Active Learning

sample analyze
/sense and infer

adapt sensing
or experiment
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Machine Learning

Training examples come in pairs, feature X and label Y.

Goal: Design a rule for predicting Y given X
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Machine Learning

Training examples come in pairs, feature X and label Y.

Goal: Design a rule for predicting Y given X

Heart disease?

BMI
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O

cholesterol
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Machine Learning

Training examples come in pairs, feature X and label Y.

Goal: Design a rule for predicting Y given X

Heart disease?
@ Uunlabeled examples

cholesterol
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Machine Learning

Training examples come in pairs, feature X and label Y.

Goal: Design a rule for predicting Y given X

Heart disease?

® @ Uunlabeled examples
@

®
E O
) O

most informative
unlabeled example

cholesterol
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Machine Learning (Passive)

Raw unlabeled data

passive learner
expert/oracle

analyzes/experiments
to determine labels

Friday, May 20, 2011



Machine Learning (Passive)

Raw unlabeled data

passive learner
expert/oracle

analyzes/experiments
to determine labels
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Machine Learning (Passive)

Raw unlabeled data

I

(Xlz Yl)a (X27 YQ): <X3a Y3)3 .o

Labeled data

passive learner
expert/oracle

analyzes/experiments
to determine labels
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Machine Learning (Passive)

Raw unlabeled data

I

(le Yl)v (X27 YQ): (X37 Y3)7 .o

(
passive learner \
expert/oracle

to determine labels

Labeled data
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Active Learning

Raw unlabeled data

active learner

expert/oracle
analyzes/experiments
to determine labels
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Active Learning

Raw unlabeled data

active learner

expert/oracle
analyzes/experiments
to determine labels
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Active Learning

Raw unlabeled data

Learner requests labels
for selected data

(X1,7)

active learner

expert/oracle
analyzes/experiments
to determine labels
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Active Learning

Raw unlabeled data

Learner requests labels
for selected data

(X1,7)

(X1,Y7)

active learner

expert/oracle
analyzes/experiments
to determine labels
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Active Learning

Raw unlabeled data

X1,X2,X3;...

Learner requests labels
for selected data

(X1,7)

(X1,Y7)

(X3,7)

active learner

expert/oracle
analyzes/experiments
to determine labels
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Active Learning

Raw unlabeled data

X1,X2,X3;...

Learner requests labels
for selected data

(X1,7)

(X1,Y7)

(X3,7)

(X3.*. Y3)

active learner

expert/oracle
analyzes/experiments
to determine labels
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Active Learning

Raw unlabeled data

X1,X2,X3;...

Learner requests labels
for selected data

(X1,7)

(X1,Y7)

(X3,7)

(X3.*. Y3)

active learner

expert/oracle

\ analyzes/experiments
to determine labels

automatic classifier
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Applications of Active Learning

. . Document classification
Hand-written character recognition e

ave sy Ll Ab 2 Bd,
- ’
a AN
¥
.

AAAAAAA
e ¢ i —
-~ s

Sensor networks

S IDNIYSuUiiuA

In many applications, obtaining labels or running experiments is costly !
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A Stylized Environmental Sensing Task
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Where is it shady vs. sunny ?
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Where is it shady vs. sunny ?
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A Stylized Environmental Sensing Task

1 x

Where is it shady vs. sunny ?

Suppose we have N wireless sensors. Do we need to query them all?
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Classic Binary Search
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Where is it shady vs. sunny ?
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Classic Binary Search

A
/,

e ____________@% __________@% ______@¢%» _______@¢% ______<¢% 9% 9% S @

Where is it shady vs. sunny ?
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Classic Binary Search

adaptive sensing: sequentially select points for labeling
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Classic Binary Search

adaptive sensing: sequentially select points for labeling
M X = 1[0,1]
: H = {thresholds at %,%,...,1 }
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Classic Binary Search

adaptive sensing: sequentially select points for labeling
o x = [0,1]
: H = {thresholds at %,%,...,1 }
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Classic Binary Search

adaptive sensing: sequentially select points for labeling
o x = [0,1]
: H = {thresholds at %,%,...,1 }

1/3 =010...
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Classic Binary Search

adaptive sensing: sequentially select points for labeling

P s X = [0,1]
: H = {thresholds at %,%,...,1 }
1 S R
0 T x
113 =0101...
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Classic Binary Search

adaptive sensing: sequentially select points for labeling

M T X = [0,1]
: H = {thresholds at %,%,...,1 }
1 ___________1
0 X
113 =0101... requires log, N queries
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Classic Binary Search

adaptive sensing: sequentially select points for labeling

y
M T X = [0,1]
: H = {thresholds at %,%,...,1 }
= ——
0 X
113 =0101... requires log, N queries
y non-adaptive: query points uniformly (possibly random)
+1 —
-1 ___________1
0 X
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Classic Binary Search

adaptive sensing: sequentially select points for labeling

* X = [0,1]
: H = {thresholds at %,%,...,1 }
113 =0101... requires log, N queries

+ hon-adaptive: query points uniformly (possibly random)
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Classic Binary Search

adaptive sensing: sequentially select points for labeling
0, 1]
{thresholds at %, %, .., 1}

-
e 0O ________@¢% ___@&e ______<¢% _______@¢% ______<¢8% _________<¢% _________@¢% &% 48 &

1/3 =0101...

requires log, N queries

non-adaptive: query points uniformly (possibly random)

requires O(N) queries
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Classic Binary Search

adaptive sensing: sequentially select points for labeling

y
+1 T +_ X = [0,1]
: H = {thresholds at %,%,...,1 }
1 ___________1
0 X
113 =0101... requires log, N queries

Y+ + + 4+ + + non-adaptive: query points uniformly (possibly random)

requires O(N) queries

adaptive sensing is dramatically more efficient
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Envirgnmental Sensing Chin Wu, Civil & Environmental Engr.
http://limnology.wisc.edu/

acoustic doppler sensing of
water current in Lake Wingra

water current velocity map classification into high-
(darker = high velocity) and low-velocity regions

Non'adaptlve Su rvey: 48 hrs A. Singh, R. Nowak and P. Ramanathan. Active Learning for Adaptive Mobile Sensing Networks.
Adaptive Su rvey: 14 hrs ACM/IEEE Interntional Conference on Information Processing in Sensor Networks, IPSN 2006.

Friday, May 20, 2011


http://limnology.wisc.edu
http://limnology.wisc.edu

Outline of Part 3

Friday, May 20, 2011



Outline of Part 3

Noisy Binary Search: What if the expert/oracle responses
are not completely reliable ?
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Outline of Part 3

Noisy Binary Search: What if the expert/oracle responses
are not completely reliable ?

Minimax Analysis of Active Learning: \What are the
fundamental capabilities and limits of active learning ?
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Outline of Part 3

Noisy Binary Search: What if the expert/oracle responses
are not completely reliable ?

Minimax Analysis of Active Learning: \What are the
fundamental capabilities and limits of active learning ?

Generalized Binary Search: Can binary search be generalized in
order to learn more complex decision rules ?

0
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Outline of Part 3

Noisy Binary Search: What if the expert/oracle responses
are not completely reliable ?

Minimax Analysis of Active Learning: \What are the
fundamental capabilities and limits of active learning ?

Generalized Binary Search: Can binary search be generalized in
order to learn more complex decision rules ?

0

Unsupervised Active Learning: Can active learning help in
unsupervised learning problems such as clustering ?

Friday, May 20, 2011



Binary Search and Noise

At what income level is a person more likely to be
Republican vs. Democrat ?

Probability of voting for Obama

\‘\\.

Income
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Binary Search and Noise

At what income level is a person more likely to be
Republican vs. Democrat ?

Probability of voting for Obama
x\"& p
1 £
0 Income
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Binary Search and Noise

At what income level is a person more likely to be
Republican vs. Democrat ?

Probability of voting for Obama

A
i

e
% ------------------------------------ 4- .

Income
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Binary Search and Noise

At what income level is a person more likely to be
Republican vs. Democrat ?

Probability of voting for Obama
1
|2
0 .
Income
0* = $250K
probably Democrat probably Republican
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Bounded and Unbounded Noise
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Bounded and Unbounded Noise

Y
1
I —
1 / D . ........................... p(y _— ]_l X — :L‘) ,,,,,,,,,,,,,,,,,,,,,
e
0] il |
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Bounded and Unbounded Noise

A
Y
1 -_.
g = \:
1 / 22 E ........................... P(Y — ]_ |X — ZU) .....................
< | >
0 more probably 1 I more probably 0 i
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Bounded and Unbounded Noise

Y
1 —-
[ —
1 / 22 E ........................... P(Y = i |X — x) .....................
- -
0 more probably 1 | more probably 0 i '/'E

“bounded noise” : strictly more/less probably 1 at all locations
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Bounded and Unbounded Noise

0 more probably 1 I more probably 0 i

“unbounded noise” : like the toss of a fair coin at threshold
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Horstein's Multiplicative Weighting Method

1/2 [ G
T
0 1
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Horstein's Multiplicative Weighting Method

-
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0 1
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Horstein's Multiplicative Weighting Method

po(0)

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ e
————————————
0 1
0 i
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Horstein's Multiplicative Weighting Method

po(0)

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ e
R — e —

0 1

0 i
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Horstein's Multiplicative Weighting Method

1/2 [ e 1y
o T
O 1

Update ‘posterior’ density
based on noise bound b

p1(0)
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Horstein's Multiplicative Weighting Method

1/2 [ e 1y
o T
O 1

sequentially take samples
at posterior median

p1(0)
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Horstein's Multiplicative Weighting Method

1/2 [ e 3

sequentially take samples
at posterior median

p1(0)
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Horstein's Multiplicative Weighting Method

1/2 [ e 3

sequentially take samples
at posterior median

p2(0)
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Channel Coding with Noiseless Feedback

‘-r-ﬂ -
1,0,1,1,0,1... 1-b

1-b

sender

receiver
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Channel Coding with Noiseless Feedback

\.r.:q -
1,0,1,1,0,1... 1-b 1,0,0,1,0,1. ?
s 0 o 0 =g T e

1-b

sender

receiver

noise bound
= BSC crossover prob

T

1/2 YT e T } b

|°

threshold location
= n bit message
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Channel Coding with Noiseless Feedback

=y -
1,0,1,1,0,1... 1-b 1,0,0,1,0,1. ?

sender

noiseless feedback

receiver

noise bound
= BSC crossover prob

T

1/2 YT e T } b

|°

threshold location
= n bit message
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Channel Coding with Noiseless Feedback

1-b

1.01.1.01... 1.0,0,1.0.1. ?
:.5- O . O e wowe wo Ww:
. / b | .
< ANy |
S e TN b
y = 1 o 1

> \ \ 1,0,0,1,0,1../
sender

noiseless feedback

receiver

noise bound

= BSC crossover prob
Both sender and receiver implement

Horstein’s algorithm

T

H2 S b Sender deduces which binary symbol to send
. next in order to yield the greatest possible
o reduction in the receiver's uncertainty about
threshold location n-bit message

= n bit message
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Active Learning in Unbounded Noise

yI noiseless yI bounded noise
1 1

. ~—
1/2 ................................. Bttt ettt ettt et 1/2 ................................. Bttt et sttt et esestasaeaen
. = +b
° ° —
—_p —_>
Classic Binary Search Noisy Binary Search
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Active Learning in Unbounded Noise

yI noiseless yI bounded noise
1 1

: \/\:
1/2 ................................. Bttt ettt ettt et 1/2 ................................. Bttt et sttt et esestasaeaen
: — o
° ° —
—_p —_>
Classic Binary Search Noisy Binary Search

unbounded noise
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Active Learning in Unbounded Noise

yI noiseless yI bounded noise
1 1

: \/\:
1/2 ................................. Bttt ettt ettt et 1/2 ................................. Bttt et sttt et esestasaeaen
. = +b
° ° —
—_p —_>
Classic Binary Search Noisy Binary Search

unbounded noise

Yy ‘ No strong cue about the
. location of the boundary
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Active Learning in Unbounded Noise

y noiseless yI bounded noise

> ~—~—
1/2 ................................. Bttt ettt ettt et 1/2 ................................. Bttt et sttt et esestasaeaen
: — o
° ° e——
—_p —_>
Classic Binary Search Noisy Binary Search

unbounded noise

No strong cue about the
location of the boundary

Rui Castro (Columbia): “How much does active learning help in this case ?”
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Unbounded Noise Effects

Near %-Ievel, cle — 0** ! < In(x)—1/2] < Clz—6*F"1, k>1

-

. TI(T) ) — P(Y — 1|)( f— .’.13)

similar conditions are commonly employed in nonparametric statistics, Tsybakov (2004)
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Unbounded Noise Effects

Near %-Ievel, cle — 0** ! < In(x)—1/2] < Clz—6*F"1, k>1

-

¢ N(z) =P(Y =1|X ==z)

similar conditions are commonly employed in nonparametric statistics, Tsybakov (2004)
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Unbounded Noise Effects

Near %-Ievel, cle — 0** ! < In(x)—1/2] < Clz—6*F"1, k>1

-

e nlz) i=PlY = 11X ==2)

0 0* ,  Z
B o=
Y
1 [ ]
1/2 o -X .......................................................................
e
0 11'
kK — 1

similar conditions are commonly employed in nonparametric statistics, Tsybakov (2004)
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Unbounded Noise Effects

Near %-Ievel, cle — 0** ! < In(x)—1/2] < Clz—6*F"1, k>1

-

E i) i=BY = 1|X ==x)

0 G ;T
K = 2
Y Y ‘
1 > 1 .
1/2 o -X ....................................................................... 1/2 \ E \
e e
0 1 L 0 ) £

similar conditions are commonly employed in nonparametric statistics, Tsybakov (2004)

Friday, May 20, 2011



Horstein’s Algorithm in Unbounded Noise
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Horstein’s Algorithm in Unbounded Noise

1 /2 oS
— eSS B B B
\ J
0 W i

Consider discrete set of thresholds and discretized version of P(Y=1|X=x)
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Horstein’s Algorithm in Unbounded Noise

A
Y
1 .—.
1/2 | e 1p — ophe]
- _._____ >
0 t 1t

Consider discrete set of thresholds and discretized version of P(Y=1|X=x)

If 2 level is not aligned with discrete thresholds, then noise of
discretized problem is bounded, but depends on resolution of
discretization ¢ and the behavior of P(Y=1|X=x) at the 7% level
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Horstein’s Algorithm in Unbounded Noise

A
Y
1 .—.
1/2 | e 1p — ophe]
- _._____ >
0 t 1t

Consider discrete set of thresholds and discretized version of P(Y=1|X=x)

If 2 level is not aligned with discrete thresholds, then noise of
discretized problem is bounded, but depends on resolution of
discretization ¢ and the behavior of P(Y=1|X=x) at the 7% level

Plhna(X) #Y] —PR*(X) #Y] < t* 4+ t ' exp(—nc’t®*?)
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Horstein’s Algorithm in Unbounded Noise

A
Y
1 .—.
1/2 | e 1p — ophe]
- _._____ >
0 t 1t

Consider discrete set of thresholds and discretized version of P(Y=1|X=x)

If 2 level is not aligned with discrete thresholds, then noise of
discretized problem is bounded, but depends on resolution of
discretization ¢ and the behavior of P(Y=1|X=x) at the 7% level

Plhna(X) #Y] —PR*(X) #Y] < t* 4+ t ' exp(—nc’t®*?)

_ O({Iogn _>
n
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Rates of Convergence

passive: n—2/3

active: 1

-
-

.......................................................

—
~
N
P
=
—
~
N
eoeopoocoe
&

.—_> —_>

0 1 X 0 1 X
passive: — n_l passive: — n—1/2
active: — e CN active: — n_1/2
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Are you a good active learner ?

Castro, Kalish, Nowak, Qian, Rogers & Zhu (NIPS 2008)

Investigate human active learning in task
analogous to 1-d threshold problem
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Castro, Kalish, Nowak, Qian, Rogers & Zhu (NIPS 2008)

Investigate human active learning in task
analogous to 1-d threshold problem

alien eggs
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Are you a good active learner ?

Castro, Kalish, Nowak, Qian, Rogers & Zhu (NIPS 2008)

Investigate human active learning in task
analogous to 1-d threshold problem

alien eggs

*XxRedo00

01725 0625 075

6
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Are you a good active learner ?

Castro, Kalish, Nowak, Qian, Rogers & Zhu (NIPS 2008)

Investigate human active learning in task
analogous to 1-d threshold problem

alien eggs

? 0 0.125 0.25 0.375 0.3 0.625 0.73 0.875 1

more probably
birds

Friday, May 20, 2011



Are you a good active learner ?

Castro, Kalish, Nowak, Qian, Rogers & Zhu (NIPS 2008)

Investigate human active learning in task
analogous to 1-d threshold problem

‘ ‘
G %
? 0 0.125 ﬂ._‘fe

more probably more probably
birds snakes

alien eggs

0.875

0625 0.73
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Are you a good active learner ?

Castro, Kalish, Nowak, Qian, Rogers & Zhu (NIPS 2008)

Investigate human active learning in task
analogous to 1-d threshold problem

alien eggs

more probably more probably
birds snakes

Subjects observe random egg hatchings (passive learning) or
they can select eggs to hatch (active learning).

They are asked to determine the egg shape where snakes
become more probable than birds.
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Are you a good active learner ?

Castro, Kalish, Nowak, Qian, Rogers & Zhu (NIPS 2008)

Investigate human active learning in task
analogous to 1-d threshold problem

alien eggs

more probably more probably
birds snakes

Subjects observe random egg hatchings (passive learning) or
they can select eggs to hatch (active learning).

They are asked to determine the egg shape where snakes
become more probable than birds.

Results: Human learning rates agree with theory, 7/n
In passive mode and exp(-cn) in active mode.
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Learning Multidimensional Threshold Functions
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Learning Multidimensional Threshold Functions

n(x)

d=1 d> 1
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Learning Multidimensional Threshold Functions

n(x)

d=1 d> 1
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Learning Rates for Multidimensional Thresholds

-

sharp transition smooth transition
=1 | k> 1
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Learning Rates for Multidimensional Thresholds

Holder-a smooth
decision boundary

F -
sharp transition smooth transition
=1 | k> 1
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Learning Rates for Multidimensional Thresholds

Holder-a smooth
decision boundary

sharp transition smooth transition
=1 kK> 1

Active Learning: Theorem (R. Castro and RN "07)
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Learning Rates for Multidimensional Thresholds

|
Holder-a smooth
decision boundary

sharp transition smooth transition
k=1 k>1
Active Learning: Theorem (R. Castro and RN "07)
NG =2 O oRel om0
IS 0= . n —
(—) 7° < inf sup Elhn)N= ( = ) e
n hn,Sn Pyy-eBF (a,k) n
(p=(d-1)/)
Compare with passive learning
1\ Zotom -
inf  sup  E(hn) = (—)2 I oud Bk
h.-n, PX}"’EBF((X,H) Tl and K — 1
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Learning Rates for Multidimensional Thresholds

|
Holder-a smooth
decision boundary

sharp transition smooth transition
k=1 kK >1
Active Learning: Theorem (R. Castro and RN "07)
N\ e fe D=
K —_ : T —_
(—) 7 < inf sup el = ( = ) G
n hn,Sn Pyy-eBF (a,k) n
(p=(d—-1)/a)
Compare with passive learning
1\ Tt o= =
inf sup E(hy) = (—)2 o a3 o=l
h«n, PX}"’EBF((X,H) Tl and K — 1
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Learning Rates for Multidimensional Thresholds

Main idea: reduce multidimensional problem ll|
to a sequence of 1-dim problems

Active Learning: Theorem (R. Castro and RN "07)
N\ Tt O DD
(—-) 22 =N sup ) = ( S n) 2
n h'n’Sn nyéBF(a,fﬁ) n
(p=(d-1)/)
Compare with passive learning
inf sup E(hn) = <l> et a3 o=l
hn PX}'EBF(CI’,H-) n and kK — 1
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Algorithms for Active Learning

X = domain or query space
Y = {_17+1}
H

= hypothesis space  Yh e H, h: X — )
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X := domain or query space
Y = {_17+1}

H := hypothesis space  Yhe H, h: X — )Y

Question: How many queries are required to determine A*?
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Algorithms for Active Learning

X = domain or query space
Y = {_17+1}
H

= hypothesis space  Yh e H, h: X — )

Question: How many queries are required to determine A*?

If ‘H is finite with NV := |’H|, then identification
of h* requires at least log, N bits/queries.
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Generalized Binary Search (aka Splitting Algorithm)

initialize: n =0, Hog = H
while |H,| > 1

H

hypothesis
space
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while |H,| > 1
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Generalized Binary Search (aka Splitting Algorithm)

initialize: n =0, Ho = H
while |H,| > 1

1) Select x,, = argmingex | ),y h(T)]

Selects a query for which disagreement
among hypotheses is maximal

H

hypothesis
space
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Generalized Binary Search (aka Splitting Algorithm)

initialize: n =0, Hog = H
while |H,| > 1

1) Select x, = argmingex | ),y h(T)].

2) Query with x,, to obtain response y, = h*(x,).

H

hypothesis
space
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Generalized Binary Search (aka Splitting Algorithm)

initialize: n =0, Ho = H
while |H,| > 1

1) Select x, = argmingex | ),y h(T)].
2) Query with x,, to obtain response vy, = h*(x,).

3) Set Hpa1 =4{h € Hy:h(xy) =yYn}, n=n-+1.

H

hypothesis
space

In H
> hypothesis
space
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Bisection in Higher Dimensions

Consider the decision boundaries of a collection of
classifiers in a multidimensional feature space

</
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Bisection in Higher Dimensions

Consider the decision boundaries of a collection of
classifiers in a multidimensional feature space

</

Unlike the situation in 1-d, there is no
natural ordering of classifiers/boundaries
and therefore no immediately obvious
approach to binary search
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Consider the decision boundaries of a collection of

classifiers in a multidimensional feature space
Unlike the situation in 1-d, there is no

natural ordering of classifiers/boundaries
and therefore no immediately obvious
approach to binary search

+ 4 ... but if we are given one positive
and negative example, then we
perform a bisection along the
path between these points
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Bisection in Higher Dimensions

Consider the decision boundaries of a collection of

classifiers in a multidimensional feature space
Unlike the situation in 1-d, there is no

natural ordering of classifiers/boundaries
and therefore no immediately obvious
approach to binary search

.. but if we are given one positive
and negative example, then we
perform a bisection along the
path between these points

bisecting paths of this sort
exist under a mild and
verifiable property we call
the “neighborly condition”
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Learning Halfspaces in R

hi  ho
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Learning Halfspaces in R
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Learning Halfspaces in R
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bisecting queries
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Learning Halfspaces in R

+ 4+
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+ 1 ++

'|||+'

l+| | |'

hg
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ho
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bisecting queries

++ 1+

queries generate only O(N?) of
the possible 2"V binary patterns!
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Learning Halfspaces in R

h]_ h2 A; Ar| A3 A, As Ag |A7 Ag Ag [Ajg A
~ hy [+ - - = 4+i+ + +[+ +]
s he |+ 4+ - — — — + + + - -
+ s |+ + - - -+ - +
+ _ hgy |+ 4+ + — — - -+ 4 |
h3
A bisecting queries

queries generate only O(N?) of
the possible 2"V binary patterns!

l+| | |'

+ 4+
+ 1 ++

- | |
| ++++

ha  Can GBS find near-bisecting

queries in general?

'|||+'
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Learning Halfspaces in R

W s 2

+ + | |
| +4+++

h]_ h2 Ay Ar A3 Ay As Ag A7 Ag Ag Ajg Alg
~ hy [+ - - — +8 + + 0 4+
£ hy |+ + - - — 4+ + + -
+ hs |+ + + - — - + - +
+ - hae |+ + + + — - - + + + |

h3
i bisecting queries

- queries generate only O(N?) of
the possible 2"V binary patterns!

+ 1 ++

ha  Can GBS find near-bisecting

[icked] =] queries in general?

If H is a collection of N halfspaces on X = R?, then GBS
terminates with the correct halfspace after O(log N) queries.
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Example

Suppose we have a sensor network observing a binary activation pattern with a linear
boundary. How many sensors must be queried to determine the pattern?
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100 sensors, 9900 possible linear boundaries
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Example

Suppose we have a sensor network observing a binary activation pattern with a linear
boundary. How many sensors must be queried to determine the pattern?
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Example

Suppose we have a sensor network observing a binary activation pattern with a linear
boundary. How many sensors must be queried to determine the pattern?
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Correct boundary determined after querying 12 sensors
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“Is the person
wearing a hat ?”
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Generalized Binary Search with Noise

Generalized Binary Search (GBS)
initialize: n =0, Ho = 'H
while |H,,| > 1

1) Select z,, = argmingex | ) ,cpy ()
2) Query with z,, to obtain response y,, = h*(x,,)

3) Set Hpa1 ={h e Hy,:h(x,) =ynt,n=n+1
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Generalized Binary Search with Noise

Generalized Binary Search (GBS)
initialize: n =0, Ho = 'H

while |H,| > 1

1) Select z, = argmingex | ), N(T)

2) Query with x,, to obtain response y, = h*(x,,)
3) Set Hpr1 ={heHy:h(zn) =ynt, n=n+1

Suppose that the binary response y € {—1,1} to query x € X is an independent
realization of the random variable Y satisfying P(Y = h*(x)) > P(Y = —h*(x)),
where h* € H is fixed but unknown (i.e., the response is only probably correct)
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Generalized Binary Search with Noise

Generalized Binary Search (GBS)
initialize: n =0, Ho = 'H

while |H,| > 1

1) Select z, = argmingex | ), N(T)

2) Query with x,, to obtain response y, = h*(x,,)
3) Set Hpr1 ={heHy:h(zn) =ynt, n=n+1

Suppose that the binary response y € {—1,1} to query x € X is an independent
realization of the random variable Y satisfying P(Y = h*(x)) > P(Y = —h*(x)),
where h* € H is fixed but unknown (i.e., the response is only probably correct)

The noise bound is defined as o := sup, . P(Y # h"(x))
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Generalized Binary Search with Noise

Noise-tolerant GBS
initialize: pg uniform over H and o < 3 < 1/2.
forn=0,1,2,...

1) Tp = arg Migec x ‘ ZheH pn(h)h(m)‘
2) Obtain noisy response y,
3) Bayes update: V h

Prt1(h) o pn(h) X { 1 ;ﬁ : ZEZ; ; z:

hypothesis selected at each step:
h,, := argmaxpc g Pn(h)

Suppose that the binary response y € {—1,1} to query x € X is an independent
realization of the random variable Y satisfying P(Y = h*(x)) > P(Y = —h*(x)),
where h* € H is fixed but unknown (i.e., the response is only probably correct)

The noise bound is defined as o := sup, . P(Y # h"(x))
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Theory of Generalized Binary Search

GBS with N hypotheses/classifiers
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Theory of Generalized Binary Search

GBS with N hypotheses/classifiers

Noiseless Search

Theorem 1 If the neighborly condition holds, then GBS terminates with the
correct hypothesis after at most clog N queries, where ¢ > 0 is a small constant.
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Theory of Generalized Binary Search

GBS with N hypotheses/classifiers

Noiseless Search

Theorem 1 If the neighborly condition holds, then GBS terminates with the
correct hypothesis after at most clog N queries, where ¢ > 0 is a small constant.

Noisy Search

Theorem 2 Let P denotes the underlying probability measure (governing noises
and algorithm randomization). If 8 > « and the neighborly condition holds,
then the noisy GBS algorithm generates a sequence of hypotheses satisfying

P(h, #h*) < N(1—-XAN" < Ne " , n=0,1,...

with exponential constant ¢ > 0.
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Theory of Generalized Binary Search

GBS with N hypotheses/classifiers

Noiseless Search

Theorem 1 If the neighborly condition holds, then GBS terminates with the
correct hypothesis after at most clog N queries, where ¢ > 0 is a small constant.

Noisy Search

Theorem 2 Let P denotes the underlying probability measure (governing noises
and algorithm randomization). If 8 > « and the neighborly condition holds,
then the noisy GBS algorithm generates a sequence of hypotheses satisfying

P(h, #h*) < N(1—-XAN" < Ne " , n=0,1,...

with exponential constant ¢ > 0.

If we desire P(/f;n # h*) < ¢, then we require only n = % log % queries.
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Active Clustering

Friday, May 20, 2011



Clustering in Large-Scale Networked Systems

Difficult or impossible to measure/observe everything in large systems
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Clustering in Large-Scale Networked Systems

Mitochondria

H A ;,,'_- '}-. PerOXIsome

1 . Secretion &
vesicle
transport

Chromatin & « e
transcription g

Nuclear-
cytoplasmic
transport

DNA replication
& repair

Genetic Landscape of a Cell
Boone Lab - Toronto

Difficult or impossible to measure/observe everything in large systems
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Clustering in Large-Scale Networked Systems
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of the Internet
Akamai

Difficult or impossible to measure/observe everything in large systems
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Network Structure and Clustering

Complex systems are not defined by the independent functions of individual components,
rather they depend on the orchestrated interactions of these elements.

Gautam Brian
Dasarathy Eriksson
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rather they depend on the orchestrated interactions of these elements.

Network(s) of interactions can be revealed via clustering based on measured features
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Network Structure and Clustering

Complex systems are not defined by the independent functions of individual components,

rather they depend on the orchestrated interactions of these elements.

Network(s) of interactions can be revealed via clustering based on measured features
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Network Structure and Clustering

Complex systems are not defined by the independent functions of individual components,
rather they depend on the orchestrated interactions of these elements.

Network(s) of interactions can be revealed via clustering based on measured features

mﬁ})ﬂﬁ%‘m

genes and expression/
interaction profiles
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network routers and
traffic/distance profiles

Gautam Brian
Dasarathy Eriksson

Similarity-Based Clustering: Each component (gene/router) has an associated feature
(measurement profile). Components can be clustered based on feature similarities.
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Internet Topology Inference
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Internet Topology Inference

Correlation between traffic patterns
at two points can indicate the

5y similarity between nodes (e.g.,
o = number of shared links in paths)
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Internet Topology Inference

Correlation between traffic patterns

at two points can indicate the
S~ 7, similarity between nodes (e.g.,

Y = number of shared links in paths)
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Network Mapping

1 2

S1,2 > 81,3, S2.3

RTT; & RTT5 more correlated than RTT; & RTTs or RTTy & RTT5
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Active Clustering

Questions :
1. Can we cluster from a subsample similarities?

2. Does random subsampling suffice?
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Active Clustering

Questions :
1. Can we cluster from a subsample similarities?

A : Maybe unnecessary to obtain all pairwise similarities

2. Does random subsampling suffice?

Redundancy

Very
Similar

Very
Dis-similar

(a.".u
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Active Clustering

Questions :
1. Can we cluster from a subsample similarities?

A : Maybe unnecessary to obtain all pairwise similarities

2. Does random subsampling suffice?

Redundancy Passive (Random) Subsampling

Random subsampling will miss
small clusters

Actually, we can show that at
least O(n?/m) pairwise similarities
are required to recover clusters
of size m.

Very
Similar

Very
Dis-similar
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Active Clustering

Questions :
1. Can we cluster from a subsample similarities?

A : Maybe unnecessary to obtain all pairwise similarities

2. Does random subsampling suffice?

A: No ! We will require O(n?) random similarities

Redundancy Passive (Random) Subsampling

Random subsampling will miss
small clusters

Actually, we can show that at
least O(n?/m) pairwise similarities
are required to recover clusters
of size m.

Very
Similar

Very
Dis-similar
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Active Clustering: Efficient Hierarchical Clustering
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Active Clustering: Efficient Hierarchical Clustering

The proposed method adaptively selects the most informative pairwise
similarities to recover the hierarchical clustering.

Under mild assumptions, we can discern the “outlier” of three items using only
3 pairwise similarities. i.e.,
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The proposed method adaptively selects the most informative pairwise
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Underdmild assumptions, we can discern the “outlier” of three items using only
3 pairwise simi aT les. i.e.,

intra-cluster similarities > inter-cluster similarities
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Active Clustering: Efficient Hierarchical Clustering

The proposed method adaptively selects the most informative pairwise
similarities to recover the hierarchical clustering.

Underdmild assumptions, we can discern the “outlier” of three items using only
3 pairwise simi aT les. i.e.,

intra-cluster similarities > inter-cluster similarities

outlier

5@.,0 > max {S@.,0) , S@.,0)} —>
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Active Clustering: Efficient Hierarchical Clustering
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Active Clustering: Efficient Hierarchical Clustering

This is a sequential procedure ...
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Active Clustering: Efficient Hierarchical Clustering

This is a sequential procedure ...

Inserting a new object into a tree with i

leaves

* Pick an internal node v with = j/2 objects as
descendants

* Find two leaves xx and x; whose common
ancestor is v

e Find outlier(xx, x;, v) and discard a portion of
the tree

* Proceed till there are only two leaves left and
insert using a final outlier test.
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Active Clustering: Efficient Hierarchical Clustering

This is a sequential procedure ...

Inserting a new object into a tree with i

leaves

* Pick an internal node v with = i/2 objects as LN
descendants . o

* Find two leaves xx and x; whose common 6 New object
ancestor is v 5 7

e Find outlier(xx, x;, v) and discard a portion of
the tree 2 (1)

* Proceed till there are only two leaves left and 30 4@ 5 9

insert using a final outlier test. True Placement
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This is a sequential procedure ...

Inserting a new object into a tree with i

leaves

* Pick an internal node v with = i/2 objects as LN
descendants . o

* Find two leaves xx and x; whose common 6 New object
ancestor is v 5 7

* Find outlier(xx, x;, v) and discard a portion of
the tree 2 (1)

* Proceed till there are only two leaves left and 30 4@ 5 9
insert using a final outlier test. True Placement
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Active Clustering: Efficient Hierarchical Clustering

This is a sequential procedure ...

Inserting a new object into a tree with i

leaves

* Pick an internal node v with = i/2 objects as LN
descendants . ®

e Find two leaves xx and x; whose common 6 New object
ancestor is v 5 7

e Find outlier(xx, x;, v) and discard a portion of
the tree 2 (1)

* Proceed till there are only two leaves left and 30 4@ 5 9
insert using a final outlier test. True Placement

\
4' 10 outlier//

2 ©® ‘
outlier 3
Step 1 Step 2
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Active Clustering: Efficient Hierarchical Clustering

This is a sequential procedure ...

Inserting a new object into a tree with i

leaves

* Pick an internal node v with = i/2 objects as LN
descendants . ®

e Find two leaves xx and x; whose common 6 New object
ancestor is v 5 7

e Find outlier(xx, x;, v) and discard a portion of
the tree 2 (1)

* Proceed till there are only two leaves left and 30 4@ 5 9
insert using a final outlier test. True Placement

a2 YN /N
4' Out|ler'// 2/‘3/\4

2‘3 ‘

outlier

Step 1 Step 2 Step 3
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Active Clustering: Efficient Hierarchical Clustering

This is a sequential procedure ...

Inserting a new object into a tree with i

leaves

* Pick an internal node v with = i/2 objects as LN
descendants . o

* Find two leaves xx and x; whose common 6 New object
ancestor is v 5 7

e Find outlier(xx, x;, v) and discard a portion of
the tree 2 (1)

* Proceed till there are only two leaves left and 30 4@ 5 9

insert using a final outlier test. True Placement
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Active Clustering: Efficient Hierarchical Clustering

This is a sequential procedure ...

Inserting a new object into a tree with i

leaves

* Pick an internal node v with = i/2 objects as LN
descendants . o

* Find two leaves xx and x; whose common 6 New object
ancestor is v 5 7

e Find outlier(xx, x;, v) and discard a portion of
the tree 2 (1)

* Proceed till there are only two leaves left and 30 4@ 5 9
insert using a final outlier test. True Placement

Theorem:

Under certain assumptions, the hierarchical clustering of n objects can be recovered

using no more than 3n log n sequentially and adaptively selected pairwise similarities.

\ )
|

within a constant factor of the information theoretic lower bound
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Robust Active Clustering
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Robust Active Clustering

The previous technique is very sensitive to noise/errors and violations of the assumptions.

outlier

S@,0 > max {S@.@ ,S@.0)} —>
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Robust Active Clustering

The previous technique is very sensitive to noise/errors and violations of the assumptions.

outlier

5@.,0 > max {S@.,0) , S@.0)} —

To overcome this, we design a top-down recursive splitting approach and use
voting to boost our confidence about each decision we make.
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Robust Active Clustering

The previous technique is very sensitive to noise/errors and violations of the assumptions.

outlier

5@.,0 > max {S@.,0) , S@.0)} —

To overcome this, we design a top-down recursive splitting approach and use
voting to boost our confidence about each decision we make.

Goal : In each step, split a single cluster into 2 sub-clusters efficiently
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Robust Active Clustering Procedure

Seed

Strategy: Sequentially decide which of the two sub-clusters each @ goes into.
1. Pick a random object and call it the “seed”
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Robust Active Clustering Procedure

Seed

Strategy: Sequentially decide which of the two sub-clusters each @ goes into.
1. Pick a random object and call it the “seed”
2. For the other objects, decide if they are similar to © or not.
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Robust Active Clustering Procedure

N

m reinforcement ® © © @ @ O

objects :

Seed

Strateqy: Sequentially decide which of the two sub-clusters each @ goes into.
1. Pick a random object and call it the “seed”.
2. For the other objects, decide if they are similar to © or not.
3. Towards this, randomly pick m “reinforcement” objects from C.
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Robust Active Clustering Procedure

N

m reinforcement ® © @ @ © ®

objects :

outlier(@® ,® ,0) =@®?

Seed

Strategy: Sequentially decide which of the two sub-clusters each @ goes into.
1. Pick a random object and call it the “seed”.
2. For the other objects, decide if they are similar to © or not.
3. Towards this, randomly pick m “reinforcement” objects from C. Count the number
of times outlier(®,0,0) is® .
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Robust Active Clustering Procedure

NG

m reinforcement ® © © @ @ O

objects :

outlier(® ,® ,0) =@®? V V v

Seed

Strategy: Sequentially decide which of the two sub-clusters each @ goes into.
1. Pick a random object and call it the “seed”.
2. For the other objects, decide if they are similar to O or not.
3. Towards this, randomly pick m “reinforcement” objects from C. Count the number
of times outlier(®,0,0) is @ .
4. If roughly m/2 times, @ is similar to O .
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Robust Active Clustering Procedure

N

m reinforcement ® © © @ @ O

objects :

outlier(@® ,® ,0) =@®? \/

N

Seed

Strategy: Sequentially decide which of the two sub-clusters each @ goes into.
1. Pick a random object and call it the “seed”.
2. For the other objects, decide if they are similar to O or not.
3. Towards this, randomly pick m “reinforcement” objects from C. Count the number
of times outlier(®,0,0) is @ .
4. If roughly m/2 times, @ is similar to O . If almost never, ® goes in the other cluster.
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Robust Active Clustering Procedure

N

m reinforcement ® © © © @ O

objects :

outlier(@® ,® ,0) =@®? V

N

Seed

Strategy: Sequentially decide which of the two sub-clusters each @ goes into.
1. Pick a random object and call it the “seed”.
2. For the other objects, decide if they are similar to © or not.
3. Towards this, randomly pick m “reinforcement” objects from C. Count the number
of times outlier(®,0,0) is® .
4. If roughly m/2 times, @ is similar to O . If almost never, ® goes in the other cluster.

Theorem: This procedure correctly clusters n objects using O(n log? n)
similarities and is robust to a significant fraction of errors.
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Active Learning Summary

+
Classification:
NA = sample complexity n ~ d/e
A = sample complexity n ~ dloge™!
B

Remote Sensing;: Network Mapping:
NA = error ~ O(n=1/?) NA = O(n?) probes
A = error ~ O(n~?) A = O(nlogn) probes
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