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Abstract
We consider ensembles of particles or systems, all obeying
the same dynamics or, equivalently, dynamical systems with
uncertain states. In either case, we discuss i) the problem
of optimally steering ensembles to a desired probability
density, and ii) the problem of maintaining an ensemble at a
specified admissible stationary distribution. In the context of
linear dynamics and Gaussian distributions, our topic relates
classical LQR and LQG theory and covariance control, while
more generally it pertains to the controllability and optimal
control of the Fokker-Planck and Liouville equations.

Introduction
The paradigm that we discuss encompasses various general-
ization of classical linear quadratic regulator (LQR) and the
linear quadratic Gaussian regulator (LQG). More specifically,
we focus on optimal control problems, with and without
stochastic excitation, that require steering an ensemble of
dynamical systems, obeying identical dynamics, between
two end-points in time with control input of minimum
averaged energy. Typically, besides knowledge of the system
dynamics, the data for the problem consist of the starting
and terminal distribution of the ensemble. Equivalently, the
problem can also be conceived as that of steering a dynamical
with state uncertainty between the two end-points in time.
Another variation of the problem is to maintain the ensemble
at a pre-specified admissible distribution with control input
of minimum power. The presentation will be largely based
on our recent work in [1], [2], [3], [4], [5], [6], [7], [8]
and will highlight the theme and key contributions in these
publications.

It is envisioned that the framework in this work will
impact problems of steering particle beams via a time-
varying potential, swarms (UAV’s, large collection of micro-
satellites, etc.), as well as the modeling of the flow and
collective motion of particles, clouds, insects, birds, etc.
between end-point distributions. It is worth underscoring
that, as eloquently stated by R. Brockett in [9, page 23], from
a controls perspective “important limitations standing in the
way of the wider use of optimal control can be circumvented
by explicitly acknowledging that in most situations the
apparatus implementing the control policy will judged on its
ability to cope with a distribution of initial states, rather than
a single state.” The aim of the research in the publications

Y. Chen and T.T. Georgiou are with the Department of Electrical and
Computer Engineering, University of Minnesota, Minneapolis, Minnesota
MN 55455, USA; email: {chen2468,tryphon}@umn.edu

M. Pavon is with the Dipartimento di Matematica, Università di Padova,
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cited above has been to address relevant questions in this
suggested overarching program.

A. Linear-dynamics & Gaussian ensembles
Consider the controlled evolution

dxu(t) = Axu(t)dt+Bu(t)dt+B1dw(t),

xu(0) = x0 a.s. (1)

Here A, B, B1 take values in Rn×n, Rn×m, Rn×p, respec-
tively, x0 is an n-dimensional, zero-mean Gaussian vector
with covariance Σ0 which is independent of the standard
p-dimensional Wiener process {w(t) | 0 ≤ t ≤ T}, Σ0

is positive definite, and T ≤ ∞ represents the end point
of a time interval of interest. The standard paradigm of
Linear Quadratic theory is to specify a target value for the
state vector, e.g., the origin for simplicity, and impose a
quadratic penalty on possible deviations. In contrast, the
question that we are interested in this context is to determine
the admissible values of the state covariance Σ(T ) that
can be obtained through feedback control and to specify
corresponding control inputs of minimal (quadratic) effort.
More generally, we are interested in specifying the terminal
distribution.

– Control of state-statistics over a finite time-window:
Assuming the control input in state-feedback form,

u(x, t) = −K(t)x, (2)

state statistics remain Gaussian and the state covariance
Σ(t) := E{x(t)x(t)′} of (1) satisfies the Lyapunov differ-
ential equation

Σ̇(t) = (A−BK(t))Σ(t)+Σ(t)(A−BK(t))′+B1B
′
1 (3)

with Σ(0) = Σ0. Regardless of the choice of K(·), it is easy
to see that (3) specifies dynamics that leave invariant the
cone of positive semi-definite symmetric matrices. Thus, our
interest is in our ability to specify Σ(T ) = ΣT via a suitable
choice of K(·), which therefore necessitates that the solution
Σ(t) remains in the positive cone for all t ∈ [0, T ].

Letting U(t) := −Σ(t)K(t)′ and Q := B1B
′
1, we are

led to study controllability of the matrix-valued differential
Lyapunov system

Σ̇(t) = AΣ(t) + Σ(t)A′ +BU(t)′ + U(t)B′ +Q. (4)

Interestingly, (A,B) is a controllable pair if and only if we
can select U(·) in (4) to steer Σ(·) between given positive
definite end points Σ0 and ΣT while remaining within the
non-negative cone [2, Theorem 3], cf. [9], [10]. The theorem
in [2] requires time-invariant dynamics, though we believe
that the a corresponding statement holds for time-varying
systems as well.



We now return to the question of optimality with regard
to averaged input energy, namely

J(u) := E

{∫ T

0

u(t)′u(t) dt

}
<∞, (5)

Resorting to standard LQG arguments it can be shown
that optimal solutions are characterized by the following
nonlinearly coupled Riccati equations

Π̇ = −A′Π−ΠA+ ΠBB′Π (6a)
Ḣ = −A′H−HA−HBB′H (6b)

+ (Π + H) (BB′ −B1B
′
1) (Π + H)

Σ−10 = Π(0) + H(0) (6c)
Σ−1T = Π(T ) + H(T ) (6d)

where H(t) := Σ(t)−1 − Π(t). Indeed, assuming that
{(Π(t),H(t)) | 0 ≤ t ≤ T} satisfy (6a-6d), the feedback
control law

u(x, t) = −K(t)x. (7)

with K(t) = B(t)′Π(t) can be shown to be an optimal
solution to the problem and that it is unique.

For the special case where B(t) ≡ B1(t), that is, the
case where the control inputs and the noise enter the system
through identical channels, the nonlinear system of equations
(6) can be solved in closed form and is detailed in [1]. For the
case where control and noise excitation channels differ, [2]
provides a numerical approach for constructing suboptimal
controls.

– Admissible stationary state-distributions:

A stationary counterpart of the above problem is to de-
termine, for A,B,B1 independent of time and (A,B)
controllable, all admissible stationary state covariances Σ
corresponding to choices of state-feedback control u = −Kx
that ensure A−BK is a Hurwitz matrix.

Interestingly, while any Gaussian distribution can be
reached in finite time with a suitable control law, not all
non-negative matrices Σ are admissible as covariances of
stationary state Gaussian distributions for the given system
and, accordingly, a suitable state feedback. For that to be
the case, Σ, A,B,B1 must satisfy the following algebraic
condition:

rank

[
AΣ + ΣA′ +B1B

′
1 B

B 0

]
= rank

[
0 B
B 0

]
. (8)

The precise statement is given in [2, Section III.B] and, once
again, a computational approach to obtain suboptimal control
laws is provided.

– An academic example

In order to illustrate the problem being discussed, we con-
sider the following model for particles experiencing random
displacement (i.e., the noise term dw has a direct impact on
their position):

dx(t) = v(t)dt+ dw(t) (9a)
dv(t) = u(t)dt. (9b)

Fig. 1: State trajectories of system in (9)

Here, u(t) is the control input (force) at our disposal, x(t)
represents position and v(t) velocity (integral of acceleration
due to input forcing), while w(t) represents random displace-
ment due to impulsive accelerations. Alternatively,

∫ t
v(τ)dτ

may represent actual position while x(t) may represent noisy
measurement of position.

The purpose of the example is to highlight a case where
the control is handicapped compared to the effect of noise.
Indeed, the displacement w(t) directly affects x(t) while the
control effort u(t) needs to be integrated before it mitigates
the effect of w(t) on the position x(t) of the particles. We
choose

Σ1 =

[
1 −1/2
−1/2 1/2

]
(10)

as a candidate stationary state-covariance, which, as it turns
out, can be maintained with state-feeback gain K = [1, 1].
Next, we steer the spread of the particles from an initial
Gaussian distribution with Σ0 = 2I at t = 0 to the terminal
marginal Σ1 at t = 1, and from there on, since Σ1 is
an admissible stationary state-covariance, we maintain the
distribution as indicated. Figure 1 depicts typical sample
paths in phase space as functions of time.

B. Output feedback
It turns out that when the state is not directly accessible and
the control is a function of the observation process

dy(t) = Cx(t)dt+Ddv(t), (11)

the achievable state covariances are constrained by the op-
timal estimation error-covariance P (·) provided by Kalman
filter:

dx̂(t) = Ax̂(t)dt+Bu(t)dt

+P (t)C ′(DD′)−1(dy − Cx̂dt), x̂(0) = 0,

Ṗ (t) = AP (t) + P (t)A′ +B1B
′
1

−P (t)C ′(DD′)−1CP (t), P (0) = Σ0.

Indeed, it is shown in [5] that ΣT ≥ P (T ) is a necessary
condition for a terminal state covariance to be “reachable”



through steering of the ensemble dynamics. It is also shown
that strict inequality is ΣT > P (T ) is in fact sufficient.

Similarly, it is a consequence of the optimality of
the Kalman filter that if P is the optimal stationary error
covariance, which of course satisfies the Algebraic Riccati
Equation (ARE)

AP + PA′ +B1B
′
1 − PC ′(DD′)−1CP = 0,

any stationary covariance Σ of the state vector must satisfy
Σ ≥ P. It is also shown in [5] that the algebraic condition
(8) characterizing stationary state covariances, together with
the positivity constraint Σ > P , are in effect sufficient in
an approximate sense. More specifically, that in this case it
is always possible to maintain the ensemble at a stationary
condition with covariance equal or arbitrarily close to Σ.

C. Steering diffusion processes
A considerably more general scenario is being discussed
in [3] where ensembles of particles/systems were sought to
obey

dx(t) = f(x(t), t)dt+ σ(x(t), t)dw(t), (12)

while, at the same time, are allowed to be absorbed or created
by the medium in which they travel at some rate [11, p 272].
Their total mass/density ρ(x, t), x ∈ Rn, evolves according
to the transport-diffusion equation

∂ρ

∂t
+∇ · (f(x, t)ρ) + V (x, t)ρ =

1

2

n∑
i,j=1

∂2(aij(x, t)ρ)

∂xi∂xj
,

with ρ(x, 0) = ρ0(x). The presence of V (x, t) allows
precisely for the possibility of loss or gain of mass, so that
the integral of ρ(x, t) over Rn is not necessarily constant.
The formulation in [3] aims at steering the ensemble through
a control drift term σ(x(t), t)u(x(t), t)dt to a final target dis-
tribution. Necessary conditions are obtained and the special
case of linear dynamics is dealt in detail.

D. Zero-noise limit and optimal mass transport
It is of interest to study the evolution of an ensemble that fol-
lows a deterministic law, between end-point marginals, and
determine an optimal control law. E.g., for linear dynamics,
to determine

inf
u

E
∫ T

0

1

2
‖u(t, x)‖2dt, (13a)

ẋ(t) = Ax(t) +Bu(t, x) (13b)
x(0) ∼ ρ0, x(T ) ∼ ρT . (13c)

The formulation has been studied as the zero-noise limit of
the diffusion process

dx(t) = Ax(t)dt+Bu(t)dt+
√
εBdw(t), (14)

and connections to optimal mass transport drawn in [12],
[13], [7]. This approach allows obtaining approximate so-
lutions to general optimal mass transport problems, via
solutions to suitable relaxations that in fact, allow for fast
and efficient computation [14], [6].
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