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Active Learning with Human Sensors:

Suppose our machine learning 

algorithm wants to learn which glasses 

are the sexiest.  It could tweet back to 

vpisteve asking “what type of glasses 

are the sexiest?”

This could be done automatically in 

response to any tweet containing words 

“glasses” and “sexy”.



Optimization and Active Sensing/Learning



Automating Science



Wired Magazine, April 2009: 

For the first time, a robotic system has made a novel 

scientific discovery with virtually no human intellectual 

input.

Scientists designed "Adam" to carry out the entire 

scientific process on its own: formulating hypotheses, 

designing and running experiments, analyzing data, 

and deciding which experiments to run next. "It’s a 

major advance," says David Waltz of the Center for 

Computational Learning Systems at Columbia 

University. "Science is being done here in a way that 

incorporates artificial intelligence. It’s automating a 

part of the scientific process that hasn’t been 

automated in the past."

Adam is the first automated system to complete the 

cycle from hypothesis, to experiment, to reformulated 

hypothesis without human intervention.

www.aber.ac.uk/compsci/Research/bio/robotsci/ 



Scientific and Engineering Discovery is a 

Closed-loop Process
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