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ROBUST STABILITY OF FEEDBACK SYSTEMS:
A GEOMETRIC APPROACH USING THE GAP METRIC*

CIPRIAN FOIASt, TRYPHON T. GEORGIOU?, AND MALCOLM C. SMITHS

Abstract. A geometric framework for robust stabilization of infinite-dimensional time-varying
linear systems is presented. The uncertainty of a system is described by perturbations of its graph
and is measured in the gap metric. Necessary and sufficient conditions for robust stability are
generalized from the time-invariant case. An example is given to highlight an important difference
between the obstructions, which limit the size of a stabilizable gap ball, in the time-varying and
time-invariant cases. Several results on the gap metric and the gap topology are established that are
central in a geometric treatment of the robust stabilizability problem in the gap. In particular, the
concept of a “graphable” subspace is introduced in the paper. Subspaces that fail to be graphable
are characterized by an index condition on a certain semi-Fredholm operator.
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1. Introduction. In this paper we develop a geometric framework for robust
stabilization of feedback systems using operator-theoretic methods. The theory is
based on a description of the uncertainty of a system as a perturbation of its graph
and is measured by the gap metric.

The gap metric has its origin in functional analysis [20], [13], where it was used in
perturbation theory of linear operators. It was introduced into control theory in [25],
[1] as being appropriate for the study of uncertainty in feedback systems. For shift-
invariant systems it was shown in [5] that the gap metric was computable exactly in
terms of two standard “2-block” H,, optimization problems. Building on this result
and the work of [23], [24], [26], and [7], it was shown in [6] that robust stabilization in
the gap metric is equivalent to robust stabilization for perturbations of the normalized
coprime factors of the transfer function.

The simplicity of the robustness bounds obtained in [6] for the time-invariant case,
which were expressed solely in terms of the plant and controller system operators,
strongly suggests potential generalization. However, the techniques used in [6] are
mostly function theoretic, relying on a specific representation for the graph of a time-
invariant dynamical system as a shift-invariant subspace of L2[0,00], and do not
admit immediate generalization to the shift-varying case. This motivated the search
for a different approach, which does not rely on representations for the subspaces
involved, and which elucidates the apparent geometric structure underlying the robust
stabilization problem. It became apparent that substantially new techniques were
needed, beyond those developed in [6], to meet this objective. The present paper is
a continuation of work begun in [3], [4]. We note that some independent work on a
geometric approach to robust stability in the gap metric has been presented in [15],
[16], [19]. A generalization of the results of [5] has been presented in [2].

This paper is organized as follows. In §2 we present some basic material on
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graphs and stabilizability for linear systems. In §3 we establish several results on
the gap metric that are used in the later development. Section 4 introduces the
concept of graphability and proves a necessary and sufficient condition for a subspace
to be graphable. Section 5 presents and proves the main robustness theorem for plant
uncertainty in the gap metric. In §6 an example is presented to clarify the need for the
uniform boundedness condition in the main robustness theorem. Section 7 uses the
machinery of the previous sections to generalize an elegant result of Qiu and Davison
[16] on combined plant-controller uncertainty to the time-varying case.

2. Graphs and stabilizability of linear systems. We consider a linear sys-
tem to be a (possibly unbounded) linear operator P : Dp C U — ), where U, Y are
Hilbert spaces and Dp is the domain of P. We denote by Py y the class of all linear
systems from U to Y. A typical choice for the input and output spaces is U = €5*[0, co)
and Y = £5]0, 00), or the corresponding continuous-time Lebesgue spaces. (Note: This
paper does not impose the constraints of causality or time-invariance on the systems
considered.)

Consider the feedback configuration of Fig. 1, where the plant P € Py, y and
the controller C € Py, y. This configuration, denoted by [P, C], provides a pictorial
representation of the following set of equations:

e1 =v1 + Cey,
eg = Pey + vs.

Define the graph of a system P € Py y as the linear manifold of bounded input-
output pairs of P

P

where I, denotes the identity operator on . Similarly, define the inverse graph of

the controller C by
C
Gc = ( )Do c L.
Iy

The feedback configuration [P, C] is said to be stable if the operators mapping
v; — e; for 4, = 1,2 are bounded. This is equivalent to the operator

I C e vy
Fpc:= ( 115{ Iy ) : Dp xDc — Gp +Gg (__;2) - (_U2)

gp = (Iu)Dp cL :=U@y,
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having a bounded inverse defined on £. In case an inverse exists it is denoted by
Hpc:= FI;,IC

A system P is said to be stabilizable if and only if there exists a controller C such
that [P, C] is stable.

PrOPOSITION 1. If P € Py y is stabilizable then the graph of P is closed.

Proof. Let (;:) € Gp for i = 1,2,... be a Cauchy sequence with limit point (‘y‘),
and let C be such that [P, C] is stable. Since

then

uw\ up \ _ u
(0)“il_13.‘oHP’C<yi)"Hp’c(y)’

which means that v € Dp and (})) = (% )u € Gp. 0

Thus, a necessary condition for [P, C] to be stable is that both P and C have
closed graphs. A similar statement has been made in [27] for quotients of bounded
operators. The idea in [27] gives Proposition 1 in the following way: Closed-loop
stability ensures that P(I + CP)~! is bounded and that (I + CP) has closed graph
and domain equal to Dp. This gives that P = P(I + CP)~}(I + CP) has closed
graph.

The following proposition presents a geometric characterization of stability of
P, CJ.

PROPOSITION 2. Let P € Py y and C € Py . Then the following are equivalent:

(a) [P, C] is stable,

(b) Gp, G are closed,

(1) Gp NGc = {0}
and
(2) Ge +Gc=L.

Proof. (a)=-(b). If [P, C] is stable then, by Proposition 1, Gp, G¢ are closed.
Moreover, both (1) and (2) are necessary for Fp ¢ to be a one-to-one mapping onto
L.

(b)=>(a). First note that (1) and (2) are sufficient to guarantee the existence of a
set-theoretic inverse for Fp ¢ defined on £. We need to show that the inverse is also
bounded. We first observe that the graph of Fp ¢ is closed. To see this note that

4 e1
— —€2 . €1
Gr = e; — Cey .(ez)G'DPX'DC
L P61—62
(/1 0 0 O e
=00 2 o ea | (a)emexme
(\o 1 0o -1 e
4 e1
P61 (4] gP)
o~ €Dp xD = ,
jkCez <) P Yo (9&
€2
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where = denotes a Hilbert space isomorphism. Consequently, the graph of Hp ¢
(= Fr—>,1c) is also closed. The result now follows from the closed graph theorem. O

Similar geometric concepts for expressing stability have been employed in earlier
studies, notably in the context of nonlinear control systems [18], [22], and in the recent
works [3], [14], [16], [19].

3. Preliminaries on the gap metric. In light of Proposition 2 we will restrict
our attention in the rest of the paper to linear systems that have closed graphs. We
will identify P (through its graph) and C (through its inverse graph) with elements
of

Sc :={K : K is a closed subpace of L}.

For K € S denote by Il the orthogonal projection with range K. The gap between
K1,K2 € Sg is the metric defined as

6(’C1”C2) = ”H’CI - n’C2“

(see [11] and [12]), and S, is equiped with the natural topology induced by the gap
metric. Thus the gap between two systems P;, ¢ = 1,2, is defined to be the gap
between their respective graphs Gp,, i = 1,2 ([25]).

Let B(K1, K2) denote the space of bounded operators between two Hilbert spaces
K1 and Ks. For X € B(’Cl,IC;)) define T(X) = inf:z:GKZ;,Hz”:l ”X:L‘”

PROPOSITION 3. Let Ko € Sz. The following are equivalent:

(a) K €S, and 6(Ko,K) < 1;

(b) Ik, |x is invertible;

(c) There ezists an X € B(Ko,Kg) such that K = (I, + X)Ko.
Furthermore, if K € S¢ and 6§(Ko,K) < 1, then

® (Ko, K) = v/1= P2 (T, ) = v/1 - r*(Txlc,)
(4) = | X(I+X*X)"?| = RS

VIHIX[

Proof. The equivalence (a)<(b), as well as a proof of (3), can be found in [12,
Lemma 15.1].
(b)=>(c). Since §(Ko,K) = 6(K, Ko) both Ik, | and x|k, are invertible. Hence

K =Tk|x,Ko = (H}C(,HIC + H,cél'l,c) Ko

= (I)Co + Hné_n}(;(n;colx;)_l) Ko.

Thus, (c) holds for X = ITjcy (TIx, |x) "

(c)=(b). From the equality ko = i, |x(I+X)ko, for ko € Ko, we see that IIx,|xc
is onto and from K = (Ix, + X)K, that it is one-to-one.

We defer the derivation of (4) to Proposition 4 below, where we prove a slightly
more general statement. O

From the definition of the gap metric it follows that

Ik
( HICJI' ) (H’C1 - H’sz)(nl(:;') H’Cz)

1

_ H’C;l H}Cé‘ 0
- 0 _H'Cf‘ HK:2

= max{|| Mgy Mg, ||, [Ty I, |1}

6(Ky,K2) = ‘
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(see [12]). Note that

”HICiLH’Cz ” = sup dist(z, K1),

where dist(z, K1) := infyex, ||z — ]|
PROPOSITION 4. Let X; € B(Ko,Ko™t), for i = 1,2, and K; = (I, + Xi)Ko.
Then

0 ) =m0 4 30X 0 X004 X5

) X+ XoX3)7/2(Xg — X)L+ X50) 2] )
© e
where

p = min { ((T+X3%:) V2T + X[X0) (T+ X3Xz) 7V2),

7 ((+ XX 721+ X X)(T+ Xp X)) |

Proof. We compute

-X1 *) — I * — *
M T, = | (75 ) @ XX %0, ) (5, ) @ X5%0) 70 X5)
M =X K X X§Xe)
since

() aexaxp

is an isometry and (I+X3X,)~'/2(I, X3) is a co-isometry. By symmetry || TLc; I, |
is given by the dual expression. This completes the proof of (5).
To prove (6) consider the unitary operators

v oo @A+XX)TV2 X1+ XX]) 2
T X+ XpX)TY2 @+ X Xxy)T2 )

for i = 1,2, and define

vrv. _ [ 11 (Y)s,
(8) Y =YY, = ( (Y)or (Y)z’z )

where (Y); ; denotes the (2, j)-block entry of Y. Since
( (Y)1, )
(Y)2,1
is an isometry, it follows that ||(Y)2,1]|> + 72 ((Y)1,1) = 1. Using (7) it follows that
ITTes T, | = ()0l

=/1-72((Y)11),
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where (Y)1,1 = (I+X}X;)"Y2(I+ X4 Xo)(I+ X3X2) /2. Similarly, M Ik, || =

V1=72((Y)2,2), where (Y)z2 = (I+ X;X})~V2(I + X;X3%)(I + X2X3%)~/2. This
completes the proof. O

Consider two subspaces Ky and K; at a distance §(Ko,K;1) < 1, where K; =
(I+X)K and X € B(Kg, Ko?). Define

(9) Kx = (I+ AX)Ko

for A € R.
COROLLARY 1. The family Ky, A € [0,1], defines a path, continuous in the gap
metric, between Ko and KC;. Moreover, for A € R,

(10) 8(Ko, Kx) = [AIXII(L + A2(IX %)=/,

(11) 8(K1,Kx) = |1 = AIX*X(1 4+ X*X) 71 (1 + A2X*X)~1||/2
11—

12 < .

(12) 14 )

Proof. To establish that the family ICx, A € [0,1], defines a path it suffices to
prove (10)—(12). Equation (10) follows from Proposition 4 by identifying Ko, Ky, K2
with Ko, Ko, K, respectively, and X1, X5 with 0, A\X. If, in Proposition 4, we identify
Ko, K1, Ko with Ko, K1,y and X, Xy with X, AX, then we obtain

(K1, Kx) = max {|1 =A@+ XX*) 72X (1 + A2X*X) 72,

1= AL+ XX*) 72X (14 22X %) /2 ]
(13)
Both expressions are equal and can be seen to equal the right-hand side of (11). Since

X*X is a positive, bounded, selfadjoint operator, by invoking the spectral mapping
theorem, it follows that

=su L-Alv= T ectrum(X*
6(K1,Kx) = p{\/(1+x)(1+,\2z)' € Spectrum(X*X)}.

The supremum of the function in the interval [0,00) occurs at £ = 1/A and equals
|1 — A|/|1 4+ A]. (Note that Spectrum(X*X) C [0, 00).) |

COROLLARY 2. Let Ko,K1,K3 € S be such that 62(’C0,’C1) + 52(’C0,’C2) < 1.
Then

(14)  6(K1,K2) < 6(Ko,K1)V/1 = 6%2(Ko, K2) + 8(Ko, K2)v/1 — 62(Ko, K1).

Proof. Since 6§(Ko,K1) < 1 and §(Ko,K2) < 1, by Proposition 3 there exist
bounded operators X; : Ko — Kg such that K; = (I, + X;)Ko, for i = 1,2. We
observe that

X, |12 [1X2 12
6%(Ko, K1) + 62(Ko,K2) < 1 = |
(Ko, K1) + 6 (Ko, K2) T+ [IX]2 7 14 X2

= [ X[l Xe]l < 1.

+ <1
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Since ||X;1X2|l < IXq||[IX2|l < 1, it follows that 7(I + X}1X2) = 7(I + X3X,) > 0.
Consequently 6§(K1,K2) = /1 — p? < 1, where

p = ((1+X3X0) V21 + X3X0) (1 + X5X2) 7/?)

> 7 ((1+XiX0)7V2) (1 + XiXa)7 ((T+X3Xz)™/2)
- XallXall
VI+ X [P 1+ (X

v

Thus,

(1= [IXa || [IX2]1)?
(K1, K3) < 4/1—
(k) \/ T+ KD+ (Xl
_ Xy 1 Xl 1 _
VIHIXal? V14Xl 1+ [Xel? /1+][X]?
This completes the proof. 0
The arcsine of the gap metric can be thought of as the mazimal angle between

two subspaces, denoted by Opax(K1, K2) := arcsin §(K1,Kz). Corollary 2 is given in
[16]. It was also observed in [16] that (14) can be rewritten in the form

(15) amax(lcla’(:2) < omax(K:l,’C) + oma.x(’Ca’C2)

80 that 6.5 defines a metric in Sg.
Given any subspace Ky € Sz and a positive number b let

Ball(Ko,b) := {K : 6(Ko,K) < b}

denote the gap-ball about Ko of radius b, and let Ball(Ko,b) denote the closure of
Ball(Ko, b).

PROPOSITION 5. Ifb < 1, then Ball(Ky,b) = {K : 6(Ko,K) < b}.

Proof. Let K1 be such that §(Ko, K1) = b and consider Ky, A € R, constructed
as in Corollary 1. It follows that

{Kx: A€ [0,1)} C Ball(Ky,b).

Thus, any neighbourhood of K; contains a subspace K for some X € [0,1). Hence,
K1 € Ball(Ko, b). Conversely, take K; such that for all e > 0, Ball(Ko, b)NBall(K1, €) #
(0. Then take K € Ball(Ko,b) N Ball(K1,€). Using the triangular inequality it follows
that 6(Co, K1) < 6(Ko,K) + 6(K,K1) < b+ €. Since this is valid for any € > 0,
6(’C0, ’C1) <b. 0

It should be noted that when b = 1, then Ball(Ky,b) # {K : §(Ko,K) < b}.

THEOREM 1. Let b, € R, with0 < b< 1 and 0 < { < 1. There ezists € > 0
such that

(16) Ball(Ko,b+e) C | J  Ball(K,Q).
KeBall(Ko,b)

Proof. Consider any K, such that 1 > §(Ko,Ky) = a > b. We will construct a K
with 6(Ko, Kp) = b and 8(Ks,Ks) = av'1 — b2 — by/1 — a2. This establishes (16) for
any € such that (b+€)v1—b2 —by/1— (b+¢€)? < (.
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Write K, = (I 4+ X)Ko with X € B(Ko,Kot). Let X = UR be a polar de-
composition for X (i.e.,, with R = (X*X)/2 a positive selfadjoint operator and
U : rangeR — rangeX a partial isometry), denote by Ej the spectral family of
projections corresponding to R, define

A:=/ g(N)dE»,
0—

where
1 ifo< A< =2
gN =9 1_» £t < /\1"" )
Vi Y AeE S
and define
a7 Ky := I+ XA)K,.

In the rest of the proof we verify that 6(Ko,Kp) = b and 6(Kp,Ks) = av1l — b2 —
bv1 — a?.
From Proposition 3, || X|| = a/v1 — a2. Also,

[XA| = [|RA|
=1 [~ Aa0ydmn]
= sup{A\g()\) : X € Spectrum(R)}
= Xo(\ a
90| s

1-a2
b

V1 —b?

since Ag()\) is nondecreasing on [0, 00), Spectrum(R) C [0, |R||]], and (b/v1 —b?) <
(a/v1—a?) = ||R|. From Proposition 3, we conclude that

XA

———————==0).
V14 || XA?

6(’CO) ’Cb) =

From Proposition 4, we have that
6(’Ca, ,Cb) = max {61, 52} 3
where the two expressions 41,02 are computed below. First,

61 = (T +XX*)"V2(XA - X)(I+ AX*XA)~ /2
= |[UR(I+ R?)"Y2(A — I)(I+ AR?A) /2|
= [|R(I+R?)"2(A - T)(T+ AR?A) /2|

Alg(A) — 1]
(18) = sup{ VI /15 50 : X € Spectrum(R)}
_ Alg() — 1] _a
(19) = e /iT 00 evaluated at A = N

= ay/1-b%—by/1—a2
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The step (18)=>(19) follows because A|g(\) — 1|/v/1 + A24/1 + A2g())? is monotoni-
cally nondecreasing in Spectrum(R) C [0,a/v/'1 — a?], while |R| = a/v/1 — a?. Next,

8y = ||(T+ XAZX*) " V(XA - X)(I+ X*X) /2

(20) = (I + URA’RU*)"2UR(A — I)(I + R*)7/2||
(21) = |UT +RA’R)"V/?R(A - I)(I+ R?)~/2|
=&

since R and A commute. The step (20)=(21) is based on the fact that RU*U = R
and U*UR =R. O

It is interesting to note that for arbitrary Ko,K, € Sg with 0 < b < a =
6(Ko,Ks) < 1and Ky asin (17), we have §(Ko, Kp) = b and Opmax(Ko, Kb ) +0max (Ko, o)
= ema,x(K:O, ’Ca)‘

4. Graphability. Let K, W € S;. We say that K is a graph with respect to W
if X N W+ = {0}. For any such X we can define a linear operator K by the relation

K (IIyk) = Iy k for all k € K. For convenience we will identify each u € U with
(g) € L and, similarly, every y € Y with (g) € L, i.e., U is identified with the subspace

U {0} of L and Y with {0} d Y. We say K is a graph if K is a graph with respect to
U. Similarly, we say K is an inverse graph if K is a graph with respect to ). Denote

Graphyy, := {K € S; : KnW* = {0}}.

For K, W € S let X := IIy|x and define S,p; to be the complement in Sz of
the set

Spi := {K € S¢ : Xk is semi-Fredholm and ind Xx > 0}.

An operator X is said to be semi-Fredholm if its range is closed and if at least one of
dim ker X, dim ker X* is finite. In this case the Fredholm indez is defined as ind X :=
dim ker X — dim ker X*.

LEMMA 1. Sppi is closed in Sg.

Proof. Let K € Sp; and let K; € S satisfy 6(K,K;) — 0 for ¢ = 1,2.... We have

Xk — T Xk, || = || (T — TeTIk,) [l
< M — Tk, || = 6(K, K;) — 0.
Since the set of semi-Fredholm operators from W to K with a given index is open in

the space of all bounded operators from W to K (see [11, Thm. 5.17]), it follows that
there exists an N such that for ¢ > N, IIx X}, is semi-Fredholm and

ind M Xk, = ind Xj = —ind Xk.

On the other hand, if §(K, K;) < 1 then Y := Ilx|x, is an invertible operator from /C;
to K and therefore Xk = Y 'IIxXk, is semi-Fredholm and ind X}, = ind Ix X},
for ¢ > N. It follows that for i large enough Xk, is also semi-Fredholm and

ind Xx, = —ind X}, = ind Xx > 0.

Thus S is open and hence Syp; is closed in Sg. ]
The following result characterizes the closure of Graph,,, in Sz. Any K € Graphw
is said to be graphable with respect to W.
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THEOREM 2. Graphy,, = Sp;.

Before we proceed with the proof of the theorem we provide a characterization
of Sppi. By Ej (respectively, E, »), A € IR, we denote the spectral family associated
with X} Xy (respectively, XxXx). Then

(o o] o0

XiXc= [ MEy, and XxXt = [ AdE,
0_ 0_-

and the projections are chosen (strongly) continuous from the right (see [17]).
LEMMA 2. Sppi = {K : dim E)\K < dim E, W, for all A > 0 and X small enough}.
Proof. (Inclusion D). It is a standard fact that EoK = ker X, E, o W = ker Xk..

If K € Spi then we must have dim EoK > dim E, o W. Since X is semi-Fredholm then

dimE)\K — dimEoK and dimE, y W — dimE, oW as A — 0. Hence, dim E\K >

dim E, )W for sufficiently small A > 0.

(Inclusion C). Assume K € Sy, and that there exists a sequence A\; > 0, ¢ =
1,2,..., Ay = 0, for which dimEy,KX > dimE, x,W. Since dimE)K, dim E, W
are nondecreasing in A, dimE, ,YV must be constant and finite—say equal to d—
for i large enough. Thus 0 is isolated in the spectrum of XxXj and dimker X} =
dimker Xx X% = d. It follows that X is semi-Fredholm and that for A; small enough
ind Xx = dimker Xx — dimker X} = dimEy,K —d > 0. Thus K € S;;, which is a
contradiction. ]

Proof of Theorem 2. We first show that Graph,,, C Sypi. Let K & Sypi. Then

ind X > 0 = dimker X, >0
= Knwt # {0}
= K ¢ Graph,y,,.

Thus Graph,, C Sup; and, since Sy is closed in S in the topology induced by the
gap metric by Lemma 1, this implies that IC ¢ Graph,,, and completes the proof of
the first part.

We now show that Graphy, 2 Sypi. Let K € Sypi. For € > 0 small enough
dimEXK < dimE, W and therefore there exists an isometry V. : E.X — E, W.
Set H, := E.K, K. := (K& H.) + (I+ V26V )H, and note that

S, K) =6 ((/c OH.) ®He, (KOH) + (I+ \/EEVG)’He)
=5 (’He, I+ \/2_6II(,C9HG)LV€)'HE) .

Therefore, lim._,o8(K,K.) = 0 by Proposition 3. We will now show that K. €
Graphyy. Let y € K.NW+*. Theny =k +h++2eV.hwith ke KoM, he€ H,. It
follows that

0 = Iyyy = Mk + Myyh + V26V h
= Xxk + Xxch + V2eV,h,

and thus
~XxXxk = XpXrch + V2eX5 Veh.
Since E. X3 Xx = X3 XcE., E X% = XkE, . and E, V. =V, we see that
0=-EXxXxk
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= E (X Xxh + V2eX; V. h)
= XpXxh + V2eXEV h
= —X:Xik.

Since ||X;:Xxck| > €l|k]|, it follows that k = 0. Thus y = h + v/2eVh and therefore
2¢||h||* = |V2eVh|® = [ Xich|? < €f|h|)?

because h € H,. This implies that h = 0, that is y = 0. O

Remark. It is easy to see that the complement of Graph,, can be characterized
in the following way: K ¢ Graph,, <> there exists ¢ > 0 such that K’ N W+ # {0}
for all K’ € Ball(K, €). From Theorem 2 the complement of Graph,,, is the set Sp;. A
geometric characterization of Sp; is as follows:

Spi = {K €Sz : K+ W is closed, dim(KNnW*) > dim (€6 (K +WH))}.

To see the equality, note that K+W+ = IL, K+ WL, Hence K+W is closed < Iy K
is closed. Also ker(ITyy|xc) = KN W+ and ker(IIx|w) = WNKL = Lo (K +WH1).

5. Robust stabilization. Consider the feedback interconnection [P, C] and let
M =Gp, N =G € S¢. Define A, n := IIyro | pm. The following is a standard result
in operator theory.

PROPOSITION 6. Let M,N € S;. The following are equivalent:

(a) MON ={0} and M+ N = L;

(b) A is invertible.

Proof. (a) = (b). Note that

Oy M= HN_L(M +N)
=1\ L
=Nt

Thus A pq, v maps M onto N'L. Since MNN = {0} then A x is one-to-one. Thus
A pq n is invertible (see [9, Prob. 52]).

(b) = (a). For any z € M NN it clearly holds that Az = 0. Since A, p is
invertible, then M NN = {0}. Also, for any z € £ we can write

(22) z=Au yIyiz+ (I — Ayf Ty )z = m+n.

Clearly m = A/_V}, w1z € M. We claim that n € N. To see this note that
Oyin=Tyiz - yi Agy Mgz =0. Thus, L= M+ N. 0

It follows from Proposition 2 that [P, C] is a stable feedback configuration if and
only if Aaq n is invertible. When [P, C] is stable we define the operator

Qmw = Ax ATy,

This is the parallel projection onto M along N'. Note that Qaq,a can be expressed
directly in terms of P and C as follows:

23) Quw = () (@ - CPY, ~01y - PO)Y)
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and in terms of the input-to-error operator Hp c:

(I, 0 0 0
(24) QMmN = ( 0 -I )Hp,c + ( 0 I, > .
When [P, C] is stable we also define

bmn = Q™!

(25) = T(Iys|m) = /1= 6(M,N1)?
= inf{||[Apmnz| : € Mand |z| =1}
= inf{dist (z,N) : z € M and ||z| = 1}
= inf{sinf(z,y) : 0Fxz € M,0#y e N},
where
| <z,y>|
=yl

denotes the angle between two nonzero vectors x,y € £. When [P, C] is not stable
we set baqn := 0. Equation (25) follows from (3). The quantity baqa is the sine of
the minimal angle

Omin(M,N) := inf{0(z,y) : 0z € M,0#ye N}
arcsin by, n
arccos (M, N'1)

0(z,y) := arccos

(e.g., see [8]). Since

S(M,NL) = (ML N)
= §(N, M1)
= 5(NL’M)a

it follows that

bM,N = bM_L’N.L
(26) =byM
= bNJ-,MJ"

Equation (26) was shown in [3] (cf. [21, Lemma 1.1, p. 341]), [6]. It also follows
from [10, Lemma 4] after noting that baqa is the inverse of the norm of a parallel
projection.

Conditions for stability of a feedback configuration can be expressed in a number
of equivalent ways (cf. [3], [14]).

COROLLARY 3. The following are equivalent:

(a) [P, C] is stable;

(b) A is invertible;

(b) SM,N*) <15

(©) Omax(M,N1) < m/2;

(d) Omin(M,N) > 0.
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Proof. The proof follows from Propositions 3 and 6. 0

THEOREM 3. The following are equivalent:

(a) [P, C] is stable and b < baq n;

(b) [P’,C] is stable and Qv n is uniformly bounded for all P’ so that, with
M :=Gpr, (M, M) <b.

Before presenting the proof of the theorem we will establish the following lemma.
For any 0 # h € L we denote h := h/||h].

LEMMA 3. Let K, W € S;. Take any 0 # h € K and 0 # hy ¢ K. Define
K_=KoChand Ki =K_+Ch;. Then

(a) 6(K,K1) =1/1—|<h,hy>|2, where hy = I hy;

(b) if K € Graph,,, then K1 € Graphy,,.
Proof. (a) Since K1 = K_ ®Thy and K+ = KL ©Ch we obtain

[T X, || = [|(Tcr — T p) (T + Tgn, )|l
= || (g n, — Hor) Mo, |

=y\/1—|<h,hy>2

Similarly, Mgy Tkl = | (Tgn, — Ten) Monll = 4/1—|<h,hy>[2.  Therefore,
6K, K1) = /1 — | <h,hy>|2.

(b) Define X := Ik, X; := Hwlk,, X = XIk|k+k,), and X; :=
XMk, |(crky)- I K1 & Graphy,, = S,pi, then X; is semi-Fredholm and then it
is obvious that X, X, X are also semi-Fredholm. Since K € Graphyy, ker X = 0 and
ind X < 0. Because hy ¢ K, it can be seen that dim ker X = dimker X + 1 and
similarly that dim ker X1 = dimker X; + 1. It follows that ind X =ind X + 1 and
ind X; =ind X; + 1. However,

X, = M| (ki) + Tw X n, — Mar)l (ki) = X + finite-rank operator.

Therefore, ind X; = ind X and hence ind X; = ind X. Thus, ind X; < 0, and
consequently, Ky & Spi; that is, Ky € Sypi, a contradiction. This proves that K; €
Graphyy. 0
Proof of Theorem 3. (a)=>(b). Assume (b) fails. We will show that, if [P, C]
is stable, then b > by ar. Since (b) fails then, either ||(ITn-+|amv)7?|| is not bounded
above in Ball(M, b)NGraphy, or Iy 1 | ¢ is not invertible for some M’ € Ball(M,b)N
Graphy,. This means that one of the following two possibilities holds:
(i) 7(Ipr2| ) is not bounded below in Ball(M, b) N Graphy,;
(ii) there exists M’ € Ball(M,b) N Graph,, and 0 # y € N such that
HMIy =0.
In case (i), for all € > 0 there exists M’ and # € M’ of unit norm such that
Ty 1zl = dist(z,N) < e. Note that b > 6(M, M') > supge =1 dist(§, M) >
dist(z, M) = |z 4. z||. Also

IInz
[Ty
_ IMysel + My Mol _ be
= [zl =Vise

bmn = bym < HHMl

(27)
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Since (27) holds for all € then by ar < b. In case (ii), note that y € M't. Thus
b> (M, M) = 5(MJ',M/‘L) > dist(y,Ml) = | IImyll. Also bpy = bagr prr <
(ITI Ay since y € N, Therefore b < b.

(b)=>(a). Suppose that (b) holds for some b > baq . Then the same is true for
some b > by a. To see this, first note that b < 1 necessarily, otherwise [P’,C] is
stable for any system P’, and there is an easy contradition. By assumption, there
exists a ¢ such that ||Qae || < ¢ for all P’ with §(M, M’) < b. From the identity
Ay = Apme v (Ime + Qaer v (T — T )| mr) (Mg | mar) ~H e (cf. [3]) we can
see that A s is invertible for all P” with §(M’', M") < 1/2¢ for some P’ with
§(M, M') < b. Moreover

QI = Tt | atr Tprr + Qawr &y (Tagr — Tag )| ) ™ Qe |
< 2c.

From Theorem 1 the union of open balls, of radius 1/2¢c, about all M’ with §( M, M’) <
b includes an open ball about M of radius b + € for some € > 0. It now follows that
(b) holds for P” in a ball about P and radius strictly greater than baqar. So from
now on we assume that baqa < b < 1.

Next we prove that there exists a subspace M’ € Graph;, with §(M, M’) < bsuch
that IIy-.|ae is not invertible. Let A := A g, Ey be the spectral family of A*A,
and h € E;(a)+M of unit norm, for some arbitrary € > 0. Then ||(A*A—ba n)h| <
€. Define M_ := M OTh, po := Oyh € N, qo := I 1po, and M' = M_ +Cpy.
Since M’ NN # {0} then ITxq | a2 is not invertible. From Lemma 3 we have

(28) S(M,M') = \/1=[<h,go>?
and M’ € Graphy,. To evaluate (28) we first note that

<h,qo> = <h,po>= ||Po||2
(29) =1 |AR|2.

We also have

laoll* = llpoll* — |ITLy_TInch|?
= [Ipoll® = ITLpe_Tprs o2
= [lpol*~ <Tnrsh, (M — Tgp) T2 h>
= ||p0||2— <TIpIIp A, TIpXE g h> + | <TDprih B> |2
=1—[|Ah|® — [A*AR|? + || AR|*
(30) =1-—||AR|?+ O(e).

From (28)—(30), we obtain §(M, M’) = ||Ah| + O(e). In particular, for sufficiently
small € we have §(M, M’) < b.

In case M’ € Graph;, then the hypothesis is violated and the proof is complete.
If not, consider a sequence M} € Graphy,, ¢ = 1,2,..., converging to M’. If there is a
subsequence such that IIr |ar+ is not invertible then, again, there is a contradiction.
Otherwise, since lim;_,co ||TXp [+ — TIaq;|ar2 || = O, we can find a subsequence such
that lim; oo || (TEag| A1) 7Yl = oo. This also violates the hypothesis. o

Remark 1. A similar result was established in [6, Thm. 5] for linear time-invariant
causal systems. However, the result in [6] differs from the one above in that the <
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and < signs are interchanged, and the “uniform boundedness” is absent. We will
show that the exact statement of [6, Thm. 5] is not valid in the case of time-varying
systems so that the uniformity condition is in fact necessary. More precisely, in the
next section we will present an example where [Pq, C] is stable for all P; such that
§(M, M;) < 1 while by p = 1/v2 < 1.

Remark 2. The basic geometric ideas behind the proof of Theorem 3 can be
simply expressed. The essence of the sufficiency part of Theorem 3 ((a)=-(b)) can be
seen from the identity A v = A pt v (Taa+ QA (T —TEag) [ ad) (Tagr | a0) Hanrs
which implies that A r¢ a is invertible for all P’ if (M, M’) < ||Qm ||t The key
idea in the necessity part is to find a subspace M’ such that §(M, M’) = [|Qu || 72
and so that Proposition 6(a) is violated. The construction given in the proof is to
remove a direction orthogonally from M and to replace it with a direction from
N. The vectors are chosen in such a way that the angle between them is equal (or
arbitrarily close t0) Omin(M,N). This gives M' NN # {0} with §(M, M’) having
the required value. (The reader is referred to [19] for another version of this idea.)
The additional ingredients in the proof deal with the uniform boundedness condition
and the need to impose graphability on the perturbed subspaces.

Remark 3. In the theorem we do not impose any time-invariance and causality
constraint on the systems considered. Certainly the implication (a)=>(b) of Theorem
3 is still valid when the class of systems is restricted by a causality requirement, but
the reverse implication requires a construction different from the one given here.

6. Clarification of uniform boundedness condition. We now present an ex-
ample to show that, in the time-varying case, the obstruction that limits the largest
perturbation ball in the gap metric may be due solely to the lack of uniform bound-
edness of the closed loop operator, as expressed in Theorem 3.

Let U =Y = £5[0,00) =: V, L =U & ), and identify U and Y with the corre-
sponding subspaces of L. Consider P having the matrix representation

10
p_| 0o

and let C = 0. Then M = {((J’)o) : v € V}, where (v)o = (v0,0,0,...) for any

v = (vo,v1,V2,...) € V,and N = {(2) :v € V}. For any M; € Graph;, define P; by
M; = Gp,. Also define Bally (M, b) := Ball(M, b) N Graphy,.
PROPOSITION 7. For the example given above

sup {b : {M; € Bally(M,b) implies that [P, C] is stable} } = 1.

This should be contrasted against the fact that for the particular P, C given above

by = () (O - P —Cay ~ PO) )

(31 = a ey - 2

Proof of Proposition 7. Since N' = U+, for any M; € Bally(M,b), M;NN = {0}.
Therefore, [P;,C] isstable < M;+ N =L & IIyM; = U. Next note
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that M+ = {(_(5 )") : v € V}. Proposition 3 also implies that any M; such that
6(M, M1) < 1 can be written as

e {() () o)

where X : V — V is a bounded operator. However,

MiNN = {0} & v — (Xv)g = 0 implies (v)o + Xv =10
v = (v)o = (Xv)o implies (v)o + Xv =0
& (X)oo #1,

where (X)o,0 denotes the (0,0)-entry in a matrix representation of X with respect to
the standard basis of V = £5[0, 00). Take any M; € Bally (M, 1). Then

M ={v—Xv)g:veV}=U

since (X)o,0 # 1. Hence, M; € Bally(M,1) implies that [Py, C] is stable. So b =1
is the supremal b. ]

7. Combined plant and controller uncertainty. When both plant and con-
troller are subject simultaneously to gap-ball uncertainty, there is a maximal amount
for the combined uncertainty that can be tolerated. The following theorem is a gen-
eralization of an elegant result of Qiu and Davison [16] to the time-varying case.

THEOREM 4. Let P € Py, y, C € Py y and let by, by be fixred nonnegative
numbers such that b2 + b2 < 1. Then the following are equivalent:

(a) [P,C] is stable and b1y/1 — b2 + bay/1 — b3 < b n;

(b) [P’,C’] is stable and Qv A is uniformly bounded for all P', C' with M’ :=
Gp, N':=Ggry, (M, M) < by and §(N,N") < by.

Proof. (a)=(b) Suppose (b) fails and that [P, C] is stable. We will show that
biy/1 —b% + ba\/1 —b? > baqa. As in the proof of Theorem 3 there are two possi-
bilities:

(i) T(XInv1|a) is not bounded below for M’ € Ball(M,b;) N Graph,, and
N’ € Ball(VN, b2) N Graph,,,

(ii) there exists M’ € Ball(M,b;) N Graphy and N’ € Ball(V, b2) N Graph,,
and 0 # z € N'- N ML,
In case (i), for all € > 0 there exists M’, N’, and z € M’ of unit norm such that
ITIprcz|| < €. Setting y := Iz»x € N’ we have

| <=z,y> | 1 — My
llllllyll Iyl
Since §(M, M') < b, it follows that ||[II x| < by. Thus, if o := IIpqx € M, then

0(z,y) := arccos = arccos ( ) < arcsine.

0(zo, ) < arcsinb;.
Similarly, since §(N,N”) < bo,

0(yo,y) < arcsin b,
where yo := Ixy € N. It follows from (15) that

arcsin by + arcsin by + arcsine > 6(zo, z) + 0(y, yo) + 0(z,y)

Z 0(5130, yO)
(31) > Omin(M, N) = arcsinba ar.
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Since (31) holds for all € we have
arcsin by + arcsin by > arcsinbaq a

Therefore, b11/1 — b3 + bay/1 — b? > baqn and so (a) fails. In case (ii) we proceed
similarly. Set 27 := IIyq1z and 23 := IIy12. Since by > §(M, M) = §(M*+, M'L)
we have 0(z,21) < arcsinb;. Also, by > §(N,N') = §(N*+,N"") implies that
0(z, z2) < arcsinby. Thus

arcsin by + arcsin by > 6(21, 22)
Z omin(M—LaNl)
= arcsinbpqL por1 = arcsinbp i

and (a) fails once again.
(b)=>(a) Suppose (b) holds for some b; and by satisfying

(32) biy/1 — b2 + by /1 — b2 > bag -

Similar reasoning to the proof of Theorem 3 shows that we may take strict inequality
in (32). In particular, if ||[Qam || < ¢ in (b), then || Qg av|| < 2¢ for all

" ’ l
M e U  Baly (M, 26)

M’ €Bally (M,b;)

and all N7 € Bally(N,b;). Theorem 1 then shows that statement (b) holds with b;
replaced by some b; + € for € > 0. Since the left-hand side of (32) is monotonically
increasing in by, it follows that (b) holds for some b; and b, satisfying (32) with
strict inequality. Henceforth we will assume that this is the case. We also note from
Theorem 3 that b1, by < baq,a-

We now show that there are subspaces M’ € Graphy and N’ € Graphy, with
§(M, M’) < by and §(N,N") < by such that IT,,1|re is not invertible.

As in the proof of Theorem 3, let A := Aaqar, Ex be the spectral family of
A*A, and h € E;a)4cM of unit norm, for some arbitrary € > 0. Then ||Ah| <
T(A) + € = bpma + €. Define py = Ah + (1 — AM)IIxh and write M_ := M 6 Ch,
N_ = NoClyh, My := M_ +Cpy, and Ny := N_ +Cpy. We also write
g '=II,1py and 7, := I 1 py. We first show that

_ (A= XN)[JAR|/1— ||AA|? . .
(33) (M, M) = NSO + O(e) =: ex + O(e).

From Lemma 3 we know that

(34) 6(M,M,\) =V 1_|<h,QA>I2‘
To evaluate (34) we must compute <h, g\ > and ||gx||. First,

<h,gp>=<h,pr>
=X+ (1= Npol?
=X+ (1= - |AR|?)
(35) =1-(1-))|An|%
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Next, using (30), we have
{@x aa) = A% + 201 = Vllpol® + (1 = 2)?[lgo]|?
~ A2+ (201 - A) + (1= N)?) (1 - |AR|?)
(36) =1-(1-X)|AR|?

where ~ denotes equality to O(e). Equations (35) and (36) together show that

(1 - (1 - N[ AR|2)®

A N2
|<h’> q>\>| T 1= (1 — )\2)”Ah”2

+ O(e)

from which (33) follows by simple manipulation. Next we show that

L NAW
o I = =T eane

From Lemma 3 we know that

(38) SN, NX) = /1 = [{o, )%

To evaluate (34) we need the following computations:

(])Q,’l")\> = (HN’h? (HN'J- + ]]]?Po)p)\>

(39) =1—[|Ah|?
(40) = |Ipol|?
and
(ra,7a) = ((Tnx + Mg pe )pr, (TTare + Thep, )P )
= | Tp2pall® + 1T popall?
= M| Ty h|® + | TIxh|?
(41) =1-(1-X2%)An|2

Equations (39)-(41) together show that

- - A2
2 _
o, = T = ) AR

from which (37) follows by simple manipulation. Next we observe from (33) and (37)
that cxy/1 — d3 + dxy/1 — ¢ = ||Ah||. Since cy is monotonically decreasing in A on
the interval [0, 1] we can choose A such that ¢y = b; — €. Then for sufficiently small e,
we must have dy < by; otherwise, we have a contradiction to (32) with strict inequality.
For the above choice of A and sufficiently small € we set M’ = M, and N’ = N,
which gives §(M, M) < by and §(N,N’) < by. Lemma 3 shows that M’ € Graphy,
and N’ € Graph,,. Also IT,.|re is not invertible since M’ NN’ # {0}.

Now consider a sequence M} € Graphy, ¢ = 1,2,..., converging to M’ and a
sequence N € Graphy, i = 1,2, ..., converging to . If there is a subsequence such
that II NIt | M, is not invertible, then there is a contradiction. Otherwise, we can find a
subsequence so that ILy:.|aq; is invertible. First observe that lim;,co [Tl Iag —
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H/\QLHM; || = 0. Since Iy, 1| is not invertible, for any € we can find an z € M’ of
unit norm such that ||y z|| < e. Thus [[TLy:. yi|| < € for sufficiently large 7, where
yi := Ipqz. Since M; — M’ we also have ”HN,.’*gi” < ¢ for sufficiently large 4.
This means that lim;_, o ||(TLpqL| M;)—lll = 00. This violates the hypothesis. O

Remark. The necessity pa;‘t of the proof of Theorem 4 requires a simultaneous
perturbation of M and N. The construction removes orthogonally one-dimensional
subspaces from each of M and A that are at an angle 6,,;,(M, N) to each other, and
replaces them by a convex combination of these directions. The subspaces are each
perturbed through the required minimal angles and together violate the direct sum
property of Proposition 6(a).
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