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Adaptive Information

Goal: Estimate an unknown object x € X tfrom scalar samples

Information: samples of the form yi(x),...,yn(x),
the values of certain functionals of x

Non-Adaptive Information: y;,1y2,--- € ) non-adaptively
chosen (deterministically or randomly) independent of x

Adaptive Information: yi,ys, - - € )Y are selected sequentially and y; can
depend on previously gathered information, i.e., y1(x), ..., y;—1(x)

Does adaptivity help?
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Feedback from Data Analysis to Data Collection

): possible measurements/experiments

data
collection

X': models/hypotheses

x),ya(x),...: information/data
under consideration y1(x), y2 (@) /

Friday, May 20, 2011



Feedback from Data Analysis to Data Collection

): possible measurements/experiments

data
collection

X': models/hypotheses

x),ya(x),...: information/data
under consideration y1(x), y2 (@) /

Friday, May 20, 2011



Feedback from Data Analysis to Data Collection

): possible measurements/experiments

data
collection

X': models/hypotheses

x),ya(x),...: information/data
under consideration y1(x), y2 (@) /

Friday, May 20, 2011



Feedback from Data Analysis to Data Collection

): possible measurements/experiments

data
collection

X': models/hypotheses

x),ya(x),...: information/data
under consideration y1(x), y2 (@) /

Friday, May 20, 2011



Outline of Tutorial

Part |: Introduction (Rob), 9:00-9:30
Part 2:Active Sensing (Jarvis), 9:30-10:30
Break, 10:30-10:45

Part 3:Active Learning (Rob), 10:45-11:45

Part 4: Conclusions and Future Directions, | 1:45-12

Outline of Part |I:

Sequential Experimental Design

Adaptive Sensing for Sparse Recovery

Sensing and Inference in Large Networked Systems
Active Learning in Machines and Humans

Mathematics of Active Sensing and Learning

Friday, May 20, 2011



Sequential Experimental Design

Decided to make new astronomical
measurements when “the discrepancy
between prediction and observation
[was] large enough to give a high

B probability that there is something new
| to be found.” Jaynes (1986)

observe .
m) Dis !
/ infer Scovery

selective
sensing
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The Scientific Process in a Laboratory

experiments

scientist
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Motivation: Inferring Biological Pathways

Paul Alhquist Audrey Gasch
(Molecular Virology) (Genetics)

Friday, May 20, 2011



virus

Paul Alhquist Audrey Gasch
(Molecular Virology) (Genetics)

fruit fly

Friday, May 20, 2011



Motivation: Inferring Biological Pathways

13,071 single-gene
knock-down cell strains

Paul Alhquist Audrey Gasch

_ ‘ Q (Molecular Virology)  (Genetics)

fruit fly

Friday, May 20, 2011



Motivation: Inferring Biological Pathways

13,071 single-gene

knock-down cell strains

. B

Paul Alhquist Audrey Gasch
(Molecular Virology) (Genetics)
= \ infect each strain
+ with fluorescing virus
fruitfy microwell
array

Friday, May 20, 2011




Motivation: Inferring Biological Pathways

13,071 single-gene
knock-down cell strains

Paul Ahquist  Audrey Gasch
— @ (Molecular Virology) (Genetics)
\ infect each strain

with fluorescing virus

-

. -
- - - - - -

: microwell
fruit fly c
array
Infecting virion RNA
\/\ =~+ | 3. RNA template recruitment > Ch aperone 6. Survival,

1. Regulated viral translation “s. from translation to replication actlyatlgn of fate of

' B * replication progeny

LSM1-LSM7, PAT1, DHH1, . LSM1-LSM7, PAT1, DHH1 complex (+)RNA

DED1, RPL19b, RPA1, RPA34, _“ SCP160 VDU

RRN3 X 7

‘.‘ (HSP70,90) SKiz3,7.8
000000 oo v

Viral RNA

2. Protein targeting, [ ~~ """ "7 '
9 0 1a 2gPol
regulated stability

- - “»
SCS2, PRE9 ER membrane
4. Membrane
synthesis, trafficking, ) 2
lipid composition (-JRNA (+)RNA
OLE1, ACB1, DRS2, synthesis synthesis
RCY1, NEM1, SPO7

Friday, May 20, 2011



Motivation: Inferring Biological Pathways

virus 13,071 single-gene
ot knock-down cell strains

Paul Alhquist  Audrey Gasch

_ - ‘ Q (Molecular Virology)  (Genetics)
@ \ infect each strain
= with fluorescing virus

- — - -
- - -
- - - - - -
- - - - - - - - - - - —
- -’ ’-'--'-' - - - - - -
- -
- T e Te "> - =
Co T T T o -
- - - - - - - -
- - - - - -

microwell
array

fruit fIy

“Drosophila RNAI screen identifies host genes important for influenza virus
replication,” Nature 2008. How do they confidently determine the ~100 out
of 13K genes hijacked for virus replication from extremely noisy data?
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“Drosophila RNAI screen identifies host genes important for influenza virus
replication,” Nature 2008. How do they confidently determine the ~100 out
of 13K genes hijacked for virus replication from extremely noisy data?

Sequential Experimental Design:

Stage 1: assay all 13K strains, twice; keep all with significant
fluorescence in one or both assays for 2nd stage (13K — 1K)

Stage 2: assay remaining 1K strains, 6-12 times; retain only
those with statistically significant fluorescence (1K — 100)
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fruit fly

“Drosophila RNAI screen identifies host genes important for influenza virus
replication,” Nature 2008. How do they confidently determine the ~100 out
of 13K genes hijacked for virus replication from extremely noisy data?

Sequential Experimental Design:

Stage 1: assay all 13K strains, twice; keep all with significant
fluorescence in one or both assays for 2nd stage (13K — 1K)

Stage 2: assay remaining 1K strains, 6-12 times; retain only
those with statistically significant fluorescence (1K — 100)

vastly more efficient that replicating all 13K experiments many times
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Feedback from Data Analysis to Data Collection

high-throughput
experiments

experiment
space

sets of genes critical to a microarray or
certain function/process assay datasets
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Adaptive Sensing for Sparse Recovery

(image reconstruction, compressed sensing, inverse problems)

y = Ax + w, with A € R™*™ 2 € R™ (but sparse), w ~ N (0, )

Goal: recover x fromy

- noise
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Adaptive Sensing for Sparse Recovery

(image reconstruction, compressed sensing, inverse problems)

y = Ax + w, with A € R™*™ 2 € R™ (but sparse), w ~ N (0, )

Goal: recover x fromy

- noise

Is sequentially designing (rows of) A advantageous ?
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Motivation: Randomized Experiments

sparse

. noise
signal

indirect (randomized) measurement
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Motivation: Randomized Experiments

kx1

sparse

: noise
signal

indirect (randomized) measurement

put mixtures of single-deletion
strains into each well
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Sensing and Inference in Large Networked Systems
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Challenges:

* Inferring structure &
function of the system

e Optimized design &
resource allocation

e Pattern analysis &
anomaly detection

Biological Networks Brain_Netlworks
(JMDBase) (Worsley et al, 2005)
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Network Structure and Clustering

Complex systems are not defined by the independent functions of individual components,
rather they depend on the orchestrated interactions of these elements.

Gautam Brian
Dasarathy Eriksson
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Network Structure and Clustering

Complex systems are not defined by the independent functions of individual components,
rather they depend on the orchestrated interactions of these elements.

Network(s) of interactions can be revealed via clustering based on measured features
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genes and expression/ network routers and
interaction profiles traffic/distance profiles

Similarity-Based Clustering: Each component (gene/router) has an associated feature
(measurement profile). Components can be clustered based on feature similarities.
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Network Structure and Clustering

Complex systems are not defined by the independent functions of individual components,
rather they depend on the orchestrated interactions of these elements.

Network(s) of interactions can be revealed via clustering based on measured features
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network routers and

genes and expression/
traffic/distance profiles

interaction profiles

Similarity-Based Clustering: Each component (gene/router) has an associated feature
(measurement profile). Components can be clustered based on feature similarities.

Recent Result: A sequential method for selecting “informative” similarities
that produces accurate clusters from as few as 3/NV log IV similarities.
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Cognitive Radio Spectrum Sensing

“‘primary” users have preference over “secondary” users
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most channels occupied by primary users, but they come and go in unpredictable
manner. Secondary users “sense” spectrum to find an unoccupied channel

Goal: Find open channel(s) as quickly as possible. Two approaches:

1) listen to each channel for a fixed amount of time and make decision
2) listen to each channel for a data-adaptive amount of time to make decisions
as quickly as possible
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Cognitive Radio Spectrum Sensing

“‘primary” users have preference over “secondary” users
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most channels occupied by primary users, but they come and go in unpredictable
manner. Secondary users “sense” spectrum to find an unoccupied channel

Goal: Find open channel(s) as quickly as possible. Two approaches:

1) listen to each channel for a fixed amount of time and make decision
2) listen to each channel for a data-adaptive amount of time to make decisions
as quickly as possible

adaptive spectrum sensing is significantly more time-efficient than fixed sensing
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Active Learning

Learn to predict labels y from features x based on training examples {(x;, y;) } 1,

A Heart disease?
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Active Learning

Learn to predict labels y from features x based on training examples {(x;, y;) } 1,

A Heart disease?
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Passive Learning: training examples selected at random

Active Learning: especially informative examples are sequentially selected

Active learning can very effectively “narrow down”
the location of the optimal decision boundary
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The Theory of the Organism-Environment
System: III. Role of Efferent Influences on
Receptors 1n the Formation of Knowledge*

TIMO JARVILENTO
Depaniment of Behavioral Sciences, University of Oulu, Finland

Abstract—The present article 15 an cttempt (0 give—in the frame of the theory of the
organism-environment system (Jarvilenhto, 1998a3) a new interpretation o the role of ef-
ferent influences on receptor activity and to the functions of senses in the formation of
knowledge. It is argucd, on the basis of expenmental evidence and theorctical consider-
ations, that the senses are not transmitters of environmental information, but create a diract
connection between the organism and the environment, which makes the development of a
dynamic living system, the organism-cavironment system, possible. In this connection
process, the efferent influences on receptor activity are of paruicular sigmificance because,
wilh their help, the receptors may be adjusted mn relation o the parts of the environment
that are most important in achieving behavioral results. Perception is the process of joining
of ncw parts of the cnvirenment (0 the organism-environment system, thus, the formation
ol knowledge by perception 1s bused on reorgumization (widening and ditferentiation) of
the vrgamsm-environment system, and not on ansnussion of infermaton from the envi-
ronment. With the help of the efferent influences on receptors, ¢ach orgamsm creates its
own peculiar world that 1s ssmultancously subjective and objective. The present consider-
ations have far-reaching influences as well on expermental work in neurophysiology and
psychology of perception as on philosophical considerations of knowledge formation.
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connection between the organism and the environment, that makes the develop of
process, the efferent influences on receptor activity are of parucular sigmificance because,
the receptors may be adjusted in relation to the parts of the environment that are
most important in achieving behavioral results. Perception is the process of joining
of new parts of the cnvirenment (0 the organism-environment system, thus, the formation
ol knowledge by perception 1s bused on reorgumization (widening and ditferentiation) of
the vrgamsme-environment system, and not on lranspussion of nlermation from the env-
ronment. With the help of the efferent influences on receptors, ¢ach orgamsm creates its
own peculiar world that 1s ssmultancously subjective and objective. The present consider-
ations have far-reaching influences as well on expermental work in neurophysiology and
psychology of perception as on philosophical considerations of knowledge formation.
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Visual Perception

Attentional mechanisms probably limit our capacity to about 44 bits per-glimpse
(Verghese and Pelli (1992))

So how to we perceive ‘reality’ from so few bits of information?
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Churchland, Ramachandran, & Sejnowksi '94: “Interactive vision is exploratory
and predictive. Visual learning allows an animal to predict what will happen in the
future; behavior, such as eye movements, aids in updating and upgrading the

predictive representations.”
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Mathematical Theory of Active Sensing and Learning

): possible measurements/experiments

data
collection

X': models/hypotheses

. . y1(x),y2(x),...: information/data
under consideration
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Adaptive vs. Non-Adaptive: Three Situations

The “bare minimum” number of measurements depends on intrinsic complexity
of X'. In practice, the minimum number depends on jointly on X and ).
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Adaptive vs. Non-Adaptive: Three Situations

The “bare minimum” number of measurements depends on intrinsic complexity
of X'. In practice, the minimum number depends on jointly on X and ).

Equal and Bad:
adaptive and non-adaptive
equally (non)-informative and
require many more
measurements then the
bare minimum

Equal and Good:
adaptive and non-adaptive
equally informative and require
about the bare minimum of
measurements

Good and Bad:
adaptive requires bare
minimum number of
measurments, non-adaptive
requires many more
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The Bare Minimum

Assume X is equipped with metric d and is compact.

X\

/
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The Bare Minimum

Assume X is equipped with metric d and is compact.

Let X, C X be a finite subset of size N, having the property
that any element of X is within distance € of an element in X

Metric Entropy: Need at least log N, bits of
information to approximately determine any x € X

Ex. suppose X = [0,1]%. we can take a uniform grid of points
spaced € apart as our cover. Then N, = (£)% and log N. = dlog(1/e).
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Binary Search X = {subsets [0, +],[0, &],...,[0,1] }

Y = “membership queries”
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Binary Search X = {subsets [0, %],[0, 2],...,[0,1] }

Y = “membership queries”

binary search: sequentially select queries
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Binary Search X = {subsets [0, +],[0, &],...,[0,1] }

Y = “membership queries”

binary search: sequentially select queries

+1 + +.
-1 ___________1
0 X
1/3 =0101... requires log, N queries
y linear search: query points uniformly (possibly random)
T ——————
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Y = “membership queries”

binary search: sequentially select queries

+1 + +.
- 1_ _I - —E_A _A_A_A_A_A_A_A_A_A_l‘1
0 X
1/3 =0101... requires log, N queries
Y+ + + 4+ + + linear search: query points uniformly (possibly random)
T ——————
1. i3 S $F ¢ 23 :SoC0
O 1 X

Friday, May 20, 2011



Binary Search X = {subsets [0, %],[0, 2],...,[0,1] }

Y = “membership queries”

binary search: sequentially select queries

+1 + +.
- 1_ _I - —E_A _A_A_A_A_A_A_A_A_A_l‘1
0 X
1/3 =0101... requires log, N queries
Y+ + + 4+ + + linear search: query points uniformly (possibly random)
T ——————
i ¥ & k% 4 k4 & k4 4
O 1 X

requires O(N) queries
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Outline of Tutorial

Part |: Introduction (Rob), 9:00-9:30
Part 2: Active Sensing (Jarvis), 9:30-10:30
Break, 10:30-10:45

Part 3:Active Learning (Rob), 10:45-11:45

Part 4: Conclusions and Future Directions, | 1:45-12
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