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Abstract— The purpose of this paper is to elucidate
a dichotomy between past and future in prediction of
multivariate time-series. More specifically, vector-valued
gaussian stochastic processes may be deterministic in
one time-direction and not the other. This fact, which
is absent in scalar-valued processes, is deeply rooted in
the geometry of the shift-operator. The exposition and the
examples we discuss are based on the work of Douglas,
Shapiro and Shields on cyclic vectors of the backward
shift and relate to classical ideas going back to Wiener
and Komogoroff. The paper builds on examples and
the goal is to provide insight to a control engineering
audience.

I. INTRODUCTION

The variance of the one-step ahead prediction error
for a scalar, stationary, discrete-time stochastic pro-
cesses is given by the well-known formula

exp
{

1
2π

∫ π

−π
log(Φ(θ))dθ

}
(1)

due to G. Szegö [5]. This formula expresses the error
variance as the geometric mean of the power spectral
density Φ(θ) of the stochastic process. Past and future
contain the same information about the present and the
identical same formula provides the variance of the
“postdiction” error where the present is estimated from
future values. This is rather evident since (1) contains
no manifestation of the time arrow. There is no such
formula for the covariance matrix of the prediction or
the postiction error for multivariable processes. The
closest to such a formula was given by Wiener and
Masani formula [11] expressing the determinant of the
error covariance Ω in terms of the determinent of the
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power spectrum,

det(Ω) = exp
{

1
2π

∫ π

−π
log(det(Φ(θ)))dθ

}
. (2)

Subtly, this formula leaves out the possibility of a
dichotomy between past and future, which is indeed
the case. This issue has been noted in classical works
on prediction theory where it is pointed out that the
information contained in the remote past and the in-
formation contained in the remote future may differ
(see e.g., the forthcoming treatise by Lindquist and
Picci [6]). Our goal at present is to highlight and
elucidate this phenomenon by way of examples that are
intuitively clear to an engineering audience. Prediction
theory overlaps with the theory of analytic functions
on the disc and of the shift operator. The exposition
is relies on work of Douglas, Shapiro and Shields [2]
who obtained a characterization of cyclic vectors of the
“backward shift.”

The issue of the time-arrow and how this is embed-
ded in the statistics of sample-paths has been raised in
the physics literature (see [9]). Typically it is thought
that the time-arrow and “nonlinearities” are revealed by
considering several-point correlations and higher order
statistics. However, it is surprising to most that the
time-arrow impacts second-order statistics and prop-
erties of stationary Gaussian processes as well. This
is often missed (cf. [1], [10]) since it is exclusively
a phenomenon of vector-valued processes. The point
can be amply made using a simple moving average
process constructed in such a way so that the prediction
error differs substantially in the two time-directions
(see Section III). A limit case for processes with infinite
memory is when the stochastic process is not regular,
and then, the process is deterministic in one of the
two time-directions but not in the other. Examples
include processes generated by filters whose transfer
functions are cyclic with respect to the backward shift,
or by a symmetric in time situation, where the process
is generated by suitably a-causal filter and yet it is
predictable from the infinite remote past.

The importance of the time-arrow and its manifesta-
tion in engineering and physics is hardly a new issue,
yet it is one that is perhaps one of the least understood.



Thermodynamics and the paradox of the apparent di-
rectionality of physics originating in physical laws that
are time-symmetric has not gone unnoticed; Feynman
states that there is a fundamental law which says,
that ”uxels only make wuxels and not vice versa,” but
we have not found this yet. The reversibility or lack
thereof of dynamical models in stochastics and control
(see, e.g., [4], [8], [3]) is often puzzling, and perhaps,
the time-arrow plays a fundamental role in models of
engineering systems at a more basic level as well.

In Section II we review basic concepts describing
the relation between stochastic time series and analytic
functions. We also define cyclic vectors and present
results from [2]. In Section III we present an example
with a moving average process and we discuss the
corresponding predictor and postdictor. In Section IV
we present and example that is stochastic in one time-
direction and deterministic in the other. Furthermore
we describe a class of stochastic processes that have
this property.

II. PRELIMINARIES

The forward shift U is a linear operator on the
Hilbert space H2 = H2(D) defined as Uf(z) = zf(z).
We will often identify H2 and l2(N), since they are
isometric, and thus write

U : (a0, a1, a2, . . .)→ (0, a0, a1, . . .).

The backward shift U∗ is the adjoint operator of U .
On H2 we have U∗f(z) = (f(z) − f(0))/z, and
accordingly we may write

U∗ : (a0, a1, a2, . . .)→ (a1, a2, a3, . . .).

Cyclic vectors of an operator A are those vectors f
such that the closure of {Anf : n ≥ 0} spans the whole
space; when f is not a cyclic vector (non-cyclic), the
closure of the span is a proper invariant subspace for A.
As is well known, f ∈ H2 is cyclic for U if and only if
f is an outer function. When this is not the case, f lies
in the some closed invariant subspace for U , that is,
subspace of the form ϕH2 for some inner function ϕ.
The invariant subspace for U∗ is of the form (ϕH2)⊥,
therefore f fails to be cyclic for U∗ if and only if it lies
in one of the spaces (ϕH2)⊥ for some inner function
ϕ. This is not a property that can be easily checked!
However, a more transparent condition for a function
to be U∗-non-cyclic is given by the following theorem
of Douglas-Shapiro-Shields.

Theorem 1 ([2]): A necessary and sufficient condi-
tion that a function f in H2 be U∗-non-cyclic is that
there exist a pair of inner functions ϕ and ψ such that

f

f̄
=
ϕ

ψ
almost everywhere on ∂D.

There are several easy but still quite interesting and
intriguing properties of U∗-cyclic functions, e.g., a
function is U∗ cyclic if and only if its outer factor is.
If f is U∗ cyclic and g is non-cyclic, then f + g, fg
and f/g are all cyclic as long as they are in H2.

The connection and correspondence between func-
tion theory on the unit disc and discrete-time, stationary
stochastic processes is well known and we will make
extensive use of –our favorite concise reference is [5,
Chapter 10]. The basis is the standard Kolmogoroff
isomorphism between the linear space L(x) generated
by a second-order stochastic process {xk : −∞ <
k < ∞} and functions on L2 (on the unit circle).
Throughout, in this correspondence, we follow the
mathematical convention where U (equivalently, mul-
tiplication by z or eiθ) corresponds to unit time-delay
for the corresponding process. Thus, in the usual slight
abuse of notation, z : xk 7→ xk−1 is the “delay
operator” which is opposite to the way this is used in
signal processing literature (where z−1 is often used to
denote delay).

III. COMPARISON OF PREDICTOR/POSTDICTOR
ERROR FOR AN MA PROCESS

It is often suggested that for Gaussian stationary
processes the time direction does not have an impact
on the error variance (cf. [1], [10]); as noted earlier,
this is not so for multivariable processes. Herein, we
illustrate this fact with an example of a moving average
two-variate process

xk = wk + αwk−1

yk = wk.

The process {wk | k ∈ Z} is taken to be gaussian, zero-
mean, unit-variance and white, i.e., E{wkw̄k} = 1, and
E{wkw̄`} = 0 for k 6= `. Let

ξk :=
[
xk
yk

]
and consider the one-step ahead prediction problem to
minimize the matrix error variance

E{(ξk − ξ̂k|past)(ξk − ξ̂k|past)
∗}

in the positive-semidefinite sense, where ξ̂k|past is a
function of past measurements xk−1, xk−2, . . . , and
yk−1, yk−2, . . .. Since wk ⊥ xk−`, yk−` for ` > 0, the
solution is easily seen to be

ξ̂k|past =
(
x̂k
ŷk

)
=
(
αyk−1

0

)
with a corresponding (forward) error variance

min
ξ̂k|past

E{(ξk−ξ̂k|past)(ξk−ξ̂k|past)
∗}=: Ωf =

(
1 1
1 1

)
.



Likewise, since wk−1 is orthogonal to future mea-
surements xk+1, xk+2,. . . , yk+1,. . . , while

xk+1 − yk+1 = αwk,

we can write

xk = (xk+1 − yk+1)/α+ αwk−1

yk = (xk+1 − yk+1)/α.

The optimal estimator for xk, yk given future values is

ξ̂k|future =
(
x̂k
ŷk

)
=
(

(xk+1 − yk+1)/α
(xk+1 − yk+1)/α

)
with corresponding minimal (backward) error variance

min
ξ̂k|future

E{(ξk − ξ̂k|future)(ξk − ξ̂k|future)
∗}

=: Ωb =
(
α2 0
0 0

)
.

The prediction problem is clearly not symmetric with
respect to time, yet det Ωf = det Ωb = 0 in agreement
with the Wiener-Masani formula.

While the above example is sufficient to underscore a
certain dichotomy, the forward and reversed processes
have similar realizations (cf. [4]). Indeed, we can easily
see that

xk = αw̄k + w̄k+1

yk = w̄k+1,

is a realization for the backward process, where w̄k
is a gaussian white noise process. The forward and
backward realizations can be derived and correspond
to the left and the right analytic factors

Φ(z) =
(

1 + αz
1

)
(1 + αz−1, 1)

=
(
z−1 + α
z−1

)
(z + α, z) (3)

of the power spectrum Φ(z). It is possible to go
one step further and construct examples where this
factorization is not possible and, then, in one time-
direction the process is completely deterministic.

IV. NON-REVERSIBLE STOCHASTIC PROCESS

The following example underscores the situation
where the power spectrum does not admit one of the
two analytic factorizations and the underlying process
is completely deterministic in one of the time-directions
and not in the other. The stochastic process we consider
is generated by

xk = wk +
∞∑
`=1

1
1 + `

wk−`,

yk = wk.

The modeling filter

g(z) =
∞∑
`=0

1
1 + `

z`

for the xk component has as impulse response the
harmonic series. Interestingly, while this is not a stable
system in an input-output sense, yet, when driven by
a white noise process, it generates a well-defined L2-
process. Further, the function g(z) is U∗-cyclic ([2])
and, as we will see, a direct consequence is that the
process is completely deterministic in the backward
time-direction.

Since wk ⊥ xk−`, yk−` for ` > 0, the optimal
predictor is given by

ξ̂k|past =
(
x̂k
ŷk

)
=
( ∑∞

`=1
1

1+`yk−`
0

)
with a corresponding (forward) error variance

inf
ξ̂k|past

E{(ξk−ξ̂k|past)(ξk−ξ̂k|past)
∗}=: Ωf =

(
1 1
1 1

)
.

Reversing time-direction, we now want to estimate
x0, y0 given future observations, x`, y`, ` = 1, 2, . . ..
Since w` = y`, equivalently, we want to estimate x0,
y0 given

x̃k := xk −
k∑
`=1

1
k − `+ 1

y`

=
∞∑
`=0

1
k + `

w−`

and yk, for k = 1, 2, . . .. Since, now, spank>0{yk} is
orthogonal to x0, y0, and spank>0{x̃k}, this is equiv-
alent to estimating x0, y0 based only on x̃k for k =
1, 2, . . .. We now note that

∞∑
`=0

1
k + `

zk = (U∗)kg(z).

Also note that U∗g(z) is U∗-cyclic since g(z) is U∗-
cyclic.1 So we have, spank≥1{(U∗)kg(z)} = H2, and
hence

spank≥1{x̃k} = spank≤0{wk} 3 x0, y0.

The infimum of the backward error variance is therefore

inf
ξ̂k|future

E{(ξk − ξ̂k|future)(ξk − ξ̂k|future)
∗}

=: Ωb =
(

0 0
0 0

)
.

1This follows since g(z) is cyclic, g(0) and z are non-cyclic, and
U∗g(z) = (g(z)− g(0))/z ∈ H2.



and the time series is uniquely determined by the
infinite future (c.f., [5], [6]). Building on this example
and using [2] we derive the following result.

Theorem 2: Consider the stochastic processes

xk =
∞∑
`=0

g`wk−`,

yk =
∞∑
`=0

h`wk−`

where g(z) =
∑∞

`=0 g`z
` is cyclic and h(z) =∑∞

`=0 h`z
` 6= 0 is non-cyclic. Then the backward

process is deterministic.

V. CONCLUDING REMARKS

While the moving average process in Section III
admits a spectral factorization for the backward process
(3), there is no such factorization for the non-reversible
process in Section IV. This may be viewed in the
context of decompositions for stochastic processes that
are Gaussian, zero mean, and stationary. Namely, the
Hilbert space generated by any such process may be
decomposed as

H(ξk) = H−∞(ξk) ⊕H(wk),

in terms of the remote past and the driving noise,
namely,

H(ξk) = spank∈Z{ξk}
H−∞(ξk) = ∩t∈Zspank≤t{ξk}, and

H(wk) = spank∈Z{wk},

and similarly in terms of the remote future and the
Hilbert space generated in the backward direction by a
driving noise

H(ξk) = H+∞(ξk) ⊕H(w̄k)

(see [6] for details). The process is reversible if the
remote past and the remote future coincide. Here we
have considered a concrete example of a non-reversible
process where the remote past is trivial while the
remote future spans the entire process.

The essence of this example (Section IV and cf. [6]),
is that the power spectrum of {(xk, yk)T }, being(

g(z)
1

)(
g(z)∗ 1

)
fails to have a co-analytic spectral factorization. This
can be shown using Theorem 1 (see also [6]). It
also fails to satisfy condition 3 of Theorem 2 in [7].
This absence of co-analytic factorization renders the
backward process deterministic.

Finally, the dependence between of x0 and x̃k on wk
for k ∈ Z is expressed as follows,

x0

x̃1
...
x̃n

 =


1 1

2
1
3 · · ·

1
2

1
3

1
4 · · ·

...
...

...
1

n+1
1

n+2
1

n+3 · · ·




w0

w−1

w−2
...

 .

It would be interesting to establish the U∗-cyclicity of
g(z) directly based on spectral properties of the Hilbert
matrix that expresses this relationship.

We will further explore these issues in order to gain
understanding on how prediction and postdiction in
stochastic processes relate to time directionality and
causality.
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