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Abstract—Reliable wireless communications often requires since most of the channel coefficients are either zero ofynear
accurate knowledge of the underlying multipath channel. Ths  zero. In the simplest setting, which is the primary focushis t
typically involves probing of the channel with a known training paper, consider frequency-selective channels (chanrittisaw

waveform and linear processing of the input probe and chan- I del d relative to the | fth inizat
nel output to estimate the impulse response. Many real-wod arge delay spread relative to the inverse of the commuoita

channels of practical interest tend to exhibit impulse respnses bandwidth) with most of the impulse response energy loelliz
characterized by a relatively small number of nonzero chanel to relatively small regions in delay. Sparse channel modgls
coefficients. Conventional linear channel estimation strigies, this type have received considerable attention lately[f}]—
such as the least squares, are ill-suited to fully exploitig the  Thjs haner tackles the problem of sensing and estimat-
inherent low-dimensionality of these sparse channels. Inontrast, . . ;
this paper proposes sparse channel estimation methods bake ing sparse (single-antenna) frequency-selectlye chanrel
on convex/linear programming. Quantitative error bounds for humber of authors have recently addressed this problem [4]-
the proposed schemes are derived by adapting recent advarsce [6]. Lacking from the previous investigations is a quantita
from the theory of compressed sensing. The bounds come withi tive theoretical analysis of the performance of the progose
a logarithmic factor of the performance of an ideal channel ‘ghqce channel estimation methods. The main results of this
estimator and reveal significant advantages of the proposed
methods over the conventional channel estimation schemes. pape.r adapt relcent advqnges from the theory of compr_essed
sensing to devise quantitative error bounds for conveedlin
I. CHANNEL SENSING AND ESTIMATION programming based sparse channel estimation schemes. The

Optimal demodulation and decoding in wireless communti)-ounds come within a logarithmic factor of the performantce o

; . an ideal channel estimator and clearly reveal the reldtipns
cation systems often requires accurate knowledge of cthanhe .
. . ; . . etween the input probes and the accuracy of the channel
impulse response functions. Typically, an impulse respasis

estimated by probing the channel with known training way&Stmates.

forms and comparing the transmitted and received signals. ||. M ULTIPATH WIRELESS CHANNEL MODELING
The importance of channel identification is underscoredwbyt_ In this section, we review mathematical models for multi-

number of research papers dedicated to this topic. Se@d;b%th wireless channels. In particular, the so-called tat

fochharlmeISesulmatlond wrns l;gomlgééhan 36I000t' alrt'CI.csnannel model” is a discrete approximation of the contirsiou
IIrIIEEEO;QIe cholar and over journal articles ifye channel at the delay resolution dictated by the channel
plore. bandwidth. The virtual channel model captures the relatign

There are two sall_ent aspec_ts tq this Ch"?‘””e' 'dent'ﬂcat'ggtween clustering of physical paths and sparsity of dontina
problem, namelysensingandestimation Sensing corresponds hannel coefficients and sets the stage for the applicafion o
to the design of waveforms used to probe the channel. Smpressed sensing theory and methods

t'LnaUO'qI IS tthet E)roblem oftrpl)rope33||ng the input lefﬁbe ST We consider single-antenna communication channels, which
channel output to recover the impulse response. The abilfy,  ten characterized as linear, time-varying systemd e

to accurately identify a channel critically depends on ktbih corresponding (complex) basedband transmitted and eeteiv
design of appropriate probes and the application of e{fectiSignals are related as

estimation methods. In particular, probing schemes arichast
tion strategies that are tailored to the anticipated chiaratics
of the underlying channel yield better estimates than gener

procedures. Grappling with these issues is central to rﬁOStwqwereh(t,T) is the time-varying channel impulse response,

the Papers er_tten on this topic. I and z(t), y(t) and z(t) represent the transmitted, received
Multipath wireless channels tend to exhibit impulse re- - . . .
. . and additive white Gaussian noise (AWGN) waveforms, re-

sponses dominated by a relatively small number of CIUSteerectivel The maximum delay spredt), is defined as the
of significant paths, especially when operating at largedban P Y- Y Sp

widths and signaling durations and/or with numbers of a“menmax_|mun_1_p03_3|ble nonzero delay. The focus of this paper is
" i he identification of frequency-selective channels. A cf&n

elements [1]-[3]. These are often called “sparse” channels . L

i$ said to be (purely) frequency-selective if (i) the chdnne

This research was supported in part by the DARPA A2l Progiamails: impulse response remains constant over the tim__e duration
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T
y(t) = /0 h(t, )t — 7)dr + =(2) 1)



delay resolution bin, as illustrated in Fig. 1. Note thatsthi
approximation gets more accurate with increaditig due to
higher delay resolution.

B. Discrete-Time Representation

-~ DELAY (5 T The continuous-time received signgl) can be sampled at

1w m . . . .
Fig. 1. A schematic illustrating the virtual representataf a single-antenna, arate Oﬂ/W at the receiver to obtain an eqUIvalent discrete-

frequency-selective channel. The virtual channel coefiitsi{ 3; } correspond time representation of (4)
to uniformly-spaced samples of a smoothed version of ther@laimpulse
response taken at the virtual delays; = j/W} in the delay space. y=xxB+z == y=XpB+z (6)

0

where x denotes the discrete convolution operaj@re C?
channel delay spread is large relative to the inverse of tifethe vector of channel coefficients, amdy, andz are the

communication bandwidth’, i.e., 7,,W > 1. vectors of samples of(t), y(t) and z(t), respectively. The
_ dimensions ofr, y and z are dictated by the input signaling
A. Virtual Channel Modeling duration T,, where z(t) = 0 for all ¢t ¢ [0,7,]. We use

Frequency-selective channels generate multiple delayed & (= [T,1W]) to denote the number of nonzero samples of
attenuated copies of the transmitted waveform. For suel¥), resulting inz € C* andy, z € C"*?~1. Finally, the
“multipath” channelsh(r) is modeled as matrix X is an(n+p—1) x p (Toeplitz-structured) convolution

matrix formed from vectore.

Npalh . e e .
- In the following, we shall modeBB as a deterministic but
h(r) = 2; :0(7 = 7i) 2) unknown vector. In practical communication systems, tliere
1=

) _ also a power constraint on the transmitted signél) that
and the transmitted and received waveforms are related bysgn pe readily translated into an average power constraint

Noath on the entries ofe. Without loss of generality, we assume
y(t) = Z izt — ) + 2(t) (3) that maxy E[zx|?] < 1 and the entries ofz correspond
=1 to an independent and identically distributed (i.i.d.) qbex

which corresponds to signal propagation ald¥g physical Gaussian \évhite noise2 sequence. W_e denote their distributio
paths, wheren; € C and7; € [0,T,] are the complex path asCN(0,07), whereo™ > 0 is the noise power.

gain and the delay associated with th¢h physical path The virtual representation of a frequency-selective ckann
respectively. " captures its essential characteristics in terms of the re¥lan

The discrete path model (2), while realistic, is difficult t¢OSfficients{j;}. Identifying a frequency-selective channel,
analyze and identify due to nonlinear dependence on the rédfrefore, becomes equivalent to designing the (discirgpel}
valued delay parametefs;}. However, because the commuProbez and estimatingd from the outputy. Three types
nication bandwidtH¥ is limited, the continuous-time channel°f iNPUt probes are commonly employed for channel sensing,
can be accurately approximated by a discrete counterp@@Mely, impulses, pseudo-random inputs, and multitone sig
known as a virtual channel model, with the aid of samplin als. Channel estimates are usually. obtamgd by solving the
theorems and/or power series expansions—see, e.g., [7], [§2St sauares (LS) problem (or a variant of it)

The key idea behind virtual channel modeling is to provide Brs= (XHX)"1xHy. @)
a discrete approximation of frequency-selective chanbgls
uniformly sampling the physical multipath environment int is easy to show that the mean squared error (MSE) of an

delay at a resolution commensurate with, i.e., LS channel estimator obeys
p—1 ~
. E[ — 2}:trace XHXx)1)o2. 8
y(t) ~ Zﬁjx(t —J/W) + 2(t) (4) 1BLs ,6'||42 (( ) o (8)
g=0 IIl. SPARSEMULTIPATH CHANNELS
B = Z o; sindj — Wri) ®) Channel measurement results dating as far back as 1987 [1]
€8s and as recent as 2007 [9] suggest that multipath components
wherep = [T,,W] + 1, sinda) = sin(ra)/ma and S, ; = tend to be distributed in clusters rather than uniformlyratie

{i :1 €[j/W—=1/2W,5/W 4+ 1/2IW)} denotes the set of channel delay spread. These clusters of paths physicallg-co
all physical paths whose delays lie within the delay resotut spond to large-scale objects in the scattering environijeent,
bin of width A7 = 1/W centered around th¢th resolvable buildings and hills in an outdoor propagation environment)
virtual delay, 7; = j/W. Henceforth{g;} are termed as the while multipath components within a cluster arise as a tesul
virtual channel coefficients in the delay space. The expessof scattering from small-scale structures of the corredpan
(5) states that the coefficieptj approximately consists of the large-scale reflector (e.g., windows of a building, treesaon
sum of gains of all paths whose delays lie within tii¢h hill).



Based on the interarrival times between different multipatvith equality if and only ifXﬁXT* = ||m||§2I5. Comparing
clusters within the delay spread, wireless channels can the MSE lower bounds (9) and (11) shows that LS based con-
categorized as either “rich” or “sparse”. In a rich multipatventional channel estimates may be at a significant disadvan
channel, the interarrival times are smaller than the irvefs tage when it comes to identifying sparse channels. And while
the communication bandwidfi’. Sparse multipath channelsthe oracle channel estimat@™ is impossible to construct
on the other hand, exhibit interarrival times that are lathan in practice, results from the theories of adaptive dengisin
1/W. Therefore, similar to the setting in Fig. 1, not everand compressed sensing can be readily adapted to construct
delay bin of widthA7r = 1/W contains a multipath com- channel estimates using impulse probes and discrete amdtit
ponent in this case. In particular, since a channel coeficigorobes, respectively, which come within a logarithmic dact
consists of the sum of gains of all paths falling within it®©f the ideal MSE in (11). Below, we briefly summarize these
respective delay bin, sparse frequency-selective chaeetl results which are essentially direct applications of @xdst
to have far fewer nonzero channel coefficients thaat any theory and methods.
fixed (but large enough) bandwidth. We formalize this notion .
of multipath sparsity as follows. A. Impulse Probing

Definition 1 (Sparse Multipath Channelshet W be the The channel output corresponding to an impulse probe,
operating bandwidth ang = [7,,W] + 1 be the number z; = 6y, is given byy = B + z. Trivially, 3,5 = y and
of resolvable paths (channel coefficients) within the clehnng {HBLS — ﬁH?J = po?. On the other hand, lex(p,o) =

delay spread. We say that a multipath channe}-isparse if . L~ .
Hﬁllzy :pS <p wherZH le counts the number ofpnonzero‘/mogp'o and define a hard-threshold estimatgr by setting

entries in a vector. . _ BM = Yil{y>ays i=1,...,p. (12)
Many real-world channels of practical interest, such as

underwater acoustic channels [10]’ d|g|ta| televisionnoigds It is well-known that the MSE of this thresholded estimator

[11] and residential ultrawideband channels [2], in faehad ©Obeys the following upper bound [12]:

to be sparse or approximately sparse, with« p. However, -~ 9 9

conventional LS based channel estimation schemes, while ap L {HBA B BH@} < const -logp - S (13)

propri.ate for rich channels_, fail to capitalize on the apﬁtted which comes within a factor dbg p to the ideal (oracle based)
sparsity of the abovementioned channels. To get an ide@of fliSg of 562 (note that|a|2 — 1 in this case), and shows
2 1

potential MSE gains to be had by incorporating the sparsity, pmsg improvement by a factor of (roughlg@)(p/S) over
assumption into the channel estimation strategy, we compg@ke | S MSE ofp 2.

the performance of an LS based channel estimator to that of

a channel estimation strategy that has been equipped wBth Discrete Multitone Probing

an oracle. The oracle does not reveal the tre but does  \yhjle the thresholded estimatgt, performs significantly
inform us of the indices of nonzero entries @f Clearly this petter than the LS estimator, power constraint on the entfie
represents an ideal estimation strategy and one cannot®exp@ input probe makes impulse probing highly unattractive fo
to attain its performance level. Nevertheless, it is th@d8r channel estimation purposes (siree|2, = 1), except in very

that one should consider. _ _ _ high signal-to-noise ratic§NR) scenariogo? << 1). Instead,
~ We begin with an application of arithmetic-harmonic meang, attractive alternative is to employ discrete multitongoes
inequality to the MSE expression in (8) and note that of the form
2 2 2
2 p o po M
E[IBLs - 813, = - (©) 1 o
a trace(XHX) |2 Tp = —— E tme?“m"  k=0,....n—1
2 VM =

with equality if and only ifX" X = ||z||? I,,. Now letT, C _ _

{1,...,p} be the set of indices of nonzero entriesfand Where the input probe duratiom > p, the number of tones
suppose that an oracle provides us with Then an ideal Se p, the frequenciedw,,} are randomly selected from
channel estimato8* can be obtained frony by first forming {277 :£=0,...,n—1}, and the amplitudest,, } are i.i.d.

arestricted LS estimator binary random variables taking the value$ with probability
- o 1/2 each. Stated in the language of orthogonal frequency
Br, = (X7, X1,) X1,y (10)  division multiplexing (OFDM) communication systems, this

where X7, is a submatrix obtained by extracting thg IS equivalent to assigning/ OFDM tones (out of a possible
columns of X corresponding to the indices ifi,, and then 7) as pilot tones.

setting3* to 3., on the indices i, and zero on the indices  Itis straightforward to check thgjtz||7, = n in this case and
in T¢. Clearly, the MSE of this oracle channel estimator obeysence, from (9)E {”@LS _ 5”52} > po?/n. Recent results

E [II,B* _ ﬁH?g} _ tmce((X:Iﬁ*XT*)*l)aQ from compress_ed sensing, however, sh(_)w that one can improve
G252 g 52 on the LS estimator using sparse estimation methods based

> o = 5 (11) on convex/linear programming. The crucial observatioreher
trace(Xp, Xr,) l[zI7, is that a multitone probe essentially samples the frequency




response of a multipath channel &f locations. This can (RIP) with sufficiently small value oBS-restricted isometry
be easily seen by transforming the time domain chanrmnstant.

estimation problem into the frequency domain throughnan Definition 2 (Restricted Isometry Constan§uppose that
point discrete Fourier transform of the channel outputshich  the columns ofX are normalized to unif; norm. The3S-
results in restricted isometry constant &, denoted bysg, is defined

as the smallest value such that
Y(wm) = VitmBwm) + Z(wm), m=1,...,M. (14)

(1—d39)1817, < 1XBI7, < (1 +835)I18I17, 17)
Now suppose that the number of frequency samples> N

const - (log p)* - S. Then knowledge of the channel frequencpolds for all3S-sparse vector8 € CP. The matrixX is said
response ab/ frequencies is sufficient to construct an estimd0 satisfy RIP of ordeBS if 435 € [0, 1).
tor B¢ of the sparse channel by solving either/apenalized ~ Note that if any two columns oX happen to be linearly
LS problem (the “lasso” estimator [13]) or a convex prografiependent thedss > 1. Loosely speaking, the RIP essentially
called the “Dantzig selector” [14]; see (16). Further, itsharequires that mutual coherence between the columnX a$
been shown that, with high probability, the resulting estion Sufficiently small so tha " X (approximately) behaves like

obeys the following upper bound [14], [15]: a multiple of identity on the set of sparse vectors. The main
§g2 result in [14] asserts that the DS solution is highly acaurat

[Bes — Bl < const-togp- (22)  qas) nhis case. |
n Theorem 1 ([14]): Suppose that the column-normalized

which is within a factor ofog p to the oracle estimator's lower Version of X satisfies RIP of ordesS with d35 < 1/2.
bound ofS o2 /n. Note that the key to understanding this resuftN00S€A(p, o) = v/2(1 +a)logp - o for any a 21 0. Then,
is the well-known time-frequency duality: signals concated With probability exceedingl — (v/wlogp - p*)~", the DS
in the time domain are spread out in the frequency domain afegfimator3 obeys

vice versa. Sampling afi-sparse multipath channel at roughly ~ ) S o2

O(S) locations in the frequency domain, therefore, suffices to 18 = Bllz, < const -logp- (T) : (18)

capture its salient information. .
P Theorem 1 states that the DS based channel estimator can

IV. COMPRESSEDCHANNEL SENSING potentially achieve squared error within a factor bfgp of
the oracle based MSE lower bound 8f2/n. However, it
remains to be seen whether the convolution ma¥iXormed
from vector x satisfies the conditions of this theorem. The
main thesis of this paper is that this is indeed the case.
Theorem 2:Let {x4}}_, be a sequence of i.i.d. random

A pseudo-random sequende;};—, is another form of
input that is generally used to probe a channel, wherie
the input probe duration ang's are i.i.d. realizations from a
zero mean, unit variance distributigitz). For the sake of this

exposition, we limit ourselves tg(x) being the Rademacher, . e drawn from the Rademacher distribution dcbe

distribution, i.e.,x’s take values+1 or —1 with probability the (n+p — 1) x p Toeplitz matrix generated by this sequence

. i h
1./2 gach, bu.t exter_1d|ng the main results of_the paper to thﬁ% described in Section 1I-B). Suppose that the duration of
distributions is straightforward. The energy in the inptale the input proben > ¢, - logp - S2. Then, with probability

s . 19 o e
in this case is again given |7, = n, resulting in the LS ¢, coedingl — exp (—c, - n), the column-normalized version

lower bound ofE [IlﬁLs - 5||§2} >po?/n. of X satisfies RIP of orde3S with 635 < 1/2. Here,¢; and
We now show that it is possible to obtain a more reliable, are constants that do not dependomwr p.
estimator of3 as a solution to the convex program Theorem 2 is, in fact, a strengthened version of the results

first reported in [17] for Toeplitz-structured matrices. &-d
tailed proof of the theorem, which leverages a few key ideas
from [17], is given in the Appendix. Theorem 2, combined
whereA(p, o) > 0 andr is the (n+p—1)-dimensional vector with Theorem 1, shows that the DS estimgBcorresponding

of residuals:r = y — X 3. This optimization program goesto a pseudo-random input probe does remarkably better than
by the name of Dantzig selector (DS) and is computationaliige LS estimator in learning af-sparse channel: assuming
tractable since it can be recast as a linear program [14]. &t the input probe duration > const - logp - S?, the
state our main results in terms of the DS primarily becaugaprovement is roughly by a factor @ (p/.S5).

it provides the cleanest and most interpretable error beund The appeal of the DS estimator, however, goes beyond the
that we know. Note, however, that similar bounds also hokstimation of truly sparse channels. Indeed, it is to be etege

for the lasso estimator [15] which can sometimes be motigat physical channels in certain scattering environmbafs
computationally attractive because of the availabilitaafide pen to be only approximately sparse [2]. One such scenario
array of efficient software packages for solving it [16]. Theould be, for example, that the magnitudes of the ordered
key to proving the efficacy of the DS is in showing thathannel coefficients exhibit a power law decay, i.e., kb

the Toeplitz matrixX generated by the pseudo-random inpdargest coefficient obeyg3,)| < R - (=14 for someR > 0
probex satisfies the so-called “restricted isometry propertyéind ¢ < 1. Define S = |{j : |8;] > o}|. Then, using a

B =argmin| B3|, subjectto |X7r|,. <A (16)
Becr



Least Squares Reconstrucion : formed by retaining the columns indexed by the entries of
: \1 1 T. The RIP condition essentially requires that, for all stbse
US*AVMW[\/\'/\HA h Ao T satisfying || = m, the eigenvalues of the Gram matrix
i NI Al 1 G(T) = X}, X1 lie in the interval[1 — 8,1 + 6]. For afixed

subsetl’, this condition can be established using Gershgorin’s
circle theorem, which states that the eigenvalues afianm
Compressed Channel Sensing Reconsiruction matrix G all lie in the union ofm discs, where thé-th disc
T i ] is centered at the diagonal enify ; and has radius
A 1
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Fig. 2. An illustrative example contrasting the sparse netraiction abilites Notice that by choice of they’s, G;;(T') = 1 deterministi-
of LS and lassorf = p = 128, S = 10, SNR = —10 dB). cally. Thus, to establish that the eigenvalues li¢lia 6, 1+ 4]
for a fixed T, it is sufficient to show that the off-diagonal

_ . 9 entries of G(T') are all less thai/m in absolute value, since
pseudo-random input probe with> const-logp-S?, the DS this would imply R(i) < (m — 1)(6/m) < & for all 7.
estimator achieves the minimax rate over the class of abject To guarantee the RIP condition fa€. however. the cigen-

exhibiting the power law decay [14, Th. 1.3]. value bounds must hold for all subs&tghat satisfy|T’| = m.
V. NUMERICAL RESULTS AND DISCUSSION To this end, we consider the full x p Gram matrix of X,

Convex programming based channel estimators, such as $e= X' X, and show that the off-diagonal entries Gf are
DS (or lasso) estimator, are inherently tuned to yield war.@" boundgd above by/m in apsolute value. Thellmphcatlon
solutions. This is in stark contrast to linear channel estors, S that, since the Gram matrig(T") corresponding taany
such as the LS estimator, wherein each coefficient of tRebset’ satisfying|T’| = m is itself a submatrix of7, G(T')
channel estimate will be nonzero in general. To this end, 88S Pounded off-diagonals and, therefore, the eigenvaities
example contrasting the sparse reconstruction abilitietso all () Gram matricesw(T) lie in [1 — 4,1 + 4.
and lasso is illustrated in Fig. 2. The setup corresponds tol0 Proceed, notice that each off-diagonal term @fis
using ann = 128 length pseudo-random input probe to sensd@Mply the inner product betweerth and;-th column of X,
ap = 128 length channel that has onl§ = 10 nonzero and thusG,; = G,,;. We can write an expression for the
channel coefficients. The output of the channel is observefi-diagonal element; ;, assuming > j > i > 1, as
at an SNR of —10 dB (SNR = 10log;,(1/0?)), and LS n
and Ia;so estimates are obtgined by pseudo—invemngnd_ Gij = Zwkwm(jﬂ-) , (20)
executing GPSR [16], respectively. As can be seen from Fig. 2 1
the lasso estimate is able to identify every nonzero channeA . .
coefficient (shown as an impulse), as well as reject all bet oynere we definex, - 0 for £ > T Standard concentration
of the noise-only coefficients. In contrast, it is easy to thee mequalmes are not directly apphcaple here becausefath®
even a clairvoyantly thresholded LS estimate would be lmakﬂmm_as m the ng are not mutually independent. For example
to identify all the nonzero channel coefficients in this case CONSideri = 1. j = 2, andn = 5. ThenG > = w122 +azas+

We conclude this paper by noting that with the advent gp®4 T 7475 and the first two terms are dependent (through
modern-day wireless transceivers capable of communigatin ©2): @s are the second and third (throug), etc. But notice
large spatio-spectral-temporal dimensions, multipatirsity that the first and third terms are independent as are the decon

is becoming more and more pronounced across a brd%[bd fourt_h, suggesting that each sum may be split into two
range of communication systems. As such, we expect simiftms O,f Li.d. .random variables. , )

performance gains by applying sparse estimation stratdgie This is true in general, and to estabhs_h the claim we Ie\ﬁe_rag

these systems and propose to extend the results of this 8d@Sult from the theory of graph coloring. A proper coloring

related works [18], [19] to estimating sparse channelsrireti of a graph is a coloring (or labeling) of vertices so that two
frequency, and space. vertices have different colors (labels) if they are coneddiy

an edge; a proper coloring forms a partition of the vertices
APPENDIX into color classes. An equitable coloring is a proper colgri
Proof of Theorem 2:Suppose that the columns &f are where the difference in size between the smallest and farges

normalized to unit»> norm. For ease of notation, we index theolor classes is at most one.
generative sequence & as {z}7_,, wherez;'s are now  We begin by associating a graph to each s, where
i.i.d. binary random variables taking the values/\/n with each term in the sum corresponds to a vertex in the graph.
probability1/2 each. Defing = d35 € (0,1/2) andm = 3S. Two vertices are connected by an edge if the corresponding

Let T C {1,2,...,p} be a subset of indices of cardinalityterms in the sum are statistically dependent. Notice that in
|T|, and let X be the(n +p — 1) x |T| submatrix of X  this setting, the maximum number of edges originating from



any vertex (the degree of the graph) is one, since each ternTo establish RIP we require thaach of the p(p — 1)/2

is dependent with at most one other term.

unique off-diagonal terms7; ; satisfy this bound. Applying

The problem of splitting the original sum into sums ofhe union bound yields

independent terms is equivalent to coloring this graph. To
obtain sums of approximately the same size we consider
equitable coloring, and we leverage a result of Hajnal and
Szemerédi which states that a graph with degfeean be
equitably colored withA + 1 colors [20]. Here, this result
guarantees that two colors are sufficient.

IN

9 —5%n
Pr(any |G ;| > 6/m) 2p° exp ppe

52
exp (WS + 310gp) .(28)

IN

where the last step follows under the mild assumption that

To proceed, we rewrite the expression in (20) to explicitly > 2. Now, notice that whenevei*n/4m?2 > 3logp, or
show the number of nonzero terms in the sum, and obtain , S 12m;2logp, RIP is satisfied with probability at least

n<pandj—i>n

n—(5=1) otherwise

Gii={ \ bo@
k=1 9k

where {g;} are (dependent) random variables taking valuelsh
+1/n each with probabilityl /2. Because we are interested0
in obtaining absolute upper bounds 6% ;, only the nonzero
situation requires further analysis. Partitifg, } into two mu-
tually independent subsets according to the equitablaioglo
and appropriately reindex the terms to obtain

(1]
(2]

=1l PREETCEL)
Gij= > Gt D i (22) 4
klzl kz:l
whenn — (j —4) is even, and ]
qlznf(j;i)#»l qzznf(j;i)fl
Gij= > Gut D G (23) 5
klzl k}2:1

whenn — (j — i) is odd. Generically, we writ€/; ; = G}, +  [g]
nyj. We analyze each component sum using Hoeffding’s (two-

sided) inequality for bounded random variables to obtain, f [7]
example,

. —e2n2 (8]
Pr(|G; .| >€) <2e , 24

(16351 > ¢) xp< o0 ) (24) 9

and choosing = §/2m yields el
1 _52n2

Pr(|G; ;| > d/2m) < 2exp <W> : (25) [0

Considering both sums, we can write [t

[12]

Pr(|Gi | > d/m)
Pr({|Gi,| > 6/2m} or {|G} ;| > 6/2m})
2max{Pr(|G; | > 6/2m) ,Pr(|G},| > 6/2m)} [14]

2,,2 2,,2

2 max{2 exp <—5—n) ,2exp <—5—n) } . (26) (15]

8q1m? 8qom? 16
Notice that smaller values @fi andg. lead to tighter bounds, [
and thus the slowest rate of concentration occurs when the
number of nonzero terms i6; ; is n — 1. In this case, we (17]
have(n — 1)/2 < ¢1 < ¢2 < (n+ 1)/2, implying that the
worst case sum has at ledgst— 1)/2 terms. As a result

(23]

VARVA

IN

(18]

—52712
2

< 4dexp ﬂ . (27) [20]
4m?

52
1 —exp ( 46 o (29)

m2

+310gp) .

is success probability is nonzero and can be very close to
ne whenn is large compared tan?.
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