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Abstract— We consider transporting a mass on a given
directed graph. The mass is initially concentrated on certain
nodes and needs to be transported in a certain time period to
another set of nodes, typically disjoint from the first. We seek a
transport plan which is robust with respect to links and nodes
failure. In order to achieve that, we need our mass to spread
over time on all available routes between source and sink nodes
as much as the topology of the graph allows. The scheduling
consists in selecting transition probabilities for a Markovian
evolution which is designed to be consistent with given initial
and final marginal distributions. In order to construct such a
transportation plan, we set up a maximum entropy problem
(Schrödinger bridge problem) for probability laws on paths
which can be viewed as an atypical stochastic control problem.
To achieve robustness, we employ a prior distribution on paths
which allocates equal probability to paths of equal length
connecting any two nodes namely the Ruelle-Bowen random
walker (MRB). The latter is also shown to be itself the time-
homogeneous solution of a maximum entropy problem for
(unnormalized) measures on paths. Since the optimal transport
plan is computed via a Schrödinger bridge like problem, for
which an efficient iterative algorithm is available [1], our
approach appears also computationally attractive. We provide
a few examples which illustrate the effectiveness of this method.
While in this paper, we only consider strongly connected graphs,
in a forthcoming journal paper [2], we show that our approach
can be readily extended to not strongly connected graphs and
weighted graphs. In the latter case, this strategy may be used
to design a transportation plan which effectively compromises
between robustness and other criteria such as cost.

I. INTRODUCTION

Transport over networks is attracting increasing interest
in the literature due to its relevance in a variety of classical
and modern applications that include power transmission,
traffic, communication networks, financial transactions, bi-
ological systems and so on [3]–[6]. Furthermore, the topic
relates to a host of other questions pertaining to the connec-
tivity of graphs and the relative significance of their nodes
as in the Google PageRank problem [7] and the study of
interaction between genes in biological networks [8].
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Our starting point is an important insight on the re-
lation between the topological structure of a network and
the entropy rate of a random walker on the graph [9],
[10]. As it turns out, there is a unique way to specify
transition probabilities in such a way that all paths of equal
length joining any two nodes have equal probability. The
corresponding Ruelle-Bowen-Parry measure MRB on paths
maximizes the entropy rate of a random walker, and this is a
characteristic of the network. So far, the use of this concept
has been to assign significance to each node in relation to the
corresponding occupancy stationary distribution (centrality
measures). Our interest in the measure MRB has a different
motivation. In the attempt to design a robust transportation
plan featuring a mass which spreads on all available routes,
we employ MRB as a prior in a maximum entropy problem.
Since the Ruelle-Bowen random walk provides a natural
notion of “uniform” prior which gives equal importance to
all paths, the resulting transportation flow that is selected to
agree with specified initial and final marginals tends indeed
to spread across all available paths as much as possible given
the topological structure of the network. Thereby, such a flow
leads to relatively low probability of conflict and congestion,
and ensures a certain degree of inherent robustness of the
transport plan.

The paper is outlined as follows. In Section II, we
present the solution to a general Schrödinger bridge problem
(SBP), where the prior measure is not necessarily a proba-
bility measure, as a straightforward extension of the results
in [1], [11]. Section III is devoted to solutions of the SBP
with equal initial and final marginals which have a time-
invariant transition mechanism so that they admit invariant
measures. We establish the surprising result (Theorem 3.1)
that there is only one such bridge. This measure on paths
can be constructed generalizing a classical result by Parry
[12]. In Section IV, considering the special case of a prior
transition given by the adjacency matrix, we describe the
most important features of the Ruelle-Bowen random walker
along the lines of [9]. We observe that this measure MRB

on trajectories can be viewed as a solution to a “time-
homogeneous” Schrödinger bridge problem where the prior
transition mechanism is given by the adjacency matrix.
Section V describes our procedure to produce a robust
transportation plan over a given strongly connected network:
We take the Ruelle-Bowen distribution MRB as prior in a
Schrödinger bridge problem with prescribed initial and final
marginals. We also prove that the optimal transportation can
also be obtained in one step by taking the adjacency matrix
as prior transition mechanism (Proposition 5.2). Finally, in
Section VI we illustrate our approach on a simple graph.



II. MAXIMUM ENTROPY PROBLEMS ON PATHS

We discuss a generalization of the discrete Schrödinger
Bridge problem (SBP) considered in [1], [11], where the
“prior” is not necessarily a probability law and mass is
not necessarily preserved during the evolution. We consider
a finite state space X = {1, . . . , n} e.g., the nodes of a
network, over a time-indexing set T = {0, 1, . . . , N}. The
goal is to determine a probability distribution P on the
paths XN+1 in a way such that it matches the specified
marginal distributions ν0(·) and νN (·) and the resulting
random evolution is closest to the “prior” in a suitable sense.

The prior law is induced by the Markovian evolution

µt+1(xt+1) =
∑
xt∈X

µt(xt)mxtxt+1 (1)

for nonnegative distributions µt(·) over X with t ∈ T .
Throughout, we assume that mij ≥ 0 for all indices i, j ∈ X
and for simplicity, for the most part, that the matrix

M = [mij ]
n
i,j=1

does not depend on t. In this case, we will often assume that
all entries of MN are positive. The rows of the transition
matrix M do not necessarily sum up to one, so that the
“total transported mass” is not necessarily preserved. This is
the case, in particular, of a Markov chain with “creation” and
“killing”. It also occurs when M simply encodes the topo-
logical structure of a directed network with mij being zero
or one, depending whether a certain transition is allowed.
The evolution (1), together with measure µ0(·), which we
assume positive on X , i.e.,

µ0(x) > 0 for all x ∈ X , (2)

induces a measure M on XN+1 as follows. It assigns to a
path x = (x0, x1, . . . , xN ) ∈ XN+1 the value

M(x0, x1, . . . , xN ) = µ0(x0)mx0x1 · · ·mxN−1xN
, (3)

and gives rise to a flow of one-time marginals

µt(xt) =
∑
x` 6=t

M(x0, x1, . . . , xN ), t ∈ T .

The “prior” distribution M on the space of paths may be at
odds with a pair of specified marginals ν0 and νN in that
one or possibly both,

µ0(x0) 6= ν0(x0), µN (xN ) 6= νN (xN ).

We denote by P(ν0, νN ) the family of probability
distributions on XN+1 having the prescribed marginals. We
seek a distribution in this set which is closest to the prior M
in a suitable entropic sense.

Recall that, for P and Q probability distributions,
the Kullback-Leibler distance (divergence, relative entropy)
D(P‖Q) is nonnegative and equal to zero if and only if
P = Q [13]. It can be extended to positive measures that
are not probability distributions. Naturally, while the value of

D(P‖Q) may turn out negative due to miss-match of scaling,
the relative entropy is always jointly convex. We view the
prior M (specified by M and µ0) in a similar manner, and
consider the Schrödinger bridge problem:

Problem 2.1: Determine

M∗[ν0, νN ] = argmin{D(P‖M) | P ∈ P(ν0, νN )}. (4)

Provided all entries of MN are positive, the problem
has a solution, which is unique due to strict convexity. This
is stated next.

Theorem 2.2: Assume that MN has all positive ele-
ments. Then there exist nonnegative functions ϕ(·) and ϕ̂(·)
on [0, N ]×X satisfying, for t ∈ [0, N − 1], the system

ϕ(t, i) =
∑
j

mijϕ(t+ 1, j), (5a)

ϕ̂(t+ 1, j) =
∑
i

mijϕ̂(t, i) (5b)

with the boundary conditions

ϕ(0, x0)ϕ̂(0, x0) = ν0(x0) (5c)
ϕ(N, xN )ϕ̂(N, xN ) = νN (xN ), (5d)

for all x0, xN ∈ X . Moreover, the solution M∗[ν0, νN ] to
Problem 2.1 is unique and obtained by

M∗(x0, . . . , xN ) = ν0(x0)πx0x1
(0) · · ·πxN−1xN

(N − 1),

where1

πij(t) := mij
ϕ(t+ 1, j)

ϕ(t, i)
. (6)

Equation (6) specifies one-step transition probabilities that
are well defined.

Proof: The argument in [11, Theorem 4.1] and [1,
Section III] applies verbatim to this setting which is slightly
more general in that M does not prescribe a probability
kernel. The system (5a-5d) is known as a Schrödinger system.
The existence of solution is shown in [1, Section III] by
establishing that the composition

ϕ̂(0, x0)
(MT )N−→ ϕ̂(N, xN )

(5d)−→ ϕ(N, xN ) −→ . . .

. . .
MN

−→ ϕ(0, x0)
(5c)−→ (ϕ̂(0, x0))next (7)

is contractive in the Hilbert metric [14]–[17]. The fact that
πij(t) in (6) satisfy

∑
j πij(t) = 1 follows from (5a).

The factors ϕ and ϕ̂ are unique up to multiplication of ϕ
by a positive constant and division of ϕ̂ by the same constant.
The statement of the theorem is analogous to results for the
classical Schrödinger system (5) of diffusions that have been
established by Fortet, Beurling, Jamison and Föllmer [18]–
[21]. The requirement for MN to have positive entries can
be slightly relaxed and replaced by a suitable condition that
guarantees existence of solution for the particular ν0 and

1Here we use the convention that 0/0 = 0.



νN . The case when M is time varying can also be readily
established along the lines of [11, Theorem 4.1] and [1,
Theorem 2].

Finally, to simplify the notations, let ϕ(t) and ϕ̂(t)
denote the column vectors with components ϕ(t, i) and
ϕ̂(t, i), respectively, with i ∈ X . In matricial form, (5a),
(5b ) and (6) read

ϕ(t) = Mϕ(t+ 1), ϕ̂(t+ 1) = MT ϕ̂(t), (8a)

and

Π(t) = [πij(t)] = diag(ϕ(t))−1M diag(ϕ(t+ 1)). (8b)

III. TIME-HOMOGENEOUS BRIDGES

In this section, we consider the case of Schrödinger
bridge problems when the marginals are idential, namely,
ν0 = νN = ν. In particular, we are interested in the
case when the solution of the SBP corresponds to a time-
homogeneous Markov evolution.

Since for the nonnegative matrix M we have MN with
only positive elements, by the celebrated Perron-Frobenius
Theorem (see [22]), M has a unique positive eigenvalue λM
and it is equal to the spectral radius. Let φ and φ̂ be the
corresponding right and left eigenvectors, then both of them
have only positive components. We normalize φ and φ̂ so
that ∑

x∈X
φ(x)φ̂(x) = 1.

This leads to a special probability distribution

ν̄(x) = φ(x)φ̂(x). (9)

It turns out that ν̄ is the only probability measure such that
the associated SBP has a time-homogeneous solution; we
shall name it the time-homogeneous bridge associated with
M . This is summarized in the following theorem. For reasons
of space, we only discuss fully connected graphs referring
to [2] for the general case.

Theorem 3.1: Let M be a nonnegative matrix such that
MN has only positive elements, and M the measure on
XN+1 given by (3) with µ0 satisfying (2). Then the solution
to the Schrödinger bridge problem

M∗[ν̄] = argmin{D(P‖M)|P ∈ P(ν̄, ν̄)}, (10)

where ν̄ is as in (9), has the time-invariant transition matrix

Π̄ = λ−1M diag(φ)−1M diag(φ) (11)

and invariant measure ν̄. Conversely, suppose N > 1 and that
M has only positive elements. Given probability measure ν,
suppose that the transition matrix of M∗[ν] does not depend
on time. Then ν = ν̄.

Proof: Since φ and φ̂ are the right and left eigenvec-
tors of M associated with eigenvalue λM , the nonnegative
functions ϕ and ϕ̂ defined by

ϕ(t) = λtMφ, ϕ̂(t) = λ−tM φ̂

satisfy the Schrödinger system (5). By Theorem 2.2, the
solution M∗[ν̄] of the Schrödinger bridge problem (10) then
has the transition matrix (see (6))

Π̄ = diag(ϕ(0))−1M diag(ϕ(1))

= λ−1M diag(φ)−1M diag(φ),

which is exactly (11). Moreover, since

Π̄T ν̄ = λ−1M diag(φ)MT φ̂ = ν̄,

it follows that ν̄ is the corresponding invariant measure.
Converserly, suppose N > 1 and the transition matrix Πν

of M∗(ν) is time invariant. Let ϕν(t) = Mϕν(t+ 1) be the
space-time harmonic function associated to the minimizer
M∗(ν). Consider times t = N − 2, N − 1, N . By (8) and
the time invariance of Πν , we must have

Πν = diag(ϕν(N − 2))−1M diag(ϕν(N − 1))

= diag(ϕν(N − 1))−1M diag(ϕν(N)).

It follows that

M = Dν(N − 1)MDν(N)−1,

where the Dν(t) = diag(ϕν(t)) diag(ϕν(t − 1))−1 =
diag(dν1(t), . . . , dνn(t)) are still diagonal. Hence,

mij = eTi Mej = di(N − 1)mijdj(N)−1, ∀i, j.

Varying j for a fixed i, since mij 6= 0, we get that D(N) is
a scalar matrix, say λI , not depending on t and ϕ(N) is a
right eigenvector of M . By the Perron-Frobenius Theorem,
it follows that ϕ(N) corresponds to λM . It readily follows
that ϕ̂(0) is an eigenvector of MT with positive components
corresponding to the same eigenvalue λM . By (5c)-(5d), ν
is equal to ν̄. This completes the proof.

As we shall see in the next section, when M is the
adjacency matrix of a strongly connected, directed graph,
the associated time-homogenous bridge turns out to be the
Ruelle-Bowen measure MRB [9, Section III]. This probabil-
ity measure has a number of useful properties, in particular
it gives the same probability to paths of the same length
between any two given nodes. All of these are discussed in
Section IV.

IV. THE RUELLE-BOWENS RANDOM WALK

In this section we explain the Ruelle-Bowen (RB)
random walk and some of its properties. We follow closely
Delvenne and Libert [9]. The RB random walk amounts
to a Markovian evolution on a directed graph that assigns
equal probabilities to all paths of equal length between any
two nodes. The motivation of [9] was to assign a natural
invariant probability to nodes based on relations that are
encoded by a graph, and thereby determine a centrality
measure, akin to Google Page ranking, yet more robust
and discriminating. Our motivation is quite different. The
RB random walk provides a uniform distribution on paths.
Therefore, it represents a natural distribution to serve as prior



in the SBP in order to achieve a maximum spreading of the
mass transported over the available paths. In this section,
besides reviewing basics on the RB random walk, we show
that the RB distribution is itself a solution to the SBP.

We consider a strongly connected aperiodic, directed
graph

G = (V, E).

The idea in Google Page ranking the nodes is based on a
random walk where a jump takes place from one node to
any of its neighbors with equal probability. The alternative
proposed in [9] is an entropy ranking, based on the stationary
distribution of the RB random walk [12], [23]. The transition
mechanism is such that it induces a uniform distribution on
paths of equal length joining any two nodes. This distribution
is characterized as the one maximizing the entropy rate [13]
for the random walker. Let us briefly recall the relevant
concept. The Shannon entropy for paths of length t is at
most

log |{paths of length t}|.

Hence, the entropy rate is bounded by the topological entropy
rate

HG = lim sup
t→∞

(log |{paths of length t}|/t).

Here |{·}| denotes the cardinality of a set. Notice that HG
only depends on the graph G and not on the probability
distribution on paths. More specifically, if A denotes the
adjacency matrix of the graph, then the number of paths of
length t is the sum of all the entries of At. Thus, it follows
that HG is the logarithm of the spectral radius of A, namely
the maximum of the absolute values of the eigenvalues of
A, namely,

HG = log(λA). (12)

We next construct the Rulle-Bowen random walk. Since
A is the adjacency matrix of a strongly connected aperiodic
graph, it satisfies that AN has only positive elements for
some N > 0. By Perron-Frobenius Theorem, the spectral
radius λA is an eigenvalue of A, and the associated left and
right eigenvectors2 u and v, i.e.,

ATu = λAu, Av = λAv (13)

have only positive components. We further normalize u and
v so that

〈u, v〉 :=
∑
i

uivi = 1.

As in Section III, it is readily seen that their componentwise
multiplication

µRB(i) = uivi (14)

defines a probability distribution which is invariant under the
transition matrix

R = [rij ], rij =
vj
λAvi

aij , (15)

2We are now conforming to notation in [9] for ease of comparison. Hence
we use u and v rather than φ̂ and φ.

that is,
RTµRB = µRB . (16)

The transition matrix R in (15) together with the stationary
measure µRB in (14), define the Ruelle-Bowen path measure

MRB(x0, x1, . . . , xN ) := µRB(x0)rx0x1
· · · rxN−1xN

. (17)

Proposition 4.1: The Ruelle-Bowen measure MRB

(17) assigns probability λ−tA uivj to any path of length t from
node i to node j.

Proof: Starting from the stationary distribution (14),
and in view of (15), the probability of a path ij is

uivi

(
1

λA
v−1i vj

)
=

1

λA
uivj ,

assuming that node j is accessible from node i in one step.
Likewise, the probability of the path ijk is

uivi

(
1

λA
v−1i vj

)(
1

λA
v−1j vk

)
=

1

λ2A
uivk

independent of the intermediate state j, and so on. Thus, the
claim follows.

Thus, the Ruelle-Bowen measure MRB has the striking
property that it induces a uniform probability measure on
paths of equal length between any two given nodes. We
quote from [9] “Since the number of paths of length t is
of the order of λtA (up to a factor) the distribution on paths
of fixed length is uniform up to a factor (which does not
depend on t). Hence the Shannon entropy of paths of length
t grows as t log λA, up to an additive constant. The entropy
rate of this distribution is thus log λA which is optimal” by
the expression for HG in (12).

The construction of the Ruelle-Bowen distribution is
obvious a special case of the measure ν̄ in (9) in Section
III, in the special case when M is the adjacency matrix A
of a graph. Therefore, the RB measure is the solution of
the particular SBP when the “prior” transition mechanism
is given by the adjacency matrix! This observation is ap-
parently new and beautifully links the topological entropy
rate to a maximum entropy problem on path space. This is
summarized as follows.

Proposition 4.2: Let A be the adjacency matrix of a
strongly connected graph aperiodic G, M the nonnegative
measure on XN+1 given by (3) with M = A and µ0

satisfying (2). Then, the Ruelle-Bowen measure MRB (17)
solves the SBP (4) with marginals ν0 = νN = µ.

V. ROBUST TRANSPORT OVER NETWORKS

Once again we consider a strongly connected aperiodic,
directed graph G with n vertices and seek to transport a
unit mass from initial distribution ν0 to terminal distribution
νN in at most N steps. We identify node 1 as a source
and node n as a sink. The task is formalized by setting
an initial marginal distribution ν0(x) = δ1x(x) Kronecker’s



delta. Similarly, the final distribution is νN (x) = δnx(x).
Generally, we seek a transportation plan which is robust
and avoids congestion as much as the topology of the graph
permits. This latter feature of the transportation plan will be
achieved in this section indirectly, without explicitly bringing
into the picture the capacity of each edge. With these two
key specifications in mind, we like to control the flux so
that the initial mass spreads as much as possible on the
feasible paths joining vertices 1 and n in N steps before
reconvening at time N in vertex n. We shall achieve this by
constructing a suitable Markovian transition mechanism. As
we want to allow for the possibility that all or part of the
mass reaches node n at some time less than N , we always
include a loop in node n so that our adjacency matrix A
always has ann = 1. As explained in Section IV that MRB

gives equal probability to paths joining two specific vertices,
it is natural to use it as a prior in the SBP with marginals
δ1x, δnx so as to achieve the spreading of the probability
mass on the feasible paths joining the source with the sink.
Thus, we consider the following.

Problem 5.1: Determine

M∗[δ1x, δnx] = argmin{D(P‖MRB)|P ∈ P(δ1x, δnx)}.

By Theorem 2.2, the optimal, time varying transition
matrix Π∗(t) of the above problem is given, recalling the
notations in (8), by

Π∗(t) = diag(ϕ(t))−1R diag(ϕ(t+ 1)), (18)

where

ϕ(t) = Rϕ(t+ 1), ϕ̂(t+ 1) = RT ϕ̂(t),

with the boundary conditions

ϕ(0, x)ϕ̂(0, x) = δ1x(x), ϕ(N, x)ϕ̂(N, x) = δnx(x) (19)

for all x ∈ X . In view of (15), if we define

ϕv(t) := λ−tA diag(v)ϕ(t), ϕ̂v(t) := λtA diag(v)−1ϕ̂(t),

then we have

ϕv(t) = Aϕv(t+1), ϕ̂v(t+1) = AT ϕ̂v(t), t = 0, . . . , N−1.

Moreover,

ϕv(t, x)ϕ̂v(t, x) = ϕ(t, x)ϕ̂(t, x), t = 0, . . . , N−1, x ∈ X .

Here, again, A is the adjacency matrix of G and v is the
right eigenvector corresponding to the spectral radius λA.

The above analysis provides another interesting way to
express M∗[δ1x, δnx]; it also solves the Schrödinger bridge
problem with the same marginals δ1x and δnx while different
prior transition matrix A, the adjacency matrix. Thus, we can
replace the two-step procedure by a single bridge problem.
This is summarized in the following proposition.

Proposition 5.2: Let A be the adjacency matrix of a
strongly connected aperiodic graph G, M the nonnegative
measure on XN+1 given by (3) with M = A and µ0

satisfying (2). Then, the solution M∗[δ1x, δnx] of Problem
5.1 also solves the Schrödinger bridge problem

min{D(P‖M)|P ∈ P(δ1x, δnx)}. (20)

The iterative algorithm of [1, Section III] can now be
based on (20) to efficiently compute the transition matrix of
the optimal robust transport plan M∗[δ1x, δnx].

Remark 5.3: Finally, observe that if AN has also zero
elements, the robust transport described in this section may
still be feasible provided there is at least one path of length
N joining node 1 with node n, i.e., (AN )1n > 0.

As we discussed in the beginning of this section, the
intuition to use MRB as a prior is to achieve the spreading
of the probability on all the feasible paths connecting the
source and the sink. It turns out that this is indeed the
case; the solution M∗[δ1x, δnx] of Problem 5.1 assigns equal
probability to all the feasible paths of lengths N joining the
source 1 with the sink n. Too see this, by (18), the probability
of the optimal transport plan M∗[δ1x, δnx] assigns on path
x = (x0, x1, . . . , xN ) is

M∗[δ1x, δnx](x) = δ1x(x0)

N−1∏
t=1

rxtxt+1

ϕ(t+ 1, xt+1)

ϕ(t, xt)

= δ1x(x0)
ϕv(N, xN )

ϕv(0, x0)

N−1∏
t=1

axtxt+1
.

Indeed,
∏N−1
t=1 axtxt+1

= 1 for a feasible path and 0

otherwise. Moreover, δ1x(x0)ϕv(N,xN )
ϕv(0,x0)

depends only on the
boundary points x0, xN . We conclude that M∗[δ1x, δnx]
assigns equal probability to all the feasible paths. Finally,
there are (AN )1n feasible paths of length N connecting
nodes 1 and n. Thus we have established the following result.

Proposition 5.4: M∗[δ1x, δnx] assigns probability
1/(AN )1n to each of all the feasible paths of length N
connecting node 1 with node n.

Fig. 1: Network topology

VI. EXAMPLES

We study Problem 5.1 for a simple academic example
to illustrate our method. Consider the graph in Figure 1 with



the following adjacency matrix

A =



0 1 1 1 0 0 0 0 0
0 0 1 0 1 0 1 0 0
0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 1


.

We seek to transport a unit mass from node 1 to node 9
in N = 3 and 4 steps. We add a self loop at node 9, i.e.,
a99 = 1, to allow for transport paths with different step sizes.

The shortest path from node 1 to 9 is of length 3 and
there are three such paths, which are 1−2−7−9, 1−3−8−9
and 1 − 4 − 8 − 9. If we want to transport the mass with
minimum number of steps, we may end up using one of
these three paths. This is not so robust. On the other hand,
if we apply the Schrödinger bridge framework with the RB
measure MRB as the prior, then we get a transport plan with
equal probabilities using all these three paths. The evolution
of mass distribution is given by

1 0 0 0 0 0 0 0 0
0 1/3 1/3 1/3 0 0 0 0 0
0 0 0 0 0 0 1/3 2/3 0
0 0 0 0 0 0 0 0 1

 ,
where the four rows of the matrix show the mass distribution
at time step t = 0, 1, 2, 3 respectively. As we can see, the
mass spreads out first and then goes to node 9. When we
allow for more steps N = 4, the mass spreads even more
before reassembling at node 9, as shown below

1 0 0 0 0 0 0 0 0
0 4/7 2/7 1/7 0 0 0 0 0
0 0 1/7 1/7 2/7 0 1/7 2/7 0
0 0 0 0 0 1/7 1/7 2/7 3/7
0 0 0 0 0 0 0 0 1

 .

VII. CONCLUDING REMARKS & FUTURE DIRECTIONS

In this paper, we have proposed a novel approach to
design a robust transportation plan on a given strongly
connected aperiodic, directed graph. It is based on a sort of
generalized maximum entropy problem (Schrödinger bridge
problem) for measures on paths of the given network. Taking
as prior measure the Ruelle-Bowen law MRB, the solution
naturally tends to spread the mass on all available routes
joining the source and the sink. Hence, the resulting transport
appears robust with respect to links/nodes failure.

This approach can be adapted to graphs that are not
strongly connected, as well as to weighted graphs [2]. In the
latter case, it can be used to effectively compromise between
robustness and cost or achieving robustness taking capacity
of the links into consideration. Since the optimal transport
plan is computed via a Schrödinger bridge like problem,

for which an efficient iterative algorithm is available, our
approach appears also computationally attractive. Also, this
approach relates to a number of fast developing and fascinat-
ing nearby areas such as robustness of graphs [3], [8], [24],
[25], optimal mass transport [26] and discrete curvature [27],
[28]. All these will be investigated in our future work.
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