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Agile Sensors and Stylized Applications
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Measuring and Mapping Large Networks

Complex systems are not defined by the independent functions of individual components,
rather they depend on the orchestrated interactions of these elements.

Network(s) of interactions can be revealed via clustering based on measured features
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genes and expression/ network routers and
interaction profiles traffic/distance profiles

Similarity-Based Clustering: Each component (gene/router) has an associated feature
(measurement profile). Components can be clustered based on feature similarities.
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Human Sensors and Social Networks

Active Learning with Human Sensors:

Suppose our machine learning
algorithm wants to learn which glasses
are the sexiest. It could tweet back to
vpisteve asking “what type of glasses
are the sexiest?”

r‘:! vpisteve This could be done automatically in
4 ;3 in Pasadena, CA, USA response to any tweet containing words
“glasses” and “sexy”.

@CreativeEmbassy glasses are sexy,
everyone knows that.

TwitterVision by Popvox LLC



Optimization and Active Sensing/Learning

Goal: Estimate an unknown object z € X from scalar samples

Information: samples of the form yi(x), ...,y (),
the values of certain functionals of x

Adaptive Information: y,,y,,--- € YV are selected sequentially and y;
can depend on previously gathered information, i.e., y1(z),...,y;—1(x)

Dynamic Programming: K > 0 measurement/experiment steps

_ min  max d(z, Z(y1,.-.,Yk))
T,Y1,...Yxg TEX

computationally prohibitive in all but very low-dimensional, simple problems



Automating Science

scientist



Robot Scientist

www.aber.ac.uk/compsci/Research/bio/robotsci/

Wired Magazine, April 2009:

For the first time, a robotic system has made a novel
scientific discovery with virtually no human intellectual
input.

Scientists designed "Adam" to carry out the entire
scientific process on its own: formulating hypotheses,
designing and running experiments, analyzing data,
and deciding which experiments to run next. "It'’s a
major advance," says David Waltz of the Center for
Computational Learning Systems at Columbia
University. "Science is being done here in a way that
incorporates artificial intelligence. It's automating a
part of the scientific process that hasn’t been
automated in the past."

Adam is the first automated system to complete the
cycle from hypothesis, to experiment, to reformulated
hypothesis without human intervention.




Scientific and Engineering Discovery is a
Closed-loop Process

Do we have the right theory and methods for it ?

Paths forward:
* Closing the loop between data acquisition and analysis

* Do ‘more with less’ or ‘less with more’ data
(sublinear complexity algorithms)

* Integrating disparate information sources (including humans)

 Man-machine systems



Some Active Sensing and Learning References

(Not Comprehensive)
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