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Abstract—A multi-step adaptive resampling procedure is pro-
posed, and shown to be an effective approach when detecting
high-dimensional sparse signals in noise. Each step of the pro-
posed procedure refines an estimate of the true signal subspace,
allowing sensing energy to be focused more directly into the
subspace of interest and significantly improving the performance
of the final detection test. Large-sample analysis shows that for
the sparse signal detection problems considered, the proposed
adaptive sensing procedure outperforms the best possible detec-
tion methods based on non-adaptive sensing, allowing for the
detection of signals that are exponentially weaker than what can
be detected using non-adaptive samples.

I. INTRODUCTION

In many high-dimensional inference problems, the task is to
detect the presence of a signal from noisy measurements. For
example, in sensor network monitoring applications, a large
number of sensors might be deployed over a geographical
region with the goal of determining whether a signal (perhaps
a chemical or biological agent) is present anywhere in the
region. Other applications in microarray analysis, astronomy,
and covert communications are also easy to envision. Often,
signals of interest in these applications are sparse (i.e., they
exist in a very low-dimensional, but unknown, subspace).

Natural questions emerge regarding the performance of
any detection method in such settings. For example, one is
often concerned with the trade-offs among various problem
parameters—namely, the sparsity level (signal subspace di-
mension), the amplitudes of each nonzero component, and
the observation noise power. Consider the following n-
dimensional signal plus noise observation model:

Yi = xi + zi = µ si + Zi , i = 1, . . . , n, (1)

where Zi ∼ N (0, 1) denotes a Gaussian distribution with
mean 0 and variance 1, the scalar µ denotes the signal
strength and s = [s1, . . . , sn] is a binary vector whose non-
zero entries indicate the signal subspace. In this setting, the
detection problem amounts to determining whether µ 6= 0. A
simple detection scheme for this problem is based on linear
data fusion. The data are averaged to obtain the test statistic
T = 1

n

∑n
i=1 Yi, which is then compared to a threshold. Note

that
√

nT ∼ N (µdn/
√

n, 1), where dn =
∑n

i=1 si (the
signal subspace dimension) describes the relative the sparsity
level. If dn/

√
n is bounded away from zero when n tends to

infinity (and µ is nonvanishing), then both the false-alarm and

miss probabilities can be driven to zero using an appropriate
threshold.

Note that this simple linear fusion approach can break
down if the signal subspace dimension grows sublinearly in
n. If, as n → ∞, dn/

√
n → 0, then for any fixed µ,√

nT ∼ N (µdn/
√

n, 1) → N (0, 1), implying that for any
threshold the probability of miss does not tend to 0. An alter-
nate approach is to test whether maxi Yi exceeds a threshold. If
µ = 0, then in the large-sample limit maxi Yi ≤

√
2 log n with

probability 1, implying signals can be reliably detected when
µ >

√
2 log n. The limits of detectability using observations

collected under the model (1) were established in [1], [2],
where it was shown that more subtle testing procedures based
on order statistics succeed at detecting slightly weaker signals
in this setting (µ >

√
2r log n for some r < 1).

The limits of detectability established in [1], [2] were
based on the assumption that the observations of the signal
are collected non-adaptively. This implies sensing/sampling
resources must be equally allocated over the entire observation
space (since one does not know the signal subspace a priori). In
contrast, here we consider an adaptive procedure that utilizes
feedback in sensing. Formally, adaptive sampling approaches
allow the sampling procedure to be adjusted using previously
collected samples. In the sparse signal detection problems
considered here, adaptivity could allow subsequent samples
to be focused more directly into subspaces where the signal
of interest, if present, is most likely to exist, increasing
the measurement signal to noise ratio (SNR) and ultimately
improving the performance of any detection method.

In this paper we propose a multi-step adaptive resampling
procedure that delivers such an improvement. In one setting
we show that our adaptive sampling procedure (using a fixed
number of resampling steps) effectively improves the range of
problem parameters for which sparse signals are detectable. By
letting the number of resampling steps tend to infinity (slowly
as a function of the signal dimension n) we also establish
that the proposed procedure succeeds in detecting signals that
are exponentially weaker than any signal that can be detected
using non-adaptive observations.

The remainder of this paper is organized as follows. In
Section II we formalize the sparse signal and observation
models that will be employed throughout. Known results on
detectability using non-adaptive observations are summarized
in Section III. We propose our adaptive sampling procedure



in Section IV, and describe its performance benefit relative to
non-adaptive sampling in Section V. A few brief conclusions
are drawn in Section VI. Proofs of the main results are
relegated to the Appendix.

II. SIGNAL AND OBSERVATION MODELS

Throughout this paper we will be concerned with the
detection of signals x ∈ Rn which exhibit sublinear sparsity,
and for simplicity we restrict our attention to signals in which
each nonzero entry has the same amplitude. We will assume
that the signals of interest are generated randomly, according
to the following model. For a fixed β ∈ (1/2, 1), we let
ε(n) = n−β and

si =
{

1 with probability ε(n)
0 with probability 1− ε(n) , i = 1, 2, . . . , n,

(2)
and we let xi = µsi for some scalar amplitude µ. The random
signal model is chosen primarily to facilitate comparison
between our adaptive procedure and prior work that uses non-
adaptive observation models. Note, however, that for large n,
signals so generated can be identified as having m(n) ≈ n1−β

nonzero entries with very high probability. This claim is easily
formalized using standard concentration inequalities.

We assume that observations of x come from multiple
“looks,” indexed by j, of the form

Y (j) = φ(j) · x + Z(j) , (3)

where each φ(j) ∈ Rn is a sensing vector with non-negative
entries, Z(j) iid∼ N (0, 1n×n), and the operation φ(j) ·x denotes
the Hadamard (or element-wise) product of the vectors. In
addition, we impose the restriction

∑
j ‖φ(j)‖22 = n, limiting

the total energy of the sensing vectors.
Using this model, an example of non-adaptive sampling

arises when only one look at the signal is obtained. In this
case, (3) can be written as

Y (1) = Y = φ · x + Z , (4)

and to satisfy the sensing energy condition, we can choose
φ

(1)
i = φi = 1 for i = 1, . . . , n. Another possibility is to

make multiple iid observations, but each with only a fraction
of the total sensing energy budget. For example, let p ∈ N
denote the total number of looks, and let φ

(j)
i = 1/

√
p,

i = 1, . . . , n, for j = 1, . . . , p. Because of the independence
of the noises,

∑p
j=1 Y (j) is statistically equivalent to Y in

the single-observation model (4) as well. There are obviously
many other choices of {φ(j)}j that yield the same result.
Furthermore, no non-adaptive sensing scheme exists that can
produce better results than those obtained using observations
from the standard model (4). Therefore, we are interested here
in adaptive designs of {φ(j)}j that tend to focus in on the
non-zero components of x. Specifically, in what follows we
will allow φ(j) to depend explicitly on {φ(`), Y (`)}`<j , and we
will show that information gleaned from previous observations
can be used to effectively guide future sampling, yielding
significant performance improvements.

III. LARGE-SAMPLE DETECTION THRESHOLDS FROM
NON-ADAPTIVE OBSERVATIONS

In [1], a fundamental large sample detectability threshold
for sparse signals using non-adaptive observations was es-
tablished. Let the fraction of nonzero entries be denoted by
ε(n), and the amplitude of each be µ(n). When samples
are drawn according to (4), the detection problem amounts
to a hypothesis test between a joint null distribution and an
alternative mixture distribution:

H0 : Yi
iid∼ N (0, 1)

H1 : Yi
iid∼ (1− ε(n))N (0, 1) + ε(n)N (µ(n), 1)

,

for i = 1, . . . , n. Carefully specifying how ε(n) and µ(n)
evolve with n allows for a concise statement about the
detectability threshold behavior. Specifically, for a fixed β ∈
(1/2, 1) let the fraction of nonzero entries be given by
ε(n) = n−β . In addition, suppose that the amplitude of each
nonzero entry is µ(n) =

√
2r log n for some r ∈ (0, 1). The

following result holds [1].
Theorem 3.1: Let

ρ∗(β) =
{

β − 1
2 , 1

2 < β ≤ 3
4(

1−√1− β
)2

, 3
4 < β < 1

.

When r > ρ∗(β), then there exists a test for which the sum
of Type I and Type II errors (the false alarm and miss errors,
respectively) tends to zero as n → ∞. Conversely, when r <
ρ∗(β), then the sum of Type I and Type II errors for any test
tends to one as n →∞.

Of course, the likelihood ratio test is one such test that
achieves the performance described above. However, success-
fully implementing the test requires knowledge of the problem
parameters r and β. In [1] the authors proposed an alternative
procedure called Higher Criticism that utilizes properties of
the order statistics of the observed data to achieve the same
performance as the likelihood ratio test but without requiring
knowledge of the problem parameters.

IV. ADAPTIVE TESTING AND RESAMPLING

In order to improve upon the threshold behavior specified in
Theorem 3.1, we consider sampling methods that allow feed-
back. The key to our adaptive approach is a multi-step testing
and resampling procedure, described as Algorithm 1, which
proceeds as follows. Initially, all locations of x are measured,
but with only a fraction of the total sensing energy budget
arising from an equal allocation of sensing energy among all
observation steps. Each observation takes the form (3), where
the sensing energy allocated to that step is distributed equally
among a subset of promising entries of x. Following each of
the first k observation steps, a refinement test is performed,
which identifies the subset of the promising locations where
the current observation is positive. The rationale is that it is
highly improbable that the signal (which is assumed to be pos-
itive) is present at locations where the current observation is
negative. The algorithm terminates after the final observation,
and the output consists of the final collection of observations



and a set of possible signal component locations. A pseu-
docode description of the procedure appears as Algorithm 1.

Algorithm 1: Adaptive Testing and Resampling.

Input:
Number of refinements k;

Initialize:
Initial index set I(1) ←− {1, 2, . . . , n};
Energy per observation E = n/(k + 1);

Refinement:
for j = 1 to k do

Y
(j)
i ={ √

E
|I(j)|xi + Z

(j)
i , i ∈ I(j)

Z
(j)
i , i ∈ I(1) \ I(j)

}
;

I(j+1) ←− {i ∈ I(j) : Y
(j)
i > 0};

end

Final Observations:
Y

(k+1)
i ={ √

E
|I(k+1)|xi + Z

(k+1)
i , i ∈ I(k+1)

Z
(k+1)
i , i ∈ I(1) \ I(k+1)

}
;

Output:
Final index set I(k+1);
Refined obs. Y (k+1) := {Y (k+1)

i : i ∈ I(k+1)};

To quantify the performance of this algorithm, we will show
that the refinement test at each step retains most (in fact all, in
the limit as n tends to infinity) of the indices corresponding to
nonzero signal components, but only about half of the indices
corresponding to zero entries. When the signal is sparse, this
implies that the effective dimension is roughly halved at each
step, allowing about twice as much sensing energy to be
allocated to the signal subspace in the next step. Applying
Higher Criticism testing to the output observations results
in significantly lower large-sample thresholds for consistent
detectability, as described in the next section.

V. MAIN RESULTS

The large-sample threshold for consistent sparse signal
detection based on the proposed adaptive resampling proce-
dure is examined in two settings; one where the number of
observations, k + 1, is finite, and another where k is allowed
to tend to infinity slowly as a function of the dimension n.
The results are stated in this section. The proofs are relegated
to the Appendix.

Our first main result quantifies the performance of adaptive
resampling followed by Higher Criticism testing when the
number of refinement steps is fixed. The result is an expanded
region of large-sample detectability in the (β, r) plane.

Theorem 5.1: For a fixed β ∈ (1/2, 1), consider sparse
signals generated according to the model (2), and suppose
that the amplitude of each nonzero entry is given by µ(n) =√

2r log n for some r ∈ (0, 1). There exists an improved
threshold function,

ρ∗a(β, k) =
(

k + 1
2k

)
ρ∗(β)

=
{ k+1

2k

(
β − 1

2

)
, 1

2 < β ≤ 3
4

k+1
2k

(
1−√1− β

)2
, 3

4 < β < 1
,

such that when r > ρ∗a(β, k), Higher Criticism testing applied
to Y (k+1) (the output of the adaptive procedure with k refine-
ment testing steps) succeeds in detecting the sparse signal in
the sense that the sum of Type I and Type II errors tends to
zero as n →∞.

This result shows that even a small number of refinement
steps leads to a significant improvement in terms of the large-
sample threshold for consistent recovery (since (k+1)/2k ¿ 1
for even modest values of k). Figure 1 shows the large-sample
threshold of Theorem 3.1 (solid line) along with several of the
improved thresholds for various values of k (the threshold for
k = 3 is shown as a dotted line, and the threshold for k = 7
is the dashed line).
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Fig. 1. Large-Sample Thresholds for Consistent Detection. Signals whose
sparsity and amplitude parameters are above the thresholds can be reliably
detected. The solid line shows the threshold of Theorem 3.1 obtained using
observations from the standard model (4), while the thresholds obtained using
the adaptive procedure (for k = 3 and k = 7 refinement steps) are shown as
dotted and dashed lines, respectively.

Note that the result of Theorem 5.1 suggests increasing the
number of refinement steps results in increasingly improved
recovery thresholds. A natural question arises as to whether
the number of observation steps can be large enough to detect
signals whose amplitudes grow more slowly (as a function
of the dimension n) than µ(n) =

√
2r log n. We address this

question here by letting the number of observation steps tend
to infinity slowly as a function of n. The result is the following
theorem.

Theorem 5.2: For a fixed β ∈ (1/2, 1), consider sparse
signals generated according to the model (2), and suppose
that for a fixed δ > 0, the amplitude of each nonzero entry is



given by µ(n) =
√

2r (log2 log n)1+δ for some r ∈ (0, 1). Let
the number of refinement steps be given by k(n) = log2 log n.
When r > ρ∗(β) (as defined in Theorem 3.1), Higher Criticism
testing applied to Y (k+1) succeeds in detecting the sparse
signal in the sense that the sum of Type I and Type II errors
tends to zero as n →∞.

In other words, the adaptive procedure followed by Higher
Criticism testing succeeds at detecting sparse signals with
non-zero amplitudes as small as

√
2r(log2 log n)1+δ , for δ

arbitrarily small, but fixed. For the same specification on r,
non-adaptive sensing can only recover signals with amplitudes
larger than

√
2r log n. Thus, the proposed adaptive procedure

is capable of detecting sparse signals that are essentially ex-
ponentially weaker than those recoverable using non-adaptive
sensing.

VI. DISCUSSION AND CONCLUSIONS

While we only considered the case where the amplitudes
of the nonzero signal entries were equal and positive, the
proposed adaptive procedure could also be applied to more
general classes of signals, such as those for which the signal
has both positive and negative values. In this case, one
approach is to split the budget of sensing energy in half,
and execute the procedure once assuming the nonzero entries
are positive (keeping all entries that exceed zero at each
step, as described above), and again assuming the entries are
negative (retaining indices at each for which the corresponding
observation is negative). The final sets of observations could
then be independently subjected to Higher Criticism testing.

In general, we have shown that a simple adaptive procedure
provably outperforms all non-adaptive sampling techniques
when detecting sparse signals in additive noise. We note that
analogous improvements can also be realized using the same
procedure in estimation problems, and this setting will be
treated in a future work.

VII. APPENDIX

We first state two lemmata that will be useful in the proofs.
The first describes a tail bound for the Binomial distribution,
which follows from [3].

Lemma 7.1: Let B be a Binomial(n, p) random variable,
and assume that b < E[B] = np. Then,

Pr (B ≤ b) ≤
(

n− np

n− b

)n−b (np

b

)b

.

We will also need to bound tail probabilities for certain
Gaussian random variables. For that, we will utilize the
following standard result (see, for example, [4]).

Lemma 7.2: Let Z ∼ N (z, 1) for z > 0. Then,

Pr (Z < 0) ≤ 1
z
√

2π
exp

(
−z2

2

)
.

The proofs of both main theorems are similar in nature. To
save space we formally present the proof of Theorem 5.1, then
briefly describe the generalizations that are needed to establish
Theorem 5.2.

A. Proof of Theorem 5.1

We first start with a lemma that quantifies the effect of each
refinement step. Recall that I(j) is the index set of iteration j
(refer to Algorithm 1 for details).

Lemma 7.3: Let `j and mj denote, respectively, the number
of indices corresponding to zero and non-zero elements of x in
I(j). Conditioning on mj and `j we have that, for n sufficiently
large,

mj+1 ≥
(

1− 1
log n

)
mj , (5)

and (
1
2
− 1

log n

)
`j ≤ `j+1 ≤

(
1
2

+
1

log n

)
`j , (6)

hold simultaneously with probability at least 1− ξ, where ξ =
exp (−n−αmj) + 2 exp

(
−2`j/ (log n)2

)
, for any α > 0.

Proof: Note that in any step of the (k+1)-step procedure,
the observed amplitude of non-zero signal components is no
less than

√
2r log n/(k + 1). It suffices to consider this worst

case to establish a general bound.
Let Ti = 1{Y (j)

i > 0}, i ∈ I(j), be the indicators of the
indices retained in I(j+1). Let Is ⊆ I(j) be the collection
of indices corresponding to non-zero components (therefore
|Is| = mj). From Lemma 7.2, we have for i ∈ Is

Pr (Ti = 0) ≤
√

k + 1
4πr log n

n−r/(k+1). (7)

The number of signal components retained after the refinement
step is simply given by mj+1 =

∑
i∈Is

Ti. Let γ be a small
quantity that satisfies γ > Pr (Ti = 0), and apply Lemma 7.1
to obtain

Pr (mj+1 ≤ (1− γ)mj |mj )

≤
(

Pr (Ti = 0)
γ

)γmj
(

Pr (Ti = 1)
1− γ

)(1−γ)mj

≤
(

Pr (Ti = 0)
γ

)γmj
(

1
1− γ

)(1−γ)mj

.

Now, for α > 0, notice that if

γ log
(

Pr (Ti = 0)
γ

)
+ (1− γ) log

(
1

1− γ

)
≤ −n−α (8)

then the probability that (5) does not hold is given by

Pr (mj+1 ≤ (1− γ)mj |mj ) ≤ exp
(−n−αmj

)
.

Let γ = (log n)−1. We will now check that (8) holds, using
(7) and the fact that(

1− γ

γ

)
log

(
1

1− γ

)
≤ 1

for any γ ∈ (0, 1). After trivial manipulation we see that (8)
is satisfied if

−r log n

k + 1
+

log log n

2
+

log n

nα

+
(

1 +
1
2

log
(

k + 1
4πr

))
≤ 0,



which is clearly the case for n sufficiently large, since the first
term dominates the second, the third decays to zero, and the
remainder does not depend on n.

To verify the inequalities in (6), define I0 ⊆ I(j) to
be the collection of indices corresponding to zero entries
(therefore |I0| = `j). Note that for i ∈ I0, Ti is a Bernoulli
random variable with parameter 1/2 (since each corresponding
observation Y

(j)
i is a zero-mean Gaussian random variable).

Applying Hoeffding’s inequality to `j+1 =
∑

i∈I0
Ti we

obtain

Pr

(∣∣∣∣`j+1 − `j

2

∣∣∣∣ > γ`j

∣∣∣∣∣`j

)
≤ 2 exp

(−2`jγ
2
)
.

The probability that both claimed conditions hold simultane-
ously is obtained by applying the union bound, concluding the
proof.

The proof of Theorem 5.1 proceeds by iterating the result
of Lemma 7.3. We begin by considering the set I(2). Let α =
(1 − β)/2, and note that with probability at least 1 − ξ(2),
where

ξ(2) = exp
(
−n(1−β)/2

)
+ 2 exp

(
−2n(1− n−β)

(log n)2

)
,

the event

E2 =





(
1− 1

log n

)
n1−β ≤ m2 ≤ n1−β

(
1
2 − 1

log n

)
n(1− n−β) ≤ `2

`2 ≤
(

1
2 + 1

log n

)
n(1− n−β)





holds when n is sufficiently large.
Now, conditioned on event E2, we can apply Lemma 7.3 to

I(3). Proceeding similarly for sets I(4), . . . , I(k+1), and noting
that ξ(i) < ξ(j) when i < j, we have that for n sufficiently
large the event

Ek+1 =





(
1− 1

log n

)k

n1−β ≤ mk+1 ≤ n1−β

(
1
2 − 1

log n

)k

n(1− n−β) ≤ `k+1

`k+1 ≤
(

1
2 + 1

log n

)k

n(1− n−β)





holds with probability at least 1− kξ(k + 1) where

ξ(k + 1) = exp

(
−

(
1− 1

log n

)k−1

n(1−β)/2

)
+

2 exp


−

2n(1− n−β)
(

1
2 − 1

log n

)k−1

(log n)2


.

Note that, as n →∞ both of the terms in ξ(k+1) tend to zero,
implying that Ek+1 holds with probability tending to 1. The
last step of the proof consists of showing what happens when

Higher Criticism testing is applied after the last refinement.
Conditionally on event Ek+1 we are left with an ‘effective’
signal vector with length ne = |I(k+1)|, where

(
1− 1

log n

)k

n1−β +
(

1
2
− 1

log n

)k

n(1− n−β)

≤ ne ≤ n1−β +
(

1
2

+
1

log n

)k

n(1− n−β).

The final observation, Y
(k+1)
a , allocates n/(k + 1) energy

among the ne indices, resulting in an effective signal amplitude
of √

2r
n log n

(k + 1)ne
, (9)

for each non-zero signal component. To specify the effective
signal parameters re and βe for this reduced dimension prob-
lem, we equate (9) with

√
2re log ne, which implies

re =
r

k + 1
n log n

ne log ne
.

Noting that when n →∞, n/ne → 2k and log n/ log ne → 1,
we conclude that

re → r
2k

k + 1
.

We proceed similarly for the sparsity parameter βe, to deter-
mine βe → β. Thus, the final observation Y (k+1), is equivalent
to a single observation of a signal with length ne, having
n1−βe

e nonzero entries of amplitude
√

2re log ne. Applying
Higher Criticism testing to these observations, and noting that
ne →∞ as n →∞ results in the threshold behavior described
in Theorem 3.1 (but with the new parameters βe and re).

B. Sketch of Proof of Theorem 5.2

The proof mimics that of Theorem 5.1 with differences as
noted here. We first generalize the signal model by letting
µ(n) =

√
2rg(n), and we let k = k(n) denote the total

number of refinements, which is now a function of n. An
analogous claim to that of Lemma 7.3 can be obtained for a
general tolerance γ(n). Iterating this result under the following
conditions:
• g(n) = (log2 log n)1+δ , for any fixed δ > 0,
• k(n) = log2 log n,
• γ(n) = (log2 log n)−2,

it can be shown that the output of the adaptive procedure is
equivalent to observations of a sparse signal of length ne →∞
as n →∞, having n1−βe

e nonzero entries of amplitude at least√
2re log ne, where re = r and βe = β, establishing the claim.

REFERENCES

[1] D. Donoho and J. Jin, “Higher criticsm for detecting sparse heterogenous
mixtures,” Ann. Statist., vol. 32, no. 3, pp. 962–994, 2004.

[2] J. Jin, “Detecting a target in very noisy data from multiple looks,” Inst.
Math. Statist. (IMS) Lecture Notes, vol. 45, pp. 255–286, 2004.

[3] H. Chernoff, “A measure of asymptotic efficiency for tests of a hypothesis
based on the sum of observations,” Ann. Statist., vol. 23, pp. 493–507,
1952.

[4] S. Verdu, Multiuser Detection, Cambridge University Press, New York,
1998.


