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to any tangent hyperplane toU(x) at V2(x) = B is bounded away
from 0 and1.

To conclude, we have established the following finite algorithm for
computing optimal strategies for the constrained problem.

Algorithm 3:

1. Check for the cases in Theorems 2 and 3.
2. If they do not hold, compute bounds forb using Lemma 6 and

Algorithm 2.
3. ComputeN using [4, Algorithm 3.7].
4. Find any(i; j)-lexicographic-optimal stationary strategy� and

computeVk(y; �); k = 1; 2:
5. Use a finite horizon algorithm to compute an optimal strategy.

Remark: Consider the following two-dimensional constrained
optimization problem:

maximize
2

k=1

akVk(x; �)

subject to
2

k=1

ckVk(x; �) � B:

Then Theorems 2–4 continue to hold, except thatN(b) is not
monotone. The argument of Theorem 5 continues to hold as well.
However, the computation of a bound onN (or, equivalently, onb)
is more complicated.

Remark: Some of the ideas herein extend to the higher dimen-
sional problem

maximize V1(x; �)

subject to Vk(x; �) � Bk; k = 2; . . . ; K

where eachVk is a standard discounted criterion with discount factor
�k. For example, if

max
�

Vk(x; �) = Bk

for somek � 2, then we can restrict to actions which are conserving
for Vk, and consider the problem withK � 2 constraints. Due to the
higher dimentionality, however, the geometry is less transparent and
there are more specific cases to deal with.
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The Interpolation Problem with a Degree Constraint

Tryphon T. Georgiou

Abstract—In [6]–[8] it was shown that there is a correspondence
betweennonnegativenonnegativenonnegative (hermitian) trigonometric polynomials of degree
�n and solutions to the standard Nevanlinna–Pick–Carath́eodory inter-
polation problem with n+ 1 constraints, which are rational and also of
degree�n. It was conjectured that the correspondence under suitable
normalization is bijective and thereby, that it results in a complete
parametrization of rational solutions of degree�n. The conjecture was
proven in an insightful work by Byrnes etal:etal:etal: [1], along with a detailed
study of this parametrization. However, the result in [1] was shown under
a slightly restrictive assumption that the trigonometric polynomials are
positivepositivepositive and accordingly, the corresponding solutions havepositivepositivepositive real
part. The purpose of the present note is to extend the result to the case
of nonnegativenonnegativenonnegative trigonometric polynomials as well. We present the argu-
ments in the context of the general Nevanlinna–Pick–Caratheodory–Fejér
interpolation.

NOTATION

C Complex numbers.
D Open unit discD := open unit disc= fz 2 C :

jzj < 1g:
X c; X o; @X Closure, open interior, and boundary of a setX resp.
H(D) Set of functions holomorphic inD.
C Carath́eodory classff(z) 2 H(D) :<ff(z)g� 0

for all z 2 Dg.
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S Schur class ff(z) 2 H(D) : kf(z)k �
1 for all z 2 Dg.

z� Complex conjugate ofz 2 C.
L2 Space of squarely integrable functions on@D.
H2 Hardy space ofL2-functions that have analytic

continuation inD.

If a(z) = a0+a1z+� � � 2 H(D), thena(z)� := a�0+a�1z
�1+� � � :

I. INTRODUCTION AND RESULTS

Consider two sets ofn + 1 points inD andC respectively,

Z := fzk : k = 0; 1; . . . ; ng and W := fwk : k = 0; 1; . . . ; ng:

The standard Nevanlinna–Pick–Carathéodory–Fej́er interpolation
problem is stated as follows.

ProblemNP(Z;W): Determine whether a functionf(z) 2 C
exists that satisfies the interpolation conditions

f(zk) = wk; for k = 0; 1; . . . ; n: (1)

If such a function exists, characterize all such solutions.
If points in Z are not distinct, e.g.,zk = z1 (k = 1; . . . ; j), then

the interpolation conditions involve the derivatives off(z) and are
rephrased by requiring that 1

(k�1)!f
(k�1)(z1) = wk (k = 1; . . . ; j)

accordingly, wheref (k�1)(z) denotes the(k � 1)th derivative. In
particular, if all interpolating pointszk (k = 1; . . . ; n) coincide,
then it is the value off(z) along with its firstn derivatives that
are specified at that point (usually the origin). This is known as the
Carath́eodory problem.

In general, it is known that a solution forNP(Z;W) exists if and
only if an associatedPick matrix is positive semidefinite. In case all
zk ’s are distinct the Pick matrix is given by

P =
wk + w�`
1� zkz�`

n

k;`=0

while, in the context of the Carathéodory problem

P =

w0 + w�0 w�1 � � � w�n
w1 w0 + w�0 � � � w�n�1

...
...

...
wn wn�1 � � � w0 + w�0

which in this case is aToeplitz matrix. In general,P is the real part
of the “compressed” operator�Kf0(z)jK; see Remark 1 below. If
the Pick matrix is singular, the solution is unique, rational and of
degree�n, while if P > 0 all solutions can be described via a linear
fraction transformation on arbitrary elements inC. An exposition
of the classical mathematical theory is presented in [11], and an
independent approach in the context of passive circuits in [12].
NP(Z;W) and related interpolation problems (associated with

the names of O. Toeplitz, C. Carathéodory, L. Fej́er, I. Schur, N.
I. Akhiezer, M. G. Krěın, V. P. Potapov, and others) have been
studied since the beginning of the century, and have spawned a
body of beautiful mathematics culminating in some deep results
in functional analysis (by B. Sz.-Nagy, C. Foia¸s, D. Sarason, J.
Ball, J. W. Helton, and others). Moreover, such problems have
found applications in a variety of engineering fields (robust control,
H1-control, approximation, circuit theory, signal processing). In
engineering applications it is often desirable for the interpolating
function f(z) to be rational and of small degree, cf. [12]. (Here,
the degree of a rational functionis defined to be the largest of the
degrees of denominator and numerator since the functions are taken to
be analytic inside the unit disc.) The degree of the transfer function
relates to the dimension of a controller, a filter, or a model of a

stochastic process, depending on the context, cf. [12], [8], [1] and
the references therein.

Motivated by the need to characterize solutions of a given degree,
it was recognized in [6] that the set of solutions of degree�n may
have a nice structure. Thus,NP(Z;W) was looked at as a problem
of solving a set of nonlinear equations allowing only for degree�n
interpolants. The approach was topological making use of degree
theory. The main result in [7] (cf. [6], [8]), given below, describes
rational solutions of degree�n.

Theorem 1 [7, Theorem 5.3]: ConsiderNP(Z;W) and assume
thatP > 0. Given any polynomial�(z) 6� 0 of degree�n, having
all its roots in fz : jzj � 1g, there exists a pair of polynomials
(�(z); �(z)) of degree�n such thatf(z) = �(z)=�(z) is in C;
f(z) satisfies the interpolation conditions (1), and moreover

�(z)�(z)�+ �(z)�(z)� = �2�(z)�(z)� (2)

for some� > 0.
The proof in [7] was presented for the case whereZ is a set of

discrete points. However, with the obvious notational adjustments the
proof carries over to the general case where some of the elements
in Z may coincide, and will not be repeated here. In particular, the
result for the Carath´eodory problem where all points inZ coincide
was documented in [8, Theorem 3.1], and for matrix interpolation in
[6, Theorem 9.4].

Thus, to recap, the theorem states that for any (hermitian)nonnega-
tive trigonometric polynomiald(z; z�1) = �(z)�(z)� of degree�n,
there is a corresponding rational interpolating functionf(z) 2 C
also of degree�n. Conversely, it is obvious that to any rational
interpolating functionf(z) = �(z)=�(z) 2 C we can associate a
nonnegative trigonometric polynomiald(z; z�1) = �(z)�(z)� +
�(z)�(z)�, or equivalently, the “stable” spectral factor�(z), of
similar degree.

In general, the correspondence�(z) ! f(z) may not be one-to-
one due to possible cancellations between� and�; e.g., forn = 1;
w0 = w1 = 1 and arbitrary “stable”�(z) of degree�1 we get
�(z) = �(z) = �(z) and f(z) � 1. In fact, such a cancellation
between�(z) and�(z) occurs precisely when there exists a solution
of degree strictly less thann. Interestingly, the correspondence
between�(z) (suitably normalized, e.g., by�(0) = 1) and the “graph
symbol” (�(z); �(z)) of f(z) is actually one-to-one (provided�(z)
and �(z) are chosen to be “stable”). This fact was conjectured in
[6] and remained open until the recent work by Byrnes, Lindquist,
Gusev, and Matveev [1]. In [1, Corollary 2.3] the authors proved the
conjecture (in the context of the Carathéodory/covariance realization
problem) under the slightly restrictive assumption that�(z) has no
roots on fz : jzj = 1g, or equivalently, under the assumption
that d(z; z�1) is a positive trigonometric polynomial forz = ei�

(� 2 [��; �]). It should be noted that [1] focused on other important
questions about the map, and in particular, showed that it is an
analytic diffeomorphism (on polynomials� with roots infz : jzj >
1g). In subsequent work, Byrnes, Landau, and Lindquist [3], have
given an alternative proof of the correspondence being bijective
under the same assumption thatd(z; z�1) is a positive trigonometric
polynomial. The case whered(z; z�1) is only nonnegative was left
as an open problem (see [3, Sec. 5]).

The purpose of the present note is to show that the correspondence
is bijective even for the case whered(z; z�1) is nonnegative (or,
equivalently, when�(z) is allowed to have roots on the boundary
fz : jzj = 1g). The first part of the argument given below proves
that any two pairs(�j(z); �j(z)) (j = 1; 2) satisfying the conditions
of Theorem 1, with�j(z) devoid of roots on the unit circle, must
be identical. The particular argument is an adaptation of a similar
argument in [3] (cf. [1, Lemma 4.5]) given in the context of the
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Carath́eodory problem. It is used here because it easily generalizes
to the case of interpolation with complex values—a step which is
necessary for the second part of the proof. The second part makes
use of a bijective transformation of a pair(�j(z); �j(z)) (possibly
having roots on the boundary), which preserves the corresponding
�(z), avoids the possibility of poles on the boundary, and leads to
interpolating values for the transformed pair which depend only on
the initial data. Then, invoking the first part of the argument, any two
such functionsfj = �j=�j must be identical. The precise statement
is given below as Theorem 2 (cf. [1, Corollary 2.3]).

Theorem 2: For any polynomial�(z) 6� 0, normalized by�(0) =
1, with degree�n and roots infz : jzj � 1g, there is a unique pair
of polynomials(�(z); �(z)) such that�(z) + �(z) has all its roots
in jzj � 1, and�(z); �(z) satisfy the conditions of Theorem 1; that
is, they have degree�n, the functionf(z) = �(z)=�(z) is in C and
satisfies the interpolation conditions (1), and

�(z)�(z)� + �(z)�(z)� = �2�(z)�(z)� (3)

for some� > 0. Furthermore, any root of�(z) + �(z) on jzj = 1
is common to all three polynomials�(z); �(z) and�(z), in which
casef(z) = �(z)=�(z) is an interpolating function of degree< n.

It should be noted that individually,� and/or�, may have distinct
roots on @D. Hence, �(z)=�(z) is in C, though not necessar-
ily a strictly positive-real function. The interest for extending the
parametrization toC-functions stems from the fact that it is precisely
C-membership which characterizes impedance of passive systems (see
[12]), power spectra (see [8]), etc. Before we proceed with the proof,
we introduce notation and key relevant facts. An alternative proof,
which applies to the special case where�(z) has no root on@D is
presented in [5] following [4].

II. THE COINVARIANT SUBSPACEK AND LAGRANGE INTERPOLATION

Let K = H2 	 B(z)H2, whereB(z) is the Blaschke product

n

k=0

z � zk
1� z�kz

�
jzkj

zk

and jz j
z

is replaced by1 when zk = 0. Clearly,K is an (n + 1)-
dimensional space. In case all thezk ’s are distinct,K admits a
basisB = fgk(z); k = 0; 1; . . . ; ng such that for any function
f(z) 2 H(D) which is continuous on the boundary

hf(z); gk(z)i :=
1

2�

�

��

f(ei�)gk(e
i�)� d�

= f(zk):

(Here,h�; �i denotes the standard inner product inL2(@D).) In case
any of thezk ’s coincide, e.g., ifzk = zk+1 = � � � = zk+`, thenK
admits a basis such thathf(z); gk+m(z)i = f (m)(zk) for m = 0;
1; . . . ; `� 1, wheref (m)(z) denotes themth derivative off(z). For
instance, in the two extreme cases where (a) allzk ’s are distinct or,
(b) all zk ’s coincide, we have

B = gk(z) =
1

1� z�kz
; k = 0; 1; . . . ; n

and

B = gk(z) =
zk

k!(1� z�0z)
k+1

; k = 0; 1; . . . ; n

respectively. (The spaceK is referred to ascoinvariant because it
is invariant under the adjoint of the natural shift operatorz, a fact
which is not explicitly used herein.)

Any elementq(z) 2 K is simply a rational functionq(z) =
�(z)=r(z) where�(z) is a polynomial of degree�n and

r(z) :=

n

k=0

(1� z�kz):

Below, we choose to represent any rational functionf(z) of degree
�n as a fraction of two elementsp; q 2 K, i.e.,

f(z) =
p(z)

q(z)
; with p(z) =

�(z)

r(z)
; q(z) =

�(z)

r(z)
2 K

where�(z); �(z) denote suitable polynomials of degree�n.
Now, let �K denote the orthogonal projection ontoK, and let

f0(z) be a polynomial solution to the Lagrange interpolation problem
with data (Z;W). Thus f0(z) is analytic on the whole plane. For
any q(z) 2 K devoid of roots inD, define

p(z) = Tq(z) := �Kf0(z)q(z):

It turns out thatf(z) = p(z)=q(z) satisfies the interpolation condi-
tions ([7, Lemma 6.1]) since

p(zk) = hp(z); gk(z)i

= h�Kf0(z)q(z); gk(z)i

= hf0(z)q(z); gk(z)i = f0(zk)q(zk):

The same is true in case of derivative interpolation, e.g., if
hf(z); gk+1(z)i = f (1)(zk) thenp(1)(zk) = hp(z); gk+1(z)i = � � �

= f
(1)
0 (zk)q(zk) + f0(zk)q

(1)(zk) from which, using p(zk) =

f0(zk)q(zk), we can show thatf (1)0 (zk) = (p(z)=q(z))(1)jz . Cases
with higher multiplicity proceed similarly.

In general, a functionf(z) = p(z)=q(z) constructed as above
is only a Lagrange interpolant since it may not have the required
analytic properties.

Remark 1: It is interesting to note ([7, Proposition 6.2], cf.
[10]) thatT depends only on the interpolation data, and not on the
particularf0(z) chosen. Moreover, the Pick matrix is precisely the
real part ofT.

III. POSITIVE-REALNESS CONDITIONS

A function f(z) 2 C is analytic inD but may have singularities
on the unit circle (e.g.,f(z) = 1�z

1+z
). However, in casef(z) 2 C

is rational, then(1 � f(z))=(1 + f(z)) is bounded by1 in D and
therefore can have no singularities (poles) on the boundary. In fact
(e.g., see [12]), a rational functionf(z) = p(z)

q(z)
, with p andq having

no common root, is inC if and only if q(z) + p(z) has no roots
in Dc and

dp;q(z; z
�1) := p(z)q(z)�+ q(z)p(z)�

=
((q+ p)(q+ p)� � (q � p)(q� p)�)

4

� 0 for z = ei�; � 2 [��; �]:

In case a rational functionf(z) = p(z)=q(z) = �(z)=�(z) 2 C
has singularities on the unit circle, it is easy to see from the fact that
�(z)�(z)� + �(z)�(z)� is a nonnegative trigonometric polynomial
factorable as�2�(z)�(z)� (� being a polynomial inz), that the roots
of �(z) on the circle are also roots of�(z). Conversely, if�(z)
has no roots on the circle, neither does�(z) and thereforef(z) is
continuous on the boundary.
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Proof of Theorem 2: The existence of a pair(�(z); �(z)) as
claimed, follows from Theorem 1. We note that the proof of Theorem
1 given in [7] (also [6], [8]) establishes that there exists such a pair
for which �(z) + �(z) has no roots injzj < 1. However, roots on
the boundary are possible. If this is the case, then from

��� + ��� =
1

2
((�+ �)(�+ �)� � (�� �)(�� �)�)

� 0 for z = ei�; � 2 [��; �]

it follows that � � � shares the same roots as� + � on jzj = 1.
Therefore these are roots of�; � and � as well. Hence, when the
common factors are cancelled between� and�; f(z) = �(z)=�(z)
is a C-function of degree strictly less thann that satisfies the
interpolation conditions. This proves the last part of the statement
of Theorem 2.

We now proceed to prove uniqueness of the pair(�(z); �(z)).
The proof has two parts. The first part deals with the case where
f(z) is continuous on the boundary. The argument we use here is
an adaptation of a similar argument in [3] given in the context of
the Carath́eodory problem (also, cf. [1, Lemma 4.5]). This argument
generalizes easily to the case of interpolation with complex values—a
step needed for the second part of the proof. In the second part of
the proof we transform pairs(�; �) in such a way so as to remove
singularities on the boundary, and then use the conclusion of first
part of the proof.

From now on we assume that

z0 = 0 and w0 = 1: (4)

This is without loss of generality since a conformal mapping can
bring z0 to the origin without altering the properties of the functions
considered, and real-scaling and addition of an imaginary number to
the dataW translates the problem into an equivalent one satisfying
(4).

Consider a rational solutionf(z) = �(z)=�(z) 2 C of degree�n
which satisfies the interpolation conditions and iscontinuouson the
boundary. In this case

hf(z); gk(z)i = f(zk) = wk

hf(z)�; gk(z)i = f(0)� = 1

hf(z)�; gk(z)�i = f(zk)
� = w�

k

hf(z); gk(z)�i = f(0) = 1

assuming that thezk ’s are distinct. If some of thezk ’s are not distinct,
then hf(z)�; gk(z)i is either one or zero (e.g., ifz1 = 0, then
hf(z)�; g1(z)i = 0, etc.) and similarly forhf(z); gk(z)�i. In any
case, the values depend on the interpolating conditions and not on
the particular function chosen.

Now letfj(z) = �j(z)=�j(z) (j = 1; 2) be two such interpolating
functions, where�j ; �j are polynomials of degree�n, and

�j(z)�j(z)� + �j(z)�j(z)� = �2j�(z)�(z)�:

Define

pj(z) :=
1

�j
�j(z)=r(z) 2 K

qj(z) :=
1

�j
�j(z)=r(z) 2 K

u(z) := �(z)=r(z) 2 K

and note that, since the two functions interpolate the same values

hf1(z)� f2(z); �i = 0

on

S := spanfgk(z); gk�(z) : k = 0; 1; . . . ; ng:

Next, note thatqj(z)qj�(z) 2 S (j = 1; 2). Hence

0 = hf1(z)� f2(z); q2(z)q2�(z)� q1(z)q1�(z)i:

It follows that

0 = hR(f1(z)� f2(z)); q2(z)q2�(z)� q1(z)q1�(z)i

= u(z)u�(z)
1

q1(z)q1�(z)
�

1

q2(z)q2�(z)
;

q2(z)q2�(z)� q1(z)q1�(z)

=
u(z)u�(z)

q1(z)q1�(z)q2(z)q2�(z)
; jq2(z)q2�(z)� q1(z)q1�(z)j

2 :

Since the first entry inh�; �i above is positive a.e. on[��; �], it
follows that

(jq2(e
i�)j2 � jq1(e

i�)j2)2 = 0; for all values� 2 [��; �]:

Hence q1(z) = q2(z). Since f1; f2 assume the same values at
the roots ofB(z); f1(z) � f2(z) hasB(z) as a factor. Therefore,
p1(z) � p2(z) 2 B(z)H2. But p1; p2 are both inK. Hence
p1(z) = p2(z), and thereforef1(z) = f2(z) as well.

Now consider the case wherefj(z) (j = 1; 2) may be singular
on the unit circle, and let

hj(z) =
qj(z)� pj(z)

qj(z) + pj(z)
=:

aj(z)

bj(z)
:

(We note thathj 2 S.) Choose� 2 [��; �] such that

ei�aj(z) + bj(z) and �(z) have no common root on@D

for both j = 1; 2. This can always be done providedpj(z); qj(z),
and consequentlyaj(z); bj(z) have no common roots for eachj at
the same point on@D. (If there is a common root on the circle, then
this is a root of both numerator and denominator forf or h and a
root of � as well, and thus does not affect the rest of the argument.)
Next consider

f̂j(z) :=
1� ei�aj(z)=bj(z)

1 + ei�aj(z)=bj(z)
; for j = 1; 2:

These are clearly inC [as can be seen by noting (a) that� :
f �! 1�f

1+f
mapsC to S and S back toC, with � � � being the

identity mapping, and (b) that multiplication byei� does not destroy
membership inS]. Moreover, they have degree�n, they assume
identical values at the pointsZ, and they correspond to the same
trigonometric polynomial�(z)�(z)�. Yet, they are continuous on the
boundary. Thus, by the first part of the proof, they are identical.

Remark 2: The exposition in this note focuses on positive-real
functions (classC) on the unit disc, while an entirely analogous
theory holds for the case of bounded-real functions (Schur classS,
or contractive), in the disc or on the half-plane.

IV. CONCLUSION

Analytic interpolation theory is being used extensively in a variety
of engineering fields (robust control,H1-control, approximation,
circuit theory, signal processing). In mathematics, it has a long history
going back to the beginning of the century. However, questions
regarding degree constraints were only raised in the engineering
literature [12], [9]. The degree of interpolants relates to the dimension
of dynamical systems, sought as solutions to engineering problems
(e.g., a modeling filter for a stochastic process with given covariance
data, or, of a filter satisfying given frequency domain performance
objectives). Early results on characterizing interpolants of a fixed
degree were obtained in [6]–[8]. The present work was motivated
by the recent advances obtained in the research program by Byrnes,
Lindquist and their co-workers, e.g., [1]–[3].
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A Local Form of Small Gain Theorem and
Analysis of Feedback Volterra Systems

Qingsheng Zheng and Evanghelos Zafiriou

Abstract—The requirement of evaluating a gain over the entire signal
space is one of the restrictions in the traditional small gain theorem. In this
paper, a local form of small gain theorem is presented. It yields a bound
on the external signal that guarantees that the magnitude of the specified
signal along the closed loop stays within a certain region and hence it is
useful in addressing the signal magnitude dependent stability problem.
The theorem is used to analyze the feedback properties of a Volterra
series system as well as an inverse (or pseudo inverse) Volterra system.
Improvement over existing results is demonstrated, both theoretically and
via numerical examples.

Index Terms—Contractive causality, feedback Volterra system, local
small gain theorem, nonlinear system inversion, Volterra series.

I. INTRODUCTION

The small gain theorem plays a fundamental role in the analysis
of nonlinear feedback systems using input–output formulations. It
was first proposed in [10] and [17], and comprehensively discussed
later (e.g., [2]). It has found wide applications in showing bounded-
input bounded-output stability of nonlinear feedback systems, such
as in nonlinear internal model control [3] and robust nonlinear
control [13]. In its traditional form, it poses some restrictions on
its application. One, as pointed out in [5], is that the affine gain
formulation can inhibit adoption of input–output stability methods,
and so a generalized form of the small gain theorem was proposed
there. Another restriction is the system gain, which is defined as
an operator norm over the entire input signal space. Such a system
gain may not exist; even if it exists in theory, its computation may
be too difficult to carry out. Several process control examples were
given in [8] to reveal this restriction. In many cases, a system model
is available only for a limited range of its input signal. Then, one
is required to analyze the feedback properties based on the limited
open-loop information.

Volterra series is one of the major modeling tools for nonlinear
dynamic systems [12], [9]. There is a resurgence of interest in
using Volterra series in recent years, especially for process control
[6]. Regarding the feedback properties of a Volterra series system,
Halme and Orava studied the invertibility of a polynomial operator
in [4], and DeSantis and Porter discussed the well-posedness of a
feedback system with a polynomial plant in [1]. In general, not much
progress had been made since then. One possible reason might be
that the feedback properties of a Volterra system are intertwined
with the convergence problem when one tries to get a Volterra series
representation for the closed-loop system, and the latter is extremely
difficult to analyze in general (cf. [12], [7]). A possible way to avoid
this difficulty is to carry out the feedback analysis based on some
open-loop properties, instead of first trying to derive a Volterra series
expression for the feedback system.
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