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subjectto > i Vi(w, 1) > B.
k=1

Then Theorems 2-4 continue to hold, except thatb) is not
monotone. The argument of Theorem 5 continues to hold as well.
However, the computation of a bound @a (or, equivalently, orb)
is more complicated.

Remark: Some of the ideas herein extend to the higher dimen-

sional problem The Interpolation Problem with a Degree Constraint

maximize Vi(x, )

Tryphon T. Georgiou
subject to Vi(x,7) > By, k=2,...,K yp 9

where eaclV;, is a standard discounted criterion with discount factor

3. For example, if Abstract—In [6]-[8] it was shown that there is a correspondence

betweennonnegative (hermitian) trigonometric polynomials of degree
<n and solutions to the standard Nevanlinna—Pick—CaratbBodory inter-
polation problem with n 4+ 1 constraints, which are rational and also of
) ) . ~ degree <n. It was conjectured that the correspondence under suitable
for somek > 2, then we can restrict to actions which are conservingormalization is bijective and thereby, that it results in a complete
for V%, and consider the problem withi — 2 constraints. Due to the parametrization of rational solutions of degree<n. The conjecture was
higher dimentionality, however, the geometry is less transparent dfélven in an '”S'ghtIU_' V‘t’_ork Ely Bymestﬁt“l- [1I]t"al[01r]1g wnhha deta"sd
i : study of this parametrization. However, the result in [1] was shown under
there are more specific cases to deal with. a slightly restrictive assumption that the trigonometric polynomials are
positive and accordingly, the corresponding solutions havgositive real
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S Schur class{f(z) € H(D) : ||f(2)]] < stochastic process, depending on the context, cf. [12], [8], [1] and
1 forall = € D}. the references therein.

z" Complex conjugate of € C. Motivated by the need to characterize solutions of a given degree,

Lo Space of squarely integrable functions @B. it was recognized in [6] that the set of solutions of degree may

Ho Hardy space ofl.-functions that have analytic have a nice structure. Thud[P(Z, V) was looked at as a problem
continuation inD. of solving a set of nonlinear equations allowing only for degee

If a(2) = ag+arz+--- € H(D), thena(z). := af+alz"4---. interpolants. The approach was topological making use of degree

theory. The main result in [7] (cf. [6], [8]), given below, describes
rational solutions of degre&n.
] o ) Theorem 1 [7, Theorem 5.3]: ConsiderNP (Z, W) and assume
Consider two sets of + 1 points inD and C respectively, that P > 0. Given any polynomiak(z) # 0 of degree<n, having
o i ; . o ; Il its roots in{z : |z| > 1}, there exists a pair of polynomials
Zi={z:k=01,....,n} and W:={w,:k=0,1,....n}. & Z yn
Lk ' " Lo ' o (m(z),x(z)) of degree<n such thatf(z) = =w(z)/x(z) is in C,
The standard Nevanlinna—Pick—Cakatblory—Fe§r interpolation f(z) satisfies the interpolation conditions (1), and moreover
problem is stated as follows. o B o2
ProblemNP(Z,): Determine whether a functiofi(z) € C T(2X(2)« + x(2)m(2)e = KTn(2)n(2). @
exists that satisfies the interpolation conditions

. INTRODUCTION AND RESULTS

for somex > 0.

flzr) = ws fork=0,1,...,n. (1) The proof in [7] was presented for the case whérés a set of
discrete points. However, with the obvious notational adjustments the
If such a function exists, characterize all such solutions. proof carries over to the general case where some of the elements

If points in Z are not distinct, e.gzx = z1 (k= 1,...,7), then in Z may coincide, and will not be repeated here. In particular, the

the interpolation conditions involve the derivatives fifz) and are result for the Cara@ddory problem where all points i coincide

rephrased by requiring th%f“"_“(zl) =w, (k=1,...,7) was documented in [8, Theorem 3.1], and for matrix interpolation in

accordingly, wheref*~)(z) denotes thgk — 1)th derivative. In [6, Theorem 9.4].

particular, if all interpolating points:x (k = 1,...,n) coincide,  Thus, torecap, the theorem states that for any (hermitianhega-

then it is the value off(z) along with its firstn derivatives that tive trigonometric polynomiali(z, =~") = 7(z)n(2). of degree<n,

are specified at that point (usually the origin). This is known as tigere is a corresponding rational interpolating functifx) € C

Caratfeodory problem. also of degree<n. Conversely, it is obvious that to any rational
In general, it is known that a solution f¥P (2, W) exists if and interpolating functionf(z) = =(z)/x(z) € C we can associate a

only if an associate®ick matrixis positive semidefinite. In case allnonnegative trigonometric polynomial(z, 2=") = w(z)x(z)« +

z’s are distinct the Pick matrix is given by X(2)m(2)«, or equivalently, the “stable” spectral factar(=), of
n similar degree.
P= {w} In general, the correspondengéz) — f(z) may not be one-to-
1 -z k(=0 one due to possible cancellations betweeand y; e.g., forn = 1,

wo = wy; = 1 and arbitrary “stable™(z) of degree<1 we get
m(z) = x(2) = n(z) and f(z) = 1. In fact, such a cancellation
wo + wg wy e wy, betweenr(z) andx(z) occurs precisely when there exists a solution
wy wo+ws eer whp_y of degree strictly less tham. Interestingly, the correspondence
: : : betweeny;(z) (suitably normalized, e.g., by(0) = 1) and the “graph
symbol” (w(z), x(z)) of f(z) is actually one-to-one (provided(z)
and y(z) are chosen to be “stable”). This fact was conjectured in
which in this case is doeplitz matrix In general,P is the real part [6] and remained open until the recent work by Byrnes, Lindquist,
of the “compressed” operatdix fo(z)|x; see Remark 1 below. If Gusev, and Matveev [1]. In [1, Corollary 2.3] the authors proved the
the Pick matrix is singular, the solution is unique, rational and aonjecture (in the context of the Caratddory/covariance realization
degree<n, while if P > 0 all solutions can be described via a lineaproblem) under the slightly restrictive assumption that) has no
fraction transformation on arbitrary elements @n An exposition roots on{z : |z| = 1}, or equivalently, under the assumption
of the classical mathematical theory is presented in [11], and #mat d(z,2~") is a positive trigonometric polynomial for = ¢**
independent approach in the context of passive circuits in [12]. (6 € [—-m, w]). It should be noted that [1] focused on other important
NP(Z,WW) and related interpolation problems (associated withuestions about the map, and in particular, showed that it is an
the names of O. Toeplitz, C. Carétbdory, L. Fegr, I. Schur, N. analytic diffeomorphism (on polynomialg with roots in{z : >
I. Akhiezer, M. G. Krén, V. P. Potapov, and others) have beei}). In subsequent work, Byrnes, Landau, and Lindquist [3], have
studied since the beginning of the century, and have spawnedjigen an alternative proof of the correspondence being bijective
body of beautiful mathematics culminating in some deep resulimder the same assumption tliat, z~') is a positive trigopnometric
in functional analysis (by B. Sz.-Nagy, C. FejaD. Sarason, J. polynomial. The case wher =, z~") is only nonnegative was left
Ball, J. W. Helton, and others). Moreover, such problems haws an open problem (see [3, Sec. 5]).
found applications in a variety of engineering fields (robust control, The purpose of the present note is to show that the correspondence
Hoo-control, approximation, circuit theory, signal processing). lis bijective even for the case whetz, z~') is nonnegative (or,
engineering applications it is often desirable for the interpolatinequivalently, whery(z) is allowed to have roots on the boundary
function f(z) to be rational and of small degree, cf. [12]. (Here{z : |z| = 1}). The first part of the argument given below proves
the degree of a rational functioris defined to be the largest of thethat any two pairg=;(z), x;(z)) (j = 1, 2) satisfying the conditions
degrees of denominator and numerator since the functions are takeaft@heorem 1, withy;(z) devoid of roots on the unit circle, must
be analytic inside the unit disc.) The degree of the transfer functitke identical. The particular argument is an adaptation of a similar
relates to the dimension of a controller, a filter, or a model of argument in [3] (cf. [1, Lemma 4.5]) given in the context of the

while, in the context of the Caratbdory problem

P =

Wap Wy —1 ot wWo —+ lUS

~
z
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Caratteéodory problem. It is used here because it easily generalizesAny elementq(z) € K is simply a rational function(z) =

to the case of interpolation with complex values—a step which ig(z)/r(z) wherex(z) is a polynomial of degreeln and

necessary for the second part of the proof. The second part makes

use of a bijective transformation of a pdir;(z), x;(z)) (possibly , R

having roots on the boundary), which preserves the corresponding r(z) = H(l = %k2).

n(z), avoids the possibility of poles on the boundary, and leads to k=0

interpolating values for the transformed pair which depend only Bhlow, we choose to represent any rational functign) of degree

the initial data. Then, invoking the first part of the argument, any two . < - #action of two elements ¢ € K, i.e.,

such functionsf; = «;/x; must be identical. The precise statement ’

is given below as Theorem 2 (cf. [1, Corollary 2.3]). 5 ) lz P
Theorem 2: For any polynomiah(z) 2 0, normalized by)(0) = flz) = 523)7 with p(z) = ,,((Z)‘/ q(=) = ),(((3)) SE

1, with degree<n and roots in{z : |z| > 1}, there is a unique pair

of polynomials(w (=), x(z)) such thatr(z) + x(z) has all its roots \heren(z), \(z) denote suitable polynomials of degree:.

in [z| > 1, andw(z), x(z) satisfy the conditions of Theorem 1; that Now, let TIx denote the orthogonal projection onto, and let

is, they have degregn, the functionf(z) = 7(z)/x(z)isinCand  f,(2) be a polynomial solution to the Lagrange interpolation problem

n

~—
~—

z

satisfies the interpolation conditions (1), and with data(Z,W). Thus fo(z) is analytic on the whole plane. For
. . an ») € K devoid of roots inD, define
RN+ () = (). @ i
for somex > 0. Furthermore, any root of (=) + x(z) on|z| = 1 p(z) = Tq(z) := Ik fo(2)q(2).
is common to all three polynomials(z), x(z) andn(z), in which o ) _ _
casef(z) = m(z)/x(z) is an interpolating function of degree n. It turns out thatf(z) = p(z)/q(>) satisfies the interpolation condi-

It should be noted that individually; and/ory, may have distinct tions ([7, Lemma 6.1]) since
roots on dD. Hence, w(z)/x(z) is in C, though not necessar-

ily a strictly positive-real function. The interest for extending the p(ze) = (p(2). gk (2))
parametrization t@’-functions stems from the fact that it is precisely = (Ik fo(2)q(2),gx(2))
C-membership which characterizes impedance of passive systems (see = (fo(2)q(2)s 0 (2)) = folze)a(zp).

[12]), power spectra (see [8]), etc. Before we proceed with the proof,
we introduce notation and key relevant facts. An alternative pro
which applies to the special case wheie) has no root or9D is
presented in [5] following [4].

Olthe same is true in case of derivative interpolation, e.g., if
(F(2), gi1(2)) = F (1) thenpV (1) = (p(2), grra(2)) = -+

= I CGoa(ze) + folze)g™@(z) from which, usingp(zp) =
Fo(zi)q(zx), we can show thaf" (z1) = (p(2)/q(2))")].,.. Cases

Il. THE COINVARIANT SUBSPACE K AND LAGRANGE INTERPOLATION  ith higher multiplicity proceed similarly.

Let K = Ho © B(z)H2, whereB(z) is the Blaschke product In general, a functionf(z) = p(z)/q(z) constructed as above
is only a Lagrange interpolant since it may not have the required
oE— ] M analytic properties.
potr 1-zfz = Remark 1: It is interesting to note ([7, Proposition 6.2], cf.

[10]) that T depends only on the interpolation data, and not on the
and ‘y_“ is replaced byl when z;, = 0. Clearly, K is an(n + 1)- particular fo(z) chosen. Moreover, the Pick matrix is precisely the
dimensional space. In case all thg's are distinct, X admits a real part of T.
basisB = {gx(z),k = 0,1,...,n} such that for any function

f(z) € H(D) which is continuous on the boundary . POSITIVE-REALNESS CONDITIONS

1/ i0 N A function f(z) € C is analytic inD but may have singularities
Lge(2)) = — . do
(=) 90(2)) 2r J_ . HeP)gi(e) on the unit circle (e.g.f(z) = }jrj). However, in casef(z) € C
= f(zp). is rational, then(1 — f(z))/(1+ f(z)) is bounded byl in D and

therefore can have no singularities (poles) on the boundary. In fact
(Here, (-, ) denotes the standard inner productdn(dD).) In case (e.g., see [12]), a rational functigf(z) = pg;) , with p andg having
any of thez,’s coincide, e.g., ifsx = ze41 = -+ = zi4¢, thenK' no common root, is irC if and only if ¢(z) + p(z) has no roots
admits a basis such th&f(z), grrm(2)) = U (2¢) for m = 0, in D° and

1,....0—1, wheref™)(z) denotes thenth derivative off(z). For

instance,‘in th_e tyvo extreme cases where (a}dl are distinct or, dpal(z, 27N = p(2)q(2)s + q(2)p(2)=
(b) all z;’s coincide, we have _ (g+p)a+p)- — (a—p)a—p))
1 o4
B= {f/k(Z) “ioas k= 0»1»---7"} >0 forz=¢", 6€[-mmn]
and In case a rational functiorf(z) = p(z)/q(z) = n(2)/x(z) € C
Sk has singularities on the unit circle, it is easy to see from the fact that
B= {,’ch(z) T WA= E=0,1,..., 77} 7(2)x(2)+ + x(2)7(2)+ is @ nonnegative trigonometric polynomial
! z5z

factorable as:*7(z)5(z)« (y being a polynomial irx), that the roots
respectively. (The spack is referred to acoinvariantbecause it of x(z) on the circle are also roots of(z). Conversely, ify(z)
is invariant under the adjoint of the natural shift operatpa fact has no roots on the circle, neither doges:) and thereforef(z) is
which is not explicitly used herein.) continuous on the boundary.
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Proof of Theorem 2: The existence of a paifw(z), x(z)) as Next, note thay;(z)q;«(z) € S (j = 1,2). Hence
claimed, follows from Theorem 1. We note that the proof of Theorem 0= (F1(2) = fo(), go(=)goe (=) — g1 (=)q1=(2)).
1 given in [7] (also [6], [8]) establishes that there exists such a pair o ‘
for which 7(z) + x(z) has no roots inz| < 1. However, roots on It follows that
the boundary are possible. If this is the case, then from 0= (R(F1(2) = ful- N N

= 1(2) = £2(2)), 2(2)q2«(2) — 1 (2) 1 (2))

1
s+ = ST+ ) = (0= T (0= 7)) :<, (2)ua (2 < 1 - 1 )
3 u(z)u(z) " — NP )
>0 forz= eig, 6 €[—m, 7 w(2(z) - @2 (2)

it follows that y — « shares the same roots gs+ = on |z| = 1. a2(2)a2+ (2) = ql(é)ql*(z)>
Therefore these are roots af v andrn as well. Hence, when the u(2) e (2)
common factors are cancelled betweemndy, f(z) = w(2)/x(z) = <q1(2)
is a C-function of degree strictly less than that satisfies the ‘
interpolation conditions. This proves the last part of the statem
of Theorem 2.

We now proceed to prove uniqueness of the gaifz), x(z)). (lg2(e" ) = |l (')} = 0, for all valuest € [—=, 7).
The proof has two parts. The first part deals with the case where .
f(z) is continuous on the boundary. The argument we use herel§Nc€¢1(2) = ¢2(=). Since fi, f. assume the same values at
an adaptation of a similar argument in [3] given in the context i€ ro0ts ofB(z). fi(z) — f(z) hasB(z) as a factor. Therefore,
the Caratkodory problem (also, cf. [1, Lemma 4.5]). This argumerf!(*) = p2(z) € B(z)Ha. But p1, p> are both inK. Hence
generalizes easily to the case of interpolation with complex values24 %) = p2(2), and thereforefl(z‘) - f?(z) as well. _
step needed for the second part of the proof. In the second part ofNOW consider the case wherg(z) (j = 1.2) may be singular
the proof we transform pairér, \) in such a way so as to remove®" the unit circle, and let

2)qox(2) — z AP
q1*(z)qz(z)q2*(:)’|q2(~)qz*(z) 41(4)(11*( )| >

epince the first entry in-,-) above is positive a.e. ofr-m, ], it
follows that

singularities on the boundary, and then use the conclusion of first hi(z) = 4i(z) = p;(2) —. a,j(z).
part of the proof. ! ai(2)+pi(z)  bi(2)
From now on we assume that (We note thath; € S.) Chooses € [—=. 7] such that
20=0 and wo =L (4) e'®a;(z) +b;j(z) and 7(z) have no common root ofiD

This is without loss of generality since a conformal mapping ca@r hoth j = 1,2. This can always be done provided(z), ¢, (%),
bring zo to the origin without altering the properties of the functionging consequently; (=), b,(z) have no common roots for eaghat
considered, and real-scaling and addition of an imaginary numberi same point o#D. (If there is a common root on the circle, then
the data)V translates the problem into an equivalent one satisfyingjs is a root of both numerator and denominator foor » and a

(4). ) ) ) root of 5 as well, and thus does not affect the rest of the argument.)
Consider a rational solutiofi(z) = 7(z)/x(z) € C of degree<n  Next consider

which satisfies the interpolation conditions ancc@tinuouson the ié ~
1—e®a;(z)/b;(z2)

boundary. In this case filz) = TF e%a;(2)/b,(2)] forj =1,2.
{(£(2), 90(2)) = flzr) = wr These are clearly irC [as can be seen by noting (a) that :
(F(2)esgr(2))y=f(O)" =1 f — L mapsC to S and S back toC, with ¢ o & being the
iy map g
{(F()us g (2)a)y = F20)" = wy, identity mapping, and (b) that multiplication ky® does not destroy
(F(2),ge(2)s) = F(0) =1 membership inS]. Moreover, they have degre€n, they assume

identical values at the point§, and they correspond to the same
assuming that the’s are distinct. If some of the,’s are not distinct, trigonometric polynomiah(z)5(z).. Yet, they are continuous on the
then (f(2).,gx(2)) is either one or zero (e.g., ifi = 0, then boundary. Thus, by the first part of the proof, they are identidal.
{(f(2)+,91(2)) = 0, etc.) and similarly for(f(z), gx(2)«). In any Remark 2: The exposition in this note focuses on positive-real
case, the values depend on the interpolating conditions and notfanctions (classC) on the unit disc, while an entirely analogous
the particular function chosen. theory holds for the case of bounded-real functions (Schur dass

Now let f;(z) = m;(2)/x,(2) (j = 1,2) be two such interpolating or contractive), in the disc or on the half-plane.

functions, wherer;, x; are polynomials of degregn, and

T (NG () 4 x5 (2)T5(2) = K20(2)n(2)s IV. CoNcLUSION
Analytic interpolation theory is being used extensively in a variety

Define of engineering fields (robust control{..-control, approximation,
pi(z) = Lﬂj(;)/y-(g) e circuit theory, signal processing). In mathematics, it has a long history
Ky going back to the beginning of the century. However, questions
g;(z) = LX,'(Z)/T(:) €KX regarding degree constraints were only raised in the engineering
Kj literature [12], [9]. The degree of interpolants relates to the dimension
u(z):=mn(z)/r(z) €K of dynamical systems, sought as solutions to engineering problems

ée.g., a modeling filter for a stochastic process with given covariance
data, or, of a filter satisfying given frequency domain performance
(fi(z) = f2(2),-)y =0 objectives). Early results on characterizing interpolants of a fixed
degree were obtained in [6]-[8]. The present work was motivated
by the recent advances obtained in the research program by Byrnes,
S :=span{gi(2),gx+(z) : k =0,1,...,n}. Lindquist and their co-workers, e.g., [1]-[3].

and note that, since the two functions interpolate the same value

on
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and so a generalized form of the small gain theorem was proposed
there. Another restriction is the system gain, which is defined as
an operator norm over the entire input signal space. Such a system
gain may not exist; even if it exists in theory, its computation may
be too difficult to carry out. Several process control examples were
given in [8] to reveal this restriction. In many cases, a system model
is available only for a limited range of its input signal. Then, one
is required to analyze the feedback properties based on the limited
open-loop information.

\olterra series is one of the major modeling tools for nonlinear
dynamic systems [12], [9]. There is a resurgence of interest in
using Volterra series in recent years, especially for process control
[6]. Regarding the feedback properties of a \olterra series system,
Halme and Orava studied the invertibility of a polynomial operator
in [4], and DeSantis and Porter discussed the well-posedness of a
feedback system with a polynomial plant in [1]. In general, not much
progress had been made since then. One possible reason might be
that the feedback properties of a \olterra system are intertwined
with the convergence problem when one tries to get a \olterra series
representation for the closed-loop system, and the latter is extremely
difficult to analyze in general (cf. [12], [7]). A possible way to avoid
this difficulty is to carry out the feedback analysis based on some
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