
Active Learning

sample
/sense

analyze 
and infer

adapt sensing 
or experiment
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Machine Learning

Training examples come in pairs, feature X and label Y.

Goal: Design a rule for predicting Y given X
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best linear classifier

Training examples come in pairs, feature X and label Y.

Goal: Design a rule for predicting Y given X

most informative 
unlabeled example

unlabeled examples
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Machine Learning (Passive)
Raw unlabeled data

      expert/oracle
analyzes/experiments  
  to determine labels 

passive learner
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Active Learning
Raw unlabeled data
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analyzes/experiments  
  to determine labels 

active learner
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Active Learning
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      expert/oracle
analyzes/experiments  
  to determine labels 

active learner

automatic classifier

Learner requests labels 
    for selected data
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Applications of Active Learning

Hand-written character recognition Document classification

Systems biology

In many applications, obtaining labels or running experiments is costly !

Sensor networks

Friday, May 20, 2011
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Where is it shady vs. sunny ?

A Stylized Environmental Sensing Task

1
-1

+1

0 x** * * * * * * * * * * * * * * *

Suppose we have N wireless sensors.  Do we need to query them all?
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requires log2 N queries

requires O(N) queries
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requires log2 N queries

requires O(N) queries
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adaptive sensing: sequentially select points for labeling

non-adaptive: query points uniformly (possibly random)

** * * * * * * * * * * * * * * * x

y

x

y

Classic Binary Search

X = [0, 1]
H = {thresholds at 1

n , 2
n , . . . , 1 }

adaptive sensing is dramatically more efficient
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Environmental Sensing

acoustic doppler sensing of 
water current in Lake Wingra

water current velocity map
(darker = high velocity)

classification into high- 
and low-velocity regions

Lake Wingra, Madison WI

Chin Wu, Civil & Environmental Engr.
http://limnology.wisc.edu/

Non-adaptive Survey: 48 hrs
Adaptive Survey:        14 hrs

A. Singh, R. Nowak and P. Ramanathan. Active Learning for Adaptive Mobile Sensing Networks.
ACM/IEEE Interntional Conference on Information Processing in Sensor Networks, IPSN 2006.
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Outline of Part 3

Generalized Binary Search: Can binary search be generalized in 
order to learn more complex decision rules ?

Noisy Binary Search: What if the expert/oracle responses 
are not completely reliable ?

Minimax Analysis of Active Learning: What are the 
fundamental capabilities and limits of active learning ?
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0
1

Outline of Part 3

Generalized Binary Search: Can binary search be generalized in 
order to learn more complex decision rules ?

Noisy Binary Search: What if the expert/oracle responses 
are not completely reliable ?

Minimax Analysis of Active Learning: What are the 
fundamental capabilities and limits of active learning ?

Unsupervised Active Learning: Can active learning help in 
unsupervised learning problems such as clustering ?
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Binary Search and Noise

income

Probability of voting for Obama

At what income level is a person more likely to be 
Republican vs. Democrat ?

0

1
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Binary Search and Noise

income

Probability of voting for Obama

At what income level is a person more likely to be 
Republican vs. Democrat ?

θ*
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Binary Search and Noise

income

Probability of voting for Obama

At what income level is a person more likely to be 
Republican vs. Democrat ?

θ*
probably Republicanprobably Democrat

0

1

θ* = $250K

  ½ 
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Bounded and Unbounded Noise
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Bounded and Unbounded Noise

more probably 0more probably 1
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Bounded and Unbounded Noise

“bounded noise” :  strictly more/less probably 1 at all locations

more probably 0more probably 1
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Bounded and Unbounded Noise

more probably 0more probably 1

“unbounded noise” :  like the toss of a fair coin at threshold
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Horstein’s Multiplicative Weighting Method
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Horstein’s Multiplicative Weighting Method

0
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Horstein’s Multiplicative Weighting Method

0

Update ‘posterior’ density 
based on noise bound b
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sequentially take samples 
at posterior median

Horstein’s Multiplicative Weighting Method
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sequentially take samples 
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Horstein’s Multiplicative Weighting Method

0

1
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sequentially take samples 
at posterior median

Horstein’s Multiplicative Weighting Method

0

1

0
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Channel Coding with Noiseless Feedback

1,0,1,1,0,1…

sender

1,0,0,1,0,1…?

receiver

0

1

0

1

1-b

1-b

b

b
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threshold location
= n bit message

noise bound
= BSC crossover prob
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0
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= n bit message

noise bound
= BSC crossover prob
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1,0,0,1,0,1…

noiseless feedback

0

1

0

1

1-b

1-b

b
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Channel Coding with Noiseless Feedback

1,0,1,1,0,1…

threshold location
= n bit message

noise bound
= BSC crossover prob

Both sender and receiver implement 
Horstein’s algorithm

Sender deduces which binary symbol to send 
next in order to yield the greatest possible 
reduction in the receiver's uncertainty about 
n-bit message

sender

1,0,0,1,0,1…?

receiver
1,0,0,1,0,1…

noiseless feedback

0

1

0

1

1-b

1-b

b

b
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noiseless bounded noise

Active Learning in Unbounded Noise

Classic Binary Search Noisy Binary Search
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noiseless bounded noise

Active Learning in Unbounded Noise

Classic Binary Search Noisy Binary Search

unbounded noise
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noiseless bounded noise

Active Learning in Unbounded Noise

Classic Binary Search Noisy Binary Search

No strong cue about the 
location of the boundary

unbounded noise
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noiseless bounded noise

Active Learning in Unbounded Noise

Classic Binary Search Noisy Binary Search

No strong cue about the 
location of the boundary

unbounded noise

Rui Castro (Columbia): “How much does active learning help in this case ?” 
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Unbounded Noise Effects

similar conditions are commonly employed in nonparametric statistics, Tsybakov (2004)
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Horstein’s Algorithm in Unbounded Noise
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Horstein’s Algorithm in Unbounded Noise

Consider discrete set of thresholds and discretized version of P(Y=1|X=x)
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Horstein’s Algorithm in Unbounded Noise

Consider discrete set of thresholds and discretized version of P(Y=1|X=x)

If ½ level is not aligned with discrete thresholds, then noise of 
discretized problem is bounded, but depends on resolution of 
discretization t and the behavior of P(Y=1|X=x) at the ½ level
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Horstein’s Algorithm in Unbounded Noise

Consider discrete set of thresholds and discretized version of P(Y=1|X=x)

If ½ level is not aligned with discrete thresholds, then noise of 
discretized problem is bounded, but depends on resolution of 
discretization t and the behavior of P(Y=1|X=x) at the ½ level
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Rates of Convergence

passive:

active:

passive:

active:

passive:

active:
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Are you a good active learner ?

Investigate human active learning in task  
analogous to 1-d threshold problem

Castro, Kalish, Nowak, Qian, Rogers & Zhu (NIPS 2008) 
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Are you a good active learner ?

Investigate human active learning in task  
analogous to 1-d threshold problem

alien eggs

more probably 
snakes

more probably 
birds

θ

Castro, Kalish, Nowak, Qian, Rogers & Zhu (NIPS 2008) 

Subjects observe random egg hatchings (passive learning) or 
they can select eggs to hatch (active learning). 

They are asked to determine the egg shape where snakes 
become more probable than birds.
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Are you a good active learner ?

Investigate human active learning in task  
analogous to 1-d threshold problem

alien eggs

more probably 
snakes

more probably 
birds

θ

Castro, Kalish, Nowak, Qian, Rogers & Zhu (NIPS 2008) 

Results: Human learning rates agree with theory, 1/n 
in passive mode and exp(-cn) in active mode.

Subjects observe random egg hatchings (passive learning) or 
they can select eggs to hatch (active learning). 

They are asked to determine the egg shape where snakes 
become more probable than birds.
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Learning Multidimensional Threshold Functions
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Learning Rates for Multidimensional Thresholds

1
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Learning Rates for Multidimensional Thresholds

1
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Learning Rates for Multidimensional Thresholds

1

Active Learning: Theorem (R. Castro and RN ’07)
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Learning Rates for Multidimensional Thresholds

1

Compare with passive learning

Active Learning: Theorem (R. Castro and RN ’07)
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Learning Rates for Multidimensional Thresholds

Compare with passive learning

Active Learning: Theorem (R. Castro and RN ’07)

1
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Learning Rates for Multidimensional Thresholds

Compare with passive learning

Active Learning: Theorem (R. Castro and RN ’07)

Main idea: reduce multidimensional problem 
to a sequence of 1-dim problems
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Algorithms for Active Learning

X := domain or query space

H := hypothesis space

Y := {−1,+1}

∀h ∈ H, h : X → Y
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X := domain or query space

H := hypothesis space

Y := {−1,+1}

∀h ∈ H, h : X → Y

+
-

+ -

+
--

- -

+

+

+ -
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∀h ∈ H, h : X → Y

+
-
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Question: How many queries are required to determine h∗?
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Algorithms for Active Learning

X := domain or query space

H := hypothesis space

Y := {−1,+1}

∀h ∈ H, h : X → Y

+
-

+ -

+
--

- -

+

+

+ -

If H is finite with N := |H|, then identification
of h∗ requires at least log2 N bits/queries.

Question: How many queries are required to determine h∗?
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initialize: n = 0, H0 = H
while |Hn| > 1

Generalized Binary Search (aka Splitting Algorithm)

hypothesis
    space
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initialize: n = 0, H0 = H
while |Hn| > 1

1) Select xn = arg minx∈X |
∑

h∈Hn
h(x)|.
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space

Friday, May 20, 2011



initialize: n = 0, H0 = H
while |Hn| > 1

1) Select xn = arg minx∈X |
∑

h∈Hn
h(x)|.

Generalized Binary Search (aka Splitting Algorithm)

                              Selects a query for which disagreement 
                                 among hypotheses is maximal

hypothesis
    space

query   
space
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initialize: n = 0, H0 = H
while |Hn| > 1

1) Select xn = arg minx∈X |
∑

h∈Hn
h(x)|.

xn

Generalized Binary Search (aka Splitting Algorithm)

hypothesis
    space

query   
space

oracle

2) Query with xn to obtain response yn = h∗(xn).
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initialize: n = 0, H0 = H
while |Hn| > 1

1) Select xn = arg minx∈X |
∑

h∈Hn
h(x)|.

3) Set Hn+1 = {h ∈ Hn : h(xn) = yn}, n = n + 1.

xn yn

Generalized Binary Search (aka Splitting Algorithm)

hypothesis
    space

query   
space

oracle hypothesis
    space

2) Query with xn to obtain response yn = h∗(xn).
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Bisection in Higher Dimensions

Consider the decision boundaries of a collection of 
classifiers in a multidimensional feature space
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Consider the decision boundaries of a collection of 
classifiers in a multidimensional feature space

 Unlike the situation in 1-d, there is no  
 natural ordering of classifiers/boundaries  
 and therefore no immediately obvious 
 approach to binary search
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Consider the decision boundaries of a collection of 
classifiers in a multidimensional feature space

 Unlike the situation in 1-d, there is no  
 natural ordering of classifiers/boundaries  
 and therefore no immediately obvious 
 approach to binary search

... but if we are given one positive 
    and negative example, then we
    perform a bisection along the
    path between these points
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Bisection in Higher Dimensions

-

+

Consider the decision boundaries of a collection of 
classifiers in a multidimensional feature space

 Unlike the situation in 1-d, there is no  
 natural ordering of classifiers/boundaries  
 and therefore no immediately obvious 
 approach to binary search

... but if we are given one positive 
    and negative example, then we
    perform a bisection along the
    path between these points

bisecting paths of this sort 
exist under a mild and 
verifiable property we call 
the “neighborly condition”
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Learning Halfspaces in Rd

bisecting queries

queries generate only O(Nd) of
the possible 2N binary patterns!
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Learning Halfspaces in Rd

Can GBS find near-bisecting
queries in general?

bisecting queries

queries generate only O(Nd) of
the possible 2N binary patterns!
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Learning Halfspaces in Rd

Can GBS find near-bisecting
queries in general?

If H is a collection of N halfspaces on X = Rd, then GBS
terminates with the correct halfspace after O(log N) queries.

bisecting queries

queries generate only O(Nd) of
the possible 2N binary patterns!
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Example
Suppose we have a sensor network observing a binary activation pattern with a linear 
boundary.  How many sensors must be queried to determine the pattern?

100 sensors, 9900 possible linear boundaries
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number of hypotheses vs. queries

log number of hypotheses vs. queries

Example
Suppose we have a sensor network observing a binary activation pattern with a linear 
boundary.  How many sensors must be queried to determine the pattern?

100 sensors, 9900 possible linear boundariesCorrect boundary determined after querying 12 sensors
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hypothesis
    space
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“Is the person 
wearing a hat ?”
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“Does the person 
have blue eyes ?”

“Is the person 
wearing a hat ?”
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“Does the person 
have blue eyes ?”

“Is the person 
wearing a hat ?”

GBS is quite effective if responses are reliable
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Generalized Binary Search with Noise

Generalized Binary Search (GBS)
initialize: n = 0, H0 = H
while |Hn| > 1
1) Select xn = arg minx∈X |

∑
h∈Hn

h(x)|
2) Query with xn to obtain response yn = h∗(xn)
3) Set Hn+1 = {h ∈ Hn : h(xn) = yn}, n = n + 1
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Suppose that the binary response y ∈ {−1, 1} to query x ∈ X is an independent
realization of the random variable Y satisfying P(Y = h∗(x)) > P(Y = −h∗(x)),
where h∗ ∈ H is fixed but unknown (i.e., the response is only probably correct)
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The noise bound is defined as α := supx∈X P(Y != h∗(x))
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Suppose that the binary response y ∈ {−1, 1} to query x ∈ X is an independent
realization of the random variable Y satisfying P(Y = h∗(x)) > P(Y = −h∗(x)),
where h∗ ∈ H is fixed but unknown (i.e., the response is only probably correct)

The noise bound is defined as α := supx∈X P(Y != h∗(x))

Noise-tolerant GBS
initialize: p0 uniform overH and α < β < 1/2.
for n = 0, 1, 2, . . .
1) xn = arg minx∈X |

∑
h∈H pn(h)h(x)|

2) Obtain noisy response yn

3) Bayes update: ∀h

pn+1(h) ∝ pn(h)×
{

1− β , h(xn) = yn

β , h(xn) %= yn

hypothesis selected at each step:
ĥn := arg maxh∈H pn(h)

Generalized Binary Search with Noise
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Theory of Generalized Binary Search

No redundant queries
Query complexity:
O(log N)

No redundant queries
Query complexity:
O(log N)

GBS with N hypotheses/classifiers
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No redundant queries
Query complexity:
O(log N)

Noiseless Search

Theorem 1 If the neighborly condition holds, then GBS terminates with the
correct hypothesis after at most c log N queries, where c > 0 is a small constant.

GBS with N hypotheses/classifiers
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Theory of Generalized Binary Search

No redundant queries
Query complexity:
O(log N)

No redundant queries
Query complexity:
O(log N)

Noisy Search

Theorem 2 Let P denotes the underlying probability measure (governing noises
and algorithm randomization). If β > α and the neighborly condition holds,
then the noisy GBS algorithm generates a sequence of hypotheses satisfying

P(ĥn != h∗) ≤ N (1− λ)n ≤ N e−c n , n = 0, 1, . . .

with exponential constant c > 0.

Noiseless Search

Theorem 1 If the neighborly condition holds, then GBS terminates with the
correct hypothesis after at most c log N queries, where c > 0 is a small constant.

GBS with N hypotheses/classifiers
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If we desire P(ĥn != h∗) < δ, then we require only n = 1
λ log N

δ queries.

Theory of Generalized Binary Search

No redundant queries
Query complexity:
O(log N)

No redundant queries
Query complexity:
O(log N)

Noisy Search

Theorem 2 Let P denotes the underlying probability measure (governing noises
and algorithm randomization). If β > α and the neighborly condition holds,
then the noisy GBS algorithm generates a sequence of hypotheses satisfying

P(ĥn != h∗) ≤ N (1− λ)n ≤ N e−c n , n = 0, 1, . . .

with exponential constant c > 0.

Noiseless Search

Theorem 1 If the neighborly condition holds, then GBS terminates with the
correct hypothesis after at most c log N queries, where c > 0 is a small constant.

GBS with N hypotheses/classifiers
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Active Clustering
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Clustering in Large-Scale Networked Systems

Difficult or impossible to measure/observe everything in large systems
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The Genetic Landscape of a Cell
Michael Costanzo,1,2* Anastasia Baryshnikova,1,2* Jeremy Bellay,3 Yungil Kim,3 Eric D. Spear,4
Carolyn S. Sevier,4 Huiming Ding,1,2 Judice L.Y. Koh,1,2 Kiana Toufighi,1,2 Sara Mostafavi,1,5
Jeany Prinz,1,2 Robert P. St. Onge,6 Benjamin VanderSluis,3 Taras Makhnevych,7
Franco J. Vizeacoumar,1,2 Solmaz Alizadeh,1,2 Sondra Bahr,1,2 Renee L. Brost,1,2 Yiqun Chen,1,2
Murat Cokol,8 Raamesh Deshpande,3 Zhijian Li,1,2 Zhen-Yuan Lin,9 Wendy Liang,1,2
Michaela Marback,1,2 Jadine Paw,1,2 Bryan-Joseph San Luis,1,2 Ermira Shuteriqi,1,2
Amy Hin Yan Tong,1,2 Nydia van Dyk,1,2 Iain M. Wallace,1,2,10 Joseph A. Whitney,1,5
Matthew T. Weirauch,11 Guoqing Zhong,1,2 Hongwei Zhu,1,2 Walid A. Houry,7 Michael Brudno,1,5
Sasan Ragibizadeh,12 Balázs Papp,13 Csaba Pál,13 Frederick P. Roth,8 Guri Giaever,2,10
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Anne-Claude Gingras,9 Quaid D. Morris,1,2,5 Philip M. Kim,1,2 Chris A. Kaiser,4 Chad L. Myers,3†
Brenda J. Andrews,1,2† Charles Boone1,2†
A genome-scale genetic interaction map was constructed by examining 5.4 million gene-gene pairs
for synthetic genetic interactions, generating quantitative genetic interaction profiles for ~75% of
all genes in the budding yeast, Saccharomyces cerevisiae. A network based on genetic interaction
profiles reveals a functional map of the cell in which genes of similar biological processes cluster
together in coherent subsets, and highly correlated profiles delineate specific pathways to define
gene function. The global network identifies functional cross-connections between all bioprocesses,
mapping a cellular wiring diagram of pleiotropy. Genetic interaction degree correlated with a
number of different gene attributes, which may be informative about genetic network hubs in other
organisms. We also demonstrate that extensive and unbiased mapping of the genetic landscape
provides a key for interpretation of chemical-genetic interactions and drug target identification.

The relation between an organism's geno-
type and its phenotype are governed by
myriad genetic interactions (1). Although

a complex genetic landscape has long been an-
ticipated (2), exploration of genetic interac-
tions on a genome-wide level has been limited.

Systematic deletion analysis in the budding
yeast, Saccharomyces cerevisiae, demonstrates
that the majority of its ~6000 genes are indi-
vidually dispensable, with only a relatively
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Fig. 1. A correlation-based network
connecting genes with similar genetic
interaction profiles. Genetic profile sim-
ilarities weremeasured for all gene pairs
by computing Pearson correlation co-
efficients (PCCs) from the complete ge-
netic interaction matrix. Gene pairs
whose profile similarity exceeded a
PCC > 0.2 threshold were connected
in the network and laid out using an
edge-weighted, spring-embedded, net-
work layout algorithm (7, 8). Genes
sharing similar patterns of genetic
interactions are proximal to each
other; less-similar genes are posi-
tioned farther apart. Colored regions
indicate sets of genes enriched for GO
biological processes summarized by the
indicated terms.
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Network Structure and Clustering
Complex systems are not defined by the independent functions of individual components, 
rather they depend on the orchestrated interactions of these elements. 
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Network Structure and Clustering
Complex systems are not defined by the independent functions of individual components, 
rather they depend on the orchestrated interactions of these elements. 

Network(s) of interactions can be revealed via clustering based on measured features

genes and expression/
interaction profiles

network routers and 
traffic/distance profiles

Similarity-Based Clustering: Each component (gene/router) has an associated feature 
(measurement profile).  Components can be clustered based on feature similarities.

Gautam 
Dasarathy

Brian 
Eriksson
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Internet Topology Inference

Friday, May 20, 2011



Internet Topology Inference

Friday, May 20, 2011



Internet Topology Inference

SYN!

SYN-ACK!

Friday, May 20, 2011



Internet Topology Inference

Correlation between traffic patterns 
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s1,2 > s1,3, s2,3

RTT1 & RTT2 more correlated than RTT1 & RTT3 or RTT2 & RTT3
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Questions : 
1. Can we cluster from a subsample similarities?
 

2. Does random subsampling suffice?
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Passive (Random) Subsampling 

Random subsampling will miss 
small clusters

Actually, we can show that at 
least O(n2/m) pairwise similarities 
are required to recover clusters 
of size m. 
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Questions : 
1. Can we cluster from a subsample similarities?
 

2. Does random subsampling suffice?

Redundancy 

A : Maybe unnecessary to obtain all pairwise similarities 

A: No !  We will require O(n2) random similarities 

Passive (Random) Subsampling 

Random subsampling will miss 
small clusters

Actually, we can show that at 
least O(n2/m) pairwise similarities 
are required to recover clusters 
of size m. 

Very 
Similar

Very 
SimilarVery 

Dis-similar

Need to 
ask ? 

Active Clustering
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The proposed method adaptively selects the most informative pairwise 
similarities to recover the hierarchical clustering.

Under mild assumptions, we can discern the “outlier” of three items using only 
3 pairwise similarities. i.e.,  
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Under mild assumptions, we can discern the “outlier” of three items using only 
3 pairwise similarities. i.e.,  

intra-cluster similarities > inter-cluster similarities
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The proposed method adaptively selects the most informative pairwise 
similarities to recover the hierarchical clustering.

Under mild assumptions, we can discern the “outlier” of three items using only 
3 pairwise similarities. i.e.,  

intra-cluster similarities > inter-cluster similarities

S(  ,  ) > max {S(  ,  ) , S(  ,  )}
outlier
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This is a sequential procedure ...
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This is a sequential procedure ...

Inserting a new object into a tree with i 
leaves
• Pick an internal node v with ≈ i/2 objects as 

descendants
• Find two leaves xk and xj whose common 

ancestor is v
• Find outlier(xk, xj, v) and discard a portion of 

the tree
• Proceed till there are only two leaves left and 

insert using a final outlier test.
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This is a sequential procedure ...
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Inserting a new object into a tree with i 
leaves
• Pick an internal node v with ≈ i/2 objects as 

descendants
• Find two leaves xk and xj whose common 

ancestor is v
• Find outlier(xk, xj, v) and discard a portion of 

the tree
• Proceed till there are only two leaves left and 

insert using a final outlier test.

Active Clustering: Efficient Hierarchical Clustering

Theorem: 
Under certain assumptions, the hierarchical clustering of n objects can be recovered 
using no more than 3n log n sequentially and adaptively selected pairwise similarities.

within a constant factor of the information theoretic lower bound
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Robust Active Clustering

The previous technique is very sensitive to noise/errors and violations of the assumptions.

S(  ,  ) > max {S(  ,  ) , S(  ,  )}
outlier
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Robust Active Clustering

The previous technique is very sensitive to noise/errors and violations of the assumptions.

To overcome this, we design a top-down recursive splitting approach and use 
voting to boost our confidence about each decision we make.

S(  ,  ) > max {S(  ,  ) , S(  ,  )}
outlier

Friday, May 20, 2011



Goal : In each step, split a single cluster into 2 sub-clusters efficiently

Robust Active Clustering

The previous technique is very sensitive to noise/errors and violations of the assumptions.

To overcome this, we design a top-down recursive splitting approach and use 
voting to boost our confidence about each decision we make.

S(  ,  ) > max {S(  ,  ) , S(  ,  )}
outlier
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Strategy: Sequentially decide which of the two sub-clusters each     goes into.
1. Pick a random object and call it the “seed”

 

seed

Robust Active Clustering Procedure

Friday, May 20, 2011



Strategy: Sequentially decide which of the two sub-clusters each     goes into.
1. Pick a random object and call it the “seed” 
2. For the other objects, decide if they are similar to     or not.

 

?
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Strategy: Sequentially decide which of the two sub-clusters each     goes into.
1. Pick a random object and call it the “seed”.
2. For the other objects, decide if they are similar to      or not.
3. Towards this, randomly pick m “reinforcement” objects from C. 

 

?

m reinforcement 
objects :
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1. Pick a random object and call it the “seed”.
2. For the other objects, decide if they are similar to      or not.
3. Towards this, randomly pick m “reinforcement” objects from C. Count the number 

of times outlier(   ,   ,   ) is    .  
 

?

m reinforcement 
objects :

outlier(    ,    ,   ) =    ?
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1. Pick a random object and call it the “seed”.
2. For the other objects, decide if they are similar to      or not.
3. Towards this, randomly pick m “reinforcement” objects from C. Count the number 

of times outlier(   ,   ,   ) is    .  
4. If roughly m/2 times,    is similar to    . 
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Strategy: Sequentially decide which of the two sub-clusters each     goes into.
1. Pick a random object and call it the “seed”.
2. For the other objects, decide if they are similar to      or not.
3. Towards this, randomly pick m “reinforcement” objects from C. Count the number 

of times outlier(   ,   ,   ) is    .  
4. If roughly m/2 times,    is similar to    . If almost never,    goes in the other cluster.

 

m reinforcement 
objects :

outlier(    ,    ,   ) =    ?
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Strategy: Sequentially decide which of the two sub-clusters each     goes into.
1. Pick a random object and call it the “seed”.
2. For the other objects, decide if they are similar to      or not.
3. Towards this, randomly pick m “reinforcement” objects from C. Count the number 

of times outlier(   ,   ,   ) is    .  
4. If roughly m/2 times,    is similar to    . If almost never,    goes in the other cluster.

 

m reinforcement 
objects :

outlier(    ,    ,   ) =    ?

Robust Active Clustering Procedure

seed

Theorem: This procedure correctly clusters n objects using O(n log2 n) 
similarities and is robust to a significant fraction of errors.
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Classification:
NA ⇒ sample complexity n ∼ d/ε
A ⇒ sample complexity n ∼ d log ε−1

Remote Sensing:
NA ⇒ error ∼ O(n−1/2)
A ⇒ error ∼ O(n−2)

Network Mapping:
NA ⇒ O(n2) probes
A ⇒ O(n log n) probes

Active Learning Summary

+

-
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