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Abstract

The context of this work is spectral analysis of multivariable
times-series as this may arise in processing signals originat-
ing in antenna and sensor arrays. The salient feature of these
time signals is that they contain information about moving
scatterers/targets which may not be known a priori. That is,
neither the number nor the physical properties of scatterers
may be known in advance, a fact which necessitates that
analysis needs to be model free. Thus, what is important
is to attain reliable and high resolution spectral estimates
based on short-time observations due to the expected motion
of objects within the scattering field.

Traditional spectral analysis methods such as spectro-
grams and maximum entropy, Capon, etc. techniques, are of-
ten severely constrained by the non-stationary nature of time-
series, which necessitates very short observation records.
Thus, our goal has been to develop natural regularization
techniques that allow smooth interpolation of spectrograms
in time, thereby improving resolution and robustness. Since
power spectra are matrix-valued measure, we sought to
develop geometric tools that are based on weak® continuous
metrics, such as Wasserstein metrics, only for matrix-valued
functions. The present work is largely based on [1] where
such a theory was laid out.

Introduction

Traditional techniques in sensor arrays, detection, and es-
timation rely on periodogram-based methods, maximum-
entropy techniques, or beamforming. While these are ubig-
uitous, they are severely limited when dealing with non-
stationary time-series. Assimilation of data from disparate
sources and dealing with systemic biases are quite challeng-
ing on their own, and they are even more so, when dealing
with non-stationary time-series; the non-stationary nature of
the signal content necessitates that spectral analysis is based
on short observation records.

Our approach has been to seek natural ways to quantify
distance between spectra, and to develop geometric tools
based on that. More specifically, power spectra and prob-
ability distributions can be viewed as points on a suitable
manifold. Then, slowly time-varying power spectra can be
viewed as flows (geodesics) on this manifold, and interpo-
lation/extrapolation of power spectral estimates as well as
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uncertainty quantification can all be carried out within the
associated metric topology. A desirable feature of metrics
that would make them suitable for applications is weakx
continuity; this is the property that small changes in a
distribution affects measurements in a continuous manner.
Interesting, Lo, L, Kullback-Leibler divergence and several
many other popular notions of distance fail in this regard. To
this end we sought to generalize the notion of Wasserstein
distance, which is natural in this respect for scalar distribu-
tions.

Our interest in matrix valued measures stems from
the fact that those represent power spectra of vector-valued
time-series. In turn, vector-valued time-series may represent
measurements of different modalities across a distributed
array of sensors that reflect frequency/color, polarization,
spatial characteristics, and other attributes that are thought
to characterize target properties. Thus, we are interested in
a “transport-based geometry” for such matrix-valued dis-
tributions as well as a “transport theory” that is flexible
with regard to the preservation of mass/power across time.
Advances on this front make it possible to tackle in a natural
way smoothing and interpolation between inconsistent data
sets or time-varying characteristics of a series as well as
the computation of optical flow for object tracking in series
of frames. Besides the relevance of geodesics as a tool for
modeling, tracking, morphing, data assimilation/association,
etc., for power spectra and images alike, we expect to
advance concepts of resolution and the quantification of
uncertainty in rigorous terms.

Background

Our topic, to define and explore Wasserstein-like metrics and
the corresponding geometry for matrix-valued densities or
measures, is an attempt to build on the classical subject of
optimal mass transport (OMT). This subject has in recent
years witnessed a fast developing phase with many applica-
tions in physics, probability theory, economics, etc. Standard
references are [2], [3], [4] and some of the most significant
recent developments that in particular have inspired our work
are traced to [5], [6], [7].

Example

We wish to exemplify the spirit of our approach by a simple
example, which would be quite challenging (unless, one
uses hindsight and tailors a parametric method to the task).
The task is to track slowly time-varying sinusoidal signals
in noise that represent the echo from a pair of targets,
whose position changes with regard to an antenna array at
the same time. We wish to emphasize that we seek non-
parametric techniques, and although our example with be
treated parametrically (since a model is known), that in
general would not be the case. Hence, our interest in non-
parametric techniques.
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Fig. 1: Sensors and sources — correlated time-series

Consider two sources of sound (equivalently, scatterers
in an antenna array’s field of view) as shown in Figure 1
moving relative to each other in opposite directions and,
exchanging positions in the process, relative to the pair of
stationary microphones. The emitted sounds are recorded
by each microphone in considerable amount of ambient
noise. Their respective frequencies and intensities vary due
to Doppler shift and due to the change in their relative
proximity to the two sensors. Computer simulated signals
are also shown in Figure 1. The task is to distinguish the
relative position of the two sources using frequency analysis
of the recorded time-series.

The time-series is vector-valued (having two entries =
number of sensors/channels). Thus, the power spectrum is
matrix-valued (2 x 2 in this case). Short time maximum
entropy reconstruction of the power spectrum is shown in
Figure 2. Our convention is to show in the (1,1)-subplot
the spectrogram of the first sensor, the (2,2)-subplot that of
the second sensor, in the (1,2)-subplot the absolute value
of the cross spectrum and in the (2,1)-subplot its phase.
Next, in Figure 3 we display, following the same convention,
the regularized spectrogram where we used optimal mass
transport geometry and interpolated the time-distributions in
Figure 2 by an OMT geodesic.

At each frequency and time, either plot represents the
(color-coded) intensity of a Hermitian matrix, namely, the
value of the power spectral matrix density. (The (1,1) and
(2,2) entries are real, while the (1,2) and (2,1) are complex
conjugate of each other and their real part and phase are
displayed accordingly as indicated above.) Singular value
decomposition reveals the directionality of the incoming
energy. Thus, by identifying at each point in time the
maxima of the power, we determine the corresponding
singular vectors which reflect the relative portion of power
in each sensor for the corresponding power source, thereby,
pointing to its relative position (after suitable calibration).
Figures 4 and 5 show the paths that the corresponding
singular vectors traced over time, based on the maximum
entropy spectrogram of Figure 2 and that of the OMT
geodesic reconstruction in Figure 3, respectively. What
is especially revealing is the dramatic improvement in
resolution and consistency afforded by the use of OMT
geodesics. To some degree, this is to be expected since the
OMT geometry induces a natural (weakly continuous) metric
where the approximation takes place and, automatically, the
optimal path determined.

Fig. 3: OMT geodesic regularized matrix-spectrogram

In more detail, the schematics in Figures 6 and 7
explain how the paths of singular vectors corresponding to
maxima of spectral power were obtained from the matricial
spectrograms. Frequencies of maximal power are identified
by computing maxima of the trace of the matricial power
spectrum. We select the two frequencies where the power has
local maxima and compute the corresponding singular vector
of the (2 x 2 matrix) value of the power spectrum f. These are
shown in Figures 6 and 7 by red and green color, respectively.
Note that at each of the two frequencies there are two
singular vectors (since f is 2 x 2). The one corresponding
to the largest singular value is drawn in continuous line and
the other in dashed, and scaled to reflect the size of the
corresponding singular value. A “cleaner” view of the path
that the “top” singular vectors traverse is given in Figures 4
and 5, respectively, as noted earlier.

Fig. 4: Path of singular vectors of main harmonics (ME
spectrogram), i.e., relative power in each sensor.

Fig. 5: Path of singular vectors of main harmonics (OMT
spectrogram), i.e., relative power in each sensor.
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Fig. 6: Singular vectors corresponding to peak power vs. time
based on ME-spectrogram
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Fig. 7: Singular vectors corresponding to peak power vs. time
based on OMT-spectrogram

We provide additional intuition on how mass
corresponds between the two end-point marginals in
an optimal mass transport framework by considering the
matrix-valued power spectra as in Figure 8. The two end-
point spectra are also shown in Figure 9. These represent
spectra and cross spectra for measurement in two channels
and, therefore, the power spectral density is a 2 X 2 matrix-
valued function. The geodesic in Figure 8 produces a drift
of the power between the two channels. Non-parametric
techniques of interpolation typically suffer from a “push-
pop” phenomenon instead of shifting gracefully the power
between channels. It is instructive to note how the frequency
of the dominant harmonic shifts from one channel to the
other in Figure 8.

Rudiments of matrix-valued Wasserstein

The scalar OMT theory has been adapted in [8] to model
slowly time-varying changes in power spectra of time series
and has been used for statistical estimation, data assimila-
tion, and morphing. While in scalar time-series, the power
content may drift over time across frequencies (e.g., when
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Fig. 8: Geodesic path “morphing” between two multivariable
power spetra.
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Fig. 9: End-point power spectra.

considering Doppler effects, echolocation of a moving target,
etc.), in vector-valued time series the power spectral content
may shift principle directions as well. In fact, such a rotation
of the power-spectral content is typical in general antenna-
arrays when a scatterer changes position with respect to
array elements. Therefore, a concept of transport between
matrix-valued densities requires that we take into account
both, the cost of shifting power across frequencies as well
as the cost of rotating the corresponding principle axes.
We now briefly discuss such a “non-commutative” Monge-
Kantorovich transportation and a corresponding metric.

Consider two probability density functions po and pq
supported on R and let M(uo, 11) be the set of probability
measures m on R x R with po and pq as marginals, i.e.

/ m(z,y)dy = pio(), / m(z,y)dr = pi(y), m > 0.
R R

Probability densities are thought of as distributions of mass
and the optimal mass transport problem is to determine

Te(po, = inf
(0r 1) 2= R

/ c(z,y)ym(z,y) dedy, (1)
RxR

where ¢(z,y) is the cost of transporting one unit of mass
from location x to y. In particular, when c(z,y) = |z —
y|?, the optimal cost gives rise to the 2-Wasserstein metric

Wa (o, p1) = +/T2(pto, p1) where

/ & — yPm(z, y) dz dy.
RxR
2)

75(#07#1) = mE/\/ilr(l;fo 1)



Consider now the family of matrix-valued functions

F = {u() | for z € R, p(x)" = p(z) € C™*",

pla) 2 0,

p(x)dx) = 1}.

R

These are Hermitian, positive semi-definite matrix-valued
functions on R normalized so that their trace integrates to
1. They will be referred to as matrix-valued densities and
can be thought of as a generalization of probability density
functions. The scalar-valued tr(u) represents mass at loca-
tion z. Thus, all elements in F have the same total mass over
the support. In order to define a suitable generalization of
Kantorovich formulation of OMT to matrix-valued densities
we need a “joint” measure to live in a considerably bigger
space - a tensor product which is discussed next.

Consider a n? x n? (positive definite) matrix g as an

element in £L(Ho ® H1), where L represents the space of
linear operators, and both H, and H; are, for our purposes
simply both identified with C". The partial traces try, and
tre,, or tro and try for brevity, are linear maps

try 0 L(Ho®@H1) — E(HO)
trg : L(Ho®@H1) — L(H)

Do try(p)
D e tro(p)

defined uniquely by the property that on simple products they
act as follows:

try(po @ py) = tr(py)pg and tro(pg ® py) = tr(po)py

for any py € L(Ho) and p; € L(H1). Alternatively, p €
L(Ho ® Hi) can be represented by a matrix [H’ik,ém] of
size n? x n? as it maps a basis element u; ® vy € Ho @ H1
t0 3¢ 1 Mik,em e ® V. Then, the partial trace e.g., tr1(p)
is the represented by the n x n matrix with (i, £)-th entry
>k Mk o, for 1. < i, 0 < n. Likewise the (k,m)-th entry
of tro(p) is X2, Mig im, for 1 < k,m < n. See [9] for
the significance of partial trace in the context of quantum
mechanics.

Consider now two matrix-valued density functions

Ko, by € F. We seek
m(z,y) a n? x n? positive semi-definite matrix, (3a)

for (x,y) in the specified support (e.g., R x R, or [0, 27]?),
such that

m()(fE, y) = trl(m(x,y))a ml(l'vy) = tfo(m(l',y)),
(3b)

[ mate sy = pola). [ matepde =), Go
and we denote
M (pg, pq) := {m | (3a) — (3¢c) are satisﬁed}.

A suitable transportation cost can be defined as a functional
on a joint density in M (g, t41), just as in the scalar case.
However, in contrast to the scalar case, besides penalizing
transport of mass between two points = and y, we need to

impose a penalty on a corresponding rotation as well (see
[1] for more discussion).

We first consider a scalar “mass transference” cost
min / c(z,y) tr(m(x,y)) dedy. 4
meM (po,1) JRXR
This coincides with the optimal transportation cost be-
tween scalar-valued densities tr(p,) and tr(p,). Thus, if
tr(po(x)) = tr(py(z)), the optimal value of (4) is zero
since it reduces to optimal transport between identical scalar
marginals. Thus, (4) fails to quantify mismatch of direction-
ality between the given matrix-valued marginals. A term that
penalizes directionality missmatch is introduced next.

Assume that the marginals are positive definite point-
wise. Define the normalized partial traces

tro(m(z,y)) := tro(m(z,y))/ tr(m(z, y))
try (m(z,y)) := tri(m(z,y))/ tr(m(z,y)).

Their difference captures the directional mismatch between
the two partial traces, and then

tr([[(tzo — try)m(z, ) [Fm(z, y))

quantifies the rotational mismatch, and thus we arrive at the
cost functional

quaw+Mm%—wnmwwH®muw07

with A > 0, to weigh in the relative significance of the
linear and rotational penalties, and define as our Wasserstein
matricial distance,

win [ (e Al - mmim) drdy
meM (po,p1) JRxR
with ¢(z,y) = (x — y)?, which in fact turns out to be a
convex optimization problem. Details are provided in [1].
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