator obeys

E
[
‖β⋆ − β‖2

ℓ2

]
= trace((XH

T⋆
XT⋆

)−1)σ2

≥ S2σ2

trace(XH
T⋆

XT⋆
)

=
S σ2

‖x‖2
ℓ2

(11)

with equality if and only ifXH
T⋆

XT⋆
= ‖x‖2

ℓ2
IS . Comparing

the MSE lower bounds (9) and (11) shows that LS based con-
ventional channel estimates may be at a significant disadvan-
tage when it comes to identifying sparse channels. And while
the oracle channel estimatorβ⋆ is impossible to construct
in practice, results from the theories of adaptive denoising
and compressed sensing can be readily adapted to construct
channel estimates using impulse probes and discrete multitone
probes, respectively, which come within a logarithmic factor
of the ideal MSE in (11). Below, we briefly summarize these
results which are essentially direct applications of existing
theory and methods.

A. Impulse Probing

The channel output corresponding to an impulse probe,
xk = δk, is given byy = β + z. Trivially, β̂LS = y and

E

[
‖β̂LS − β‖2

ℓ2

]
= p σ2. On the other hand, letλ(p, σ) =

√
2 log p·σ and define a hard-threshold estimatorβ̂λ by setting

β̂λ,i = yi1{|yi|>λ}, i = 1, . . . , p. (12)

It is well-known that the MSE of this thresholded estimator
obeys the following upper bound [12]:

E

[
‖β̂λ − β‖2

ℓ2

]
≤ const · log p · S σ2 (13)

which comes within a factor oflog p to the ideal (oracle based)
MSE of S σ2 (note that‖x‖2

ℓ2
= 1 in this case), and shows

an MSE improvement by a factor of (roughly)O(p/S) over
the LS MSE ofp σ2.

B. Discrete Multitone Probing

While the thresholded estimator̂βλ performs significantly
better than the LS estimator, power constraint on the entries of
an input probe makes impulse probing highly unattractive for
channel estimation purposes (since‖x‖2

ℓ2
= 1), except in very

high signal-to-noise ratio (SNR) scenarios(σ2
≪ 1). Instead,

an attractive alternative is to employ discrete multitone probes
of the form

xk =
1√
M

M∑

m=1

tmejωmk, k = 0, . . . , n − 1

where the input probe durationn ≥ p, the number of tones
M ≤ p, the frequencies{ωm} are randomly selected from{
2π ℓ

n : ℓ = 0, . . . , n − 1
}

, and the amplitudes{tm} are i.i.d.
binary random variables taking the values±1 with probability
1/2 each. Stated in the language of orthogonal frequency
division multiplexing (OFDM) communication systems, this
is equivalent to assigningM OFDM tones (out of a possible
n) as pilot tones.

It is straightforward to check that‖x‖2
ℓ2

= n in this case and

hence, from (9),E
[
‖β̂LS − β‖2

ℓ2

]
≥ p σ2/n. Recent results

from compressed sensing, however, show that one can improve
on the LS estimator using sparse estimation methods based
on convex/linear programming. The crucial observation here
is that a multitone probe essentially samples the frequency
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response of a multipath channel atM locations. This can
be easily seen by transforming the time domain channel
estimation problem into the frequency domain through ann
point discrete Fourier transform of the channel outputy, which
results in

Y (ωm) =
√

n tmβ(ωm) + Z(ωm), m = 1, . . . , M. (14)

Now suppose that the number of frequency samplesM ≥
const · (log p)4 ·S. Then knowledge of the channel frequency
response atM frequencies is sufficient to construct an estima-
tor β̂CS of the sparse channel by solving either anℓ1 penalized
LS problem (the “lasso” estimator [13]) or a convex program
called the “Dantzig selector” [14]; see (16). Further, it has
been shown that, with high probability, the resulting estimator
obeys the following upper bound [14], [15]:

‖β̂CS − β‖2
ℓ2 ≤ const · log p ·

(
S σ2

n

)
(15)

which is within a factor oflog p to the oracle estimator’s lower
bound ofS σ2/n. Note that the key to understanding this result
is the well-known time-frequency duality: signals concentrated
in the time domain are spread out in the frequency domain and
vice versa. Sampling anS-sparse multipath channel at roughly
O(S) locations in the frequency domain, therefore, suffices to
capture its salient information.

IV. COMPRESSEDCHANNEL SENSING

A pseudo-random sequence{xk}n−1
k=0 is another form of

input that is generally used to probe a channel, wheren is
the input probe duration andxk ’s are i.i.d. realizations from a
zero mean, unit variance distributionf(x). For the sake of this
exposition, we limit ourselves tof(x) being the Rademacher
distribution, i.e.,xk ’s take values+1 or −1 with probability
1/2 each, but extending the main results of the paper to other
distributions is straightforward. The energy in the input probe
in this case is again given by‖x‖2

ℓ2
= n, resulting in the LS

lower bound ofE
[
‖β̂LS − β‖2

ℓ2

]
≥ p σ2/n.

We now show that it is possible to obtain a more reliable
estimator ofβ as a solution to the convex program

β̂ = arg min
β̃∈Cp

‖β̃‖ℓ1 subject to ‖XHr‖ℓ∞ ≤ λ (16)

whereλ(p, σ) > 0 andr is the(n+p−1)-dimensional vector
of residuals:r = y − Xβ̃. This optimization program goes
by the name of Dantzig selector (DS) and is computationally
tractable since it can be recast as a linear program [14]. We
state our main results in terms of the DS primarily because
it provides the cleanest and most interpretable error bounds
that we know. Note, however, that similar bounds also hold
for the lasso estimator [15] which can sometimes be more
computationally attractive because of the availability ofa wide
array of efficient software packages for solving it [16]. The
key to proving the efficacy of the DS is in showing that
the Toeplitz matrixX generated by the pseudo-random input
probex satisfies the so-called “restricted isometry property”

(RIP) with sufficiently small value of3S-restricted isometry
constant.

Definition 2 (Restricted Isometry Constant):Suppose that
the columns ofX are normalized to unitℓ2 norm. The3S-
restricted isometry constant ofX, denoted byδ3S , is defined
as the smallest value such that

(1 − δ3S)‖β̃‖2
ℓ2 ≤ ‖Xβ̃‖2

ℓ2 ≤ (1 + δ3S)‖β̃‖2
ℓ2 (17)

holds for all3S-sparse vectors̃β ∈ Cp. The matrixX is said
to satisfy RIP of order3S if δ3S ∈ [0, 1).

Note that if any two columns ofX happen to be linearly
dependent thenδ3S ≥ 1. Loosely speaking, the RIP essentially
requires that mutual coherence between the columns ofX is
sufficiently small so thatXHX (approximately) behaves like
a multiple of identity on the set of sparse vectors. The main
result in [14] asserts that the DS solution is highly accurate
in this case.

Theorem 1 ([14]): Suppose that the column-normalized
version of X satisfies RIP of order3S with δ3S < 1/2.
Chooseλ(p, σ) =

√
2(1 + a) log p · σ for any a ≥ 0. Then,

with probability exceeding1 − (
√

π log p · pa)−1, the DS
estimatorβ̂ obeys

‖β̂ − β‖2
ℓ2 ≤ const · log p ·

(
S σ2

n

)
. (18)

Theorem 1 states that the DS based channel estimator can
potentially achieve squared error within a factor oflog p of
the oracle based MSE lower bound ofS σ2/n. However, it
remains to be seen whether the convolution matrixX formed
from vector x satisfies the conditions of this theorem. The
main thesis of this paper is that this is indeed the case.

Theorem 2:Let {xk}n−1
k=0 be a sequence of i.i.d. random

variables drawn from the Rademacher distribution andX be
the (n+p−1)×p Toeplitz matrix generated by this sequence
(as described in Section II-B). Suppose that the duration of
the input proben ≥ c1 · log p · S2. Then, with probability
exceeding1 − exp (−c2 · n), the column-normalized version
of X satisfies RIP of order3S with δ3S < 1/2. Here,c1 and
c2 are constants that do not depend onn or p.

Theorem 2 is, in fact, a strengthened version of the results
first reported in [17] for Toeplitz-structured matrices. A de-
tailed proof of the theorem, which leverages a few key ideas
from [17], is given in the Appendix. Theorem 2, combined
with Theorem 1, shows that the DS estimatorβ̂ corresponding
to a pseudo-random input probe does remarkably better than
the LS estimator in learning anS-sparse channel: assuming
that the input probe durationn ≥ const · log p · S2, the
improvement is roughly by a factor ofO(p/S).

The appeal of the DS estimator, however, goes beyond the
estimation of truly sparse channels. Indeed, it is to be expected
that physical channels in certain scattering environmentshap-
pen to be only approximately sparse [2]. One such scenario
could be, for example, that the magnitudes of the ordered
channel coefficients exhibit a power law decay, i.e., theℓ-th
largest coefficient obeys|β(ℓ)| ≤ R · ℓ−1/q for someR > 0
and q ≤ 1. Define S = |{j : |βj | > σ}|. Then, using a
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Fig. 2. An illustrative example contrasting the sparse reconstruction abilities
of LS and lasso (n = p = 128, S = 10, SNR = −10 dB).

pseudo-random input probe withn ≥ const · log p ·S2, the DS
estimator achieves the minimax rate over the class of objects
exhibiting the power law decay [14, Th. 1.3].

V. NUMERICAL RESULTS AND DISCUSSION

Convex programming based channel estimators, such as the
DS (or lasso) estimator, are inherently tuned to yield sparse
solutions. This is in stark contrast to linear channel estimators,
such as the LS estimator, wherein each coefficient of the
channel estimate will be nonzero in general. To this end, an
example contrasting the sparse reconstruction abilities of LS
and lasso is illustrated in Fig. 2. The setup corresponds to
using ann = 128 length pseudo-random input probe to sense
a p = 128 length channel that has onlyS = 10 nonzero
channel coefficients. The output of the channel is observed
at an SNR of −10 dB (SNR = 10 log10(1/σ2)), and LS
and lasso estimates are obtained by pseudo-invertingX and
executing GPSR [16], respectively. As can be seen from Fig. 2,
the lasso estimate is able to identify every nonzero channel
coefficient (shown as an impulse), as well as reject all but one
of the noise-only coefficients. In contrast, it is easy to seethat
even a clairvoyantly thresholded LS estimate would be unable
to identify all the nonzero channel coefficients in this case.

We conclude this paper by noting that with the advent of
modern-day wireless transceivers capable of communicating at
large spatio-spectral-temporal dimensions, multipath sparsity
is becoming more and more pronounced across a broad
range of communication systems. As such, we expect similar
performance gains by applying sparse estimation strategies to
these systems and propose to extend the results of this and
related works [18], [19] to estimating sparse channels in time,
frequency, and space.

APPENDIX

Proof of Theorem 2:Suppose that the columns ofX are
normalized to unitℓ2 norm. For ease of notation, we index the
generative sequence ofX as {xk}n

k=1, wherexk ’s are now
i.i.d. binary random variables taking the values±1/

√
n with

probability1/2 each. Defineδ = δ3S ∈ (0, 1/2) andm = 3S.
Let T ⊂ {1, 2, . . . , p} be a subset of indices of cardinality

|T |, and letXT be the(n + p − 1) × |T | submatrix ofX

formed by retaining the columns indexed by the entries of
T . The RIP condition essentially requires that, for all subsets
T satisfying |T | = m, the eigenvalues of the Gram matrix
G(T ) = X ′

T XT lie in the interval[1 − δ, 1 + δ]. For afixed
subsetT , this condition can be established using Gershgorin’s
circle theorem, which states that the eigenvalues of anm×m
matrix G all lie in the union ofm discs, where thei-th disc
is centered at the diagonal entryGi,i and has radius

R(i) =

m∑

j=1,j 6=i

|Gi,j |. (19)

Notice that by choice of thexk ’s, Gi,i(T ) = 1 deterministi-
cally. Thus, to establish that the eigenvalues lie in[1−δ, 1+δ]
for a fixed T , it is sufficient to show that the off-diagonal
entries ofG(T ) are all less thanδ/m in absolute value, since
this would implyR(i) ≤ (m − 1)(δ/m) < δ for all i.

To guarantee the RIP condition forX, however, the eigen-
value bounds must hold for all subsetsT that satisfy|T | = m.
To this end, we consider the fullp × p Gram matrix ofX,
G = X ′X, and show that the off-diagonal entries ofG are
all bounded above byδ/m in absolute value. The implication
is that, since the Gram matrixG(T ) corresponding toany
subsetT satisfying|T | = m is itself a submatrix ofG, G(T )
has bounded off-diagonals and, therefore, the eigenvaluesof
all

(
p
m

)
Gram matricesG(T ) lie in [1 − δ, 1 + δ].

To proceed, notice that each off-diagonal term ofG is
simply the inner product betweeni-th andj-th column ofX,
and thusGi,j = Gj,i. We can write an expression for the
off-diagonal elementGi,j , assumingp ≥ j > i ≥ 1, as

Gi,j =

n∑

k=1

xkxk+(j−i) , (20)

where we definexℓ = 0 for ℓ > n. Standard concentration
inequalities are not directly applicable here because all of the
entries in the sum are not mutually independent. For example,
consideri = 1, j = 2, andn = 5. ThenG1,2 = x1x2+x2x3+
x3x4 + x4x5 and the first two terms are dependent (through
x2), as are the second and third (throughx3), etc. But notice
that the first and third terms are independent as are the second
and fourth, suggesting that each sum may be split into two
sums of i.i.d. random variables.

This is true in general, and to establish the claim we leverage
a result from the theory of graph coloring. A proper coloring
of a graph is a coloring (or labeling) of vertices so that two
vertices have different colors (labels) if they are connected by
an edge; a proper coloring forms a partition of the vertices
into color classes. An equitable coloring is a proper coloring
where the difference in size between the smallest and largest
color classes is at most one.

We begin by associating a graph to each sumGi,j , where
each term in the sum corresponds to a vertex in the graph.
Two vertices are connected by an edge if the corresponding
terms in the sum are statistically dependent. Notice that in
this setting, the maximum number of edges originating from
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any vertex (the degree of the graph) is one, since each term
is dependent with at most one other term.

The problem of splitting the original sum into sums of
independent terms is equivalent to coloring this graph. To
obtain sums of approximately the same size we consider
equitable coloring, and we leverage a result of Hajnal and
Szemerédi which states that a graph with degree∆ can be
equitably colored with∆ + 1 colors [20]. Here, this result
guarantees that two colors are sufficient.

To proceed, we rewrite the expression in (20) to explicitly
show the number of nonzero terms in the sum, and obtain

Gi,j =

{
0 n < p andj − i ≥ n∑n−(j−i)

k=1 gk otherwise

}
, (21)

where {gk} are (dependent) random variables taking values
±1/n each with probability1/2. Because we are interested
in obtaining absolute upper bounds onGi,j , only the nonzero
situation requires further analysis. Partition{gk} into two mu-
tually independent subsets according to the equitable coloring,
and appropriately reindex the terms to obtain

Gi,j =

q1=
n−(j−i)

2∑

k1=1

g′k1
+

q2=
n−(j−i)

2∑

k2=1

g′k2
(22)

whenn − (j − i) is even, and

Gi,j =

q1=
n−(j−i)+1

2∑

k1=1

g′k1
+

q2=
n−(j−i)−1

2∑

k2=1

g′k2
(23)

whenn− (j − i) is odd. Generically, we writeGi,j = G1
i,j +

G2
i,j . We analyze each component sum using Hoeffding’s (two-

sided) inequality for bounded random variables to obtain, for
example,

Pr
(
|G1

i,j | > ǫ
)
≤ 2 exp

(−ǫ2n2

2q1

)
, (24)

and choosingǫ = δ/2m yields

Pr
(
|G1

i,j | > δ/2m
)
≤ 2 exp

(−δ2n2

8q1m2

)
. (25)

Considering both sums, we can write

Pr(|Gi,j | > δ/m)

≤ Pr
(
{|G1

i,j | > δ/2m} or {|G2
i,j | > δ/2m}

)

≤ 2 max
{

Pr
(
|G1

i,j | > δ/2m
)
, Pr

(
|G2

i,j | > δ/2m
)}

≤ 2 max

{
2 exp

(−δ2n2

8q1m2

)
, 2 exp

(−δ2n2

8q2m2

)}
. (26)

Notice that smaller values ofq1 andq2 lead to tighter bounds,
and thus the slowest rate of concentration occurs when the
number of nonzero terms inGi,j is n − 1. In this case, we
have (n − 1)/2 ≤ q1 ≤ q2 ≤ (n + 1)/2, implying that the
worst case sum has at least(n − 1)/2 terms. As a result

Pr(|Gi,j | > δ/m) ≤ 4 exp

( −δ2n2

4(n − 1)m2

)

≤ 4 exp

(−δ2n

4m2

)
. (27)

To establish RIP we require thateach of the p(p − 1)/2
unique off-diagonal termsGi,j satisfy this bound. Applying
the union bound yields

Pr(any |Gi,j | > δ/m) ≤ 2p2 exp

(−δ2n

4m2

)

≤ exp

(−δ2n

4m2
+ 3 log p

)
.(28)

where the last step follows under the mild assumption that
p ≥ 2. Now, notice that wheneverδ2n/4m2 > 3 log p, or
n > 12m2 log p

δ2 , RIP is satisfied with probability at least

1 − exp

(−δ2n

4m2
+ 3 log p

)
. (29)

This success probability is nonzero and can be very close to
one whenn is large compared tom2.
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