
Visual Object Perception in Unstructured Environments

Aesis
Presented to

e Academic Faculty

by

Changhyun Choi

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Robotics Ph.D. Program
School of Interactive Computing

College of Computing
Georgia Institute of Technology

December 2014

Copyright © 2014 by Changhyun Choi

Visual Object Perception in Unstructured Environments

Approved by:

Professor Henrik I. Christensen, Advisor
School of Interactive Computing
College of Computing
Georgia Institute of Technology

Professor James M. Rehg
School of Interactive Computing
College of Computing
Georgia Institute of Technology

Professor Irfan Essa
School of Interactive Computing
College of Computing
Georgia Institute of Technology

Professor Anthony Yezzi
School of Electrical & Computer Engineering
College of Engineering
Georgia Institute of Technology

Professor Dieter Fox
Department of Computer Science & Engineering
University of Washington

Date Approved: August 22, 2014

To my parents,

who have believed in my prolonged dream.

iii

ACKNOWLEDGEMENTS

First of all, I would like to thank my advisor, Henrik Christensen, for his kind advice and thoughtful guidance. I

appreciate that he had believed in me all the time, even when I lacked confidence in my strength. I am also grateful to

my doctoral thesis commiee, Jim Rehg, Irfan Essa, Anthony Yezzi, and Dieter Fox, for their constructive comments

and priceless suggestions. anks to you all, my thesis has been much improved since my proposal dra.

Meeting kind friends in a strange foreign place has been a valuable present. I would like to thank the CogRob

lab mates: Alex Trevor, John Rogers, Jake Huckaby, Carlos Nieto, Akansel Cosgun, Sasha Lambert, Rahul Sawhney,

Kimoon Lee, Sungtae An, Siddharth Choudhary, Pushkar Kolhe, and Jayasree Kumar. I sincerely thank Heni Ben

Amor for giving valuable comments on both my thesis and my prospective career. It was also a precious experience

to study with brilliant Robotics Ph.D. students, such as Richard Roberts, Yong-Dian Jian, Baris Akgun, Duy-Nguyen

Ta, Tucker Hermans, Misha Novitzky, Neil Dantam, Maya Cakmak, Crystal Chao, etc. I would also like to thank

Kathy Cheek and Nina White for their kind administrative help.

Outside of Gatech, I had the great opportunity to collaborate with amazing researchers, including Yuichi Taguchi,

Ming-Yu Liu, Srikumar Ramalingam, and Oncel Tuzel at MERL as well as Ross Knepper, Andrew Spielberg, and

Mehmet Dogar at MIT. Study and research funding during my Ph.D. from General Motors, Boeing Company, MERL,

KFAS, and Google Summer of Codes is greatly appreciated.

Finally, I am deeply indebted to my father and mother for giving me the freedom of pursuing my dream and to

my sister Goeun for her warm support in a distance.

iv

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . ix

LIST OF FIGURES . x

ACRONYMS . xii

MATHEMATICAL NOTATION . xiv

SUMMARY .xvii

I INTRODUCTION . 1

1.1 Motivation and Challenges . 3

1.1.1 Objects with and without Textures . 3

1.1.2 Cluer . 4

1.1.3 Object Discontinuities . 4

1.1.4 Real-time Constraints . 4

1.2 Definition and Scope . 5

1.3 esis Statement . 6

1.4 Summary of Contributions . 6

1.5 Outline . 7

1.6 Publication Note . 7

II RELATEDWORK . 8

2.1 Inception of Object Perception . 8

2.2 Monocular-based Approaches . 9

2.2.1 Pose Estimation using Keypoints . 9

2.2.2 Pose Estimation using Edges . 10

2.2.3 Pose Tracking with Single Pose Hypothesis . 10

2.2.4 Pose Tracking using Multiple Pose Hypotheses . 11

2.3 Depth-based Approaches . 12

2.3.1 Pose Estimation using 3D Point Clusters . 12

2.3.2 Pose Estimation using 3D Point Descriptors . 12

2.3.3 Pose Estimation using Pair Features . 13

2.3.4 Pose Estimation using Templates . 13

2.3.5 Pose Tracking with Depth Information . 13

2.4 Parallelized Object Perception . 14

v

III COMBINING TEXTURE AND BOUNDARY INFORMATION (2D) . 16

3.1 Contributions . 16

3.2 Camera and Object Models . 17

3.2.1 Camera Model . 17

3.2.2 3D Object Model and Salient Edge Selection . 18

3.3 Particle Filter on the SE(3) Group . 19

3.3.1 State and Measurement Equations . 19

3.3.2 Particle Filter . 20

3.3.3 AR State Dynamics . 22

3.3.4 Particle Initialization using Keypoint Correspondences . 22

3.3.5 Edge-based Measurement Likelihood . 24

3.3.6 Optimization using IRLS . 26

3.3.7 Re-initialization based on N̂eff . 27

3.4 Experimental Results . 27

3.4.1 Effectiveness of Considering Edge Orientations . 28

3.4.2 Effectiveness of Considering Multiple Pose Hypotheses . 31

3.4.3 Effectiveness of Performing RANSAC . 33

3.4.4 Effectiveness of Employing AR State Dynamics . 37

3.4.5 Re-initialization . 37

3.4.6 Comparison with BLORT tracker . 38

3.5 Summary . 41

IV EXTENDING TO TEXTURELESS OBJECTS (2D) . 42

4.1 Edge-based Pose Estimation . 42

4.1.1 Generating Edge Templates . 42

4.1.2 Coarse Pose Estimation . 43

4.1.3 Annealed Particle Filtering . 45

4.1.4 Symmetric Objects . 46

4.2 Experimental Results . 46

4.3 Summary . 48

V VOTING-BASED POSE ESTIMATION (3D) . 49

5.1 Exploiting Object Color Information . 49

5.2 Contributions . 49

5.3 RGB-D Pose Estimation . 50

5.3.1 Point Pair Feature . 51

5.3.2 Color Point Pair Feature . 51

5.3.3 Object Learning . 52

vi

5.3.4 Voting Scheme . 54

5.3.5 Pose Clustering . 56

5.4 Experimental Results . 57

5.4.1 Object Models . 57

5.4.2 Experiment Setup . 58

5.4.3 Gaussian Noise . 61

5.4.4 Synthetic Scenes: Multiple Objects Single Instance (MOSI) 66

5.4.5 Synthetic Scenes: Single Object Multiple Instances (SOMI) 73

5.4.6 Real Cluered Scenes . 74

5.4.7 Computation Time . 81

5.5 Summary . 82

5.6 Exploiting Object Boundary Information . 82

5.7 Contributions . 82

5.8 Boundary-based Pose Estimation . 82

5.8.1 System Overview . 82

5.8.2 Pair Features for Boundaries . 84

5.8.3 Object Representation . 86

5.8.4 Voting Scheme for L2L Feature . 87

5.8.5 Pose Clustering . 87

5.9 Experimental Results . 88

5.9.1 Synthetic Data . 90

5.9.2 Real Data . 91

5.9.3 Bin-Picking System Performance . 92

5.10 Summary . 93

VI OBJECT POSE TRACKING (3D) . 94

6.1 Contributions . 94

6.2 Likelihood Evaluation . 96

6.3 Implementation Details . 97

6.4 Experiments . 98

6.4.1 Object Models . 98

6.4.2 Synthetic Sequences . 99

6.4.3 Real Sequences . 102

6.5 Summary . 102

VII CONCLUSIONS . 104

7.1 Summary . 104

7.2 Conclusions . 104

7.3 Future Directions . 106

vii

7.4 Concluding Remarks . 107

APPENDIX A — IRLS AND ITS JACOBIAN DERIVATION . 108

BIBLIOGRAPHY . 111

viii

LIST OF TABLES

3.1 RMS errors and computation time in synthetic image sequences (Baseline vs. PF) 32

3.2 RMS errors and computation time in synthetic image sequences (PF vs. BLORT) 40

5.1 Average computation time of the five approaches on the real dataset 79

5.1 Average computation time of the five approaches on the real dataset 80

5.2 Average numbers of pair features in the synthetic scene dataset and relative processing time 91

5.3 Average absolute pose estimation errors . 93

5.4 Pickup success rate . 93

6.1 RMS errors and computation time in synthetic RGB-D sequences (PCL vs. Our tracking) 100

ix

LIST OF FIGURES

1.1 Challenges in visual object perception . 3

3.1 Original CAD models and selected salient edges of our target objects 18

3.2 Determining salient edges . 18

3.3 Residual determination for calculating the likelihood . 24

3.4 Tracking results showing the effectiveness of considering edge orientation 29

3.5 e 6-D pose and normalized residual plots of the results in Figure 3.4 (a) 30

3.6 Tracking results showing the effectiveness of considering multiple pose hypotheses 31

3.7 Tracking results showing the effectiveness of performing RANSAC 33

3.8 Tracking results showing the effectiveness of employing AR state dynamics 34

3.9 e 6-D pose and normalized residual plots of the results in Figure 3.8 (a) 35

3.10 Tracking results showing the capability of re-initialization . 36

3.11 e N̂eff plot of the results in Figure 3.10 (a) . 37

3.12 e 6-D pose and normalized residual plots of the results of our particle filter and BLORT on the
synthetic “Book” object sequence (simple background case) . 38

3.13 A comparison between the tracking results of our particle filter and BLORT on real image sequences 39

4.1 Polygonal mesh models and edge templates . 43

4.2 Tracking results showing effectiveness of considering multiple hypotheses 47

4.3 Tracking results showing effectiveness of suppressing the rotating motion about the axis of symmetry 47

4.4 Initialization and annealed particle filtering . 48

4.5 Tracking results showing the re-initialization capability . 48

5.1 e Color Point Pair Feature (CPPF) . 50

5.2 Aligning pair features in the intermediate coordinate system . 53

5.3 Bit-encoded 64-bit CPPF key . 56

5.4 Bit-encoded 64-bit vote . 56

5.5 Polygonal mesh models of the test objects . 58

5.6 Adding Gaussian noise in the synthetic noise dataset . 61

5.7 Some “Clorox” examples of the synthetic noise dataset . 62

5.8 Precision-recall curves of the noise experiment . 63

5.9 Recognition rates against Gaussian noise σ . 64

5.10 Selected pose estimation results in the MOSI dataset . 67

5.11 Precision-recall curves of the multiple objects single instance (MOSI) experiment 68

5.12 Recognition rates of top N pose results in the MOSI experiment . 69

5.13 Selected pose estimation results in the SOMI dataset . 70

5.14 Precision-recall curves of the single object multiple instances (SOMI) experiment 71

5.15 Recognition rates of top N pose results in the SOMI experiment . 72

x

5.16 Selected pose estimation results in the real cluered dataset . 75

5.17 Precision-recall curves for the real cluered scene experiments . 76

5.18 Recognition rates of top N pose results in the real cluered scene experiments 77

5.19 System overview . 83

5.20 Pair features for voting-based pose estimation . 84

5.21 Geometric primitivesM for the pair features . 85

5.22 Aligning line pair features in the intermediate coordinate system . 87

5.23 Test objects . 88

5.24 Detection rates against occlusion rates for the synthetic dataset . 89

5.25 Two example scenes from the 500 synthetic scenes . 90

5.26 Two example scenes from the real scans . 91

5.27 Histograms of pose estimation errors . 92

6.1 A tracking example . 94

6.2 Multiple renderings for the likelihood evaluation . 95

6.3 Mesh models for objects and kitchen . 98

6.4 Camera trajectories in synthetic sequences . 98

6.5 Tracking results on the “Orange Juice” and the “Kinect Box” synthetic sequences 99

6.6 e 6-DOF pose plots of the “Kinect Box” results . 101

6.7 Tracking results on the “Tide” and “Milk” real sequences . 102

6.8 Boxplots showing computation time of our tracking and the PCL tracking on the “Tide” synthetic
sequence . 103

xi

ACRONYMS

AR AutoregRessive.

B2B Boundary-to-Boundary.

BBF Best Bin First.

BLORT BLOcks world Robotic vision Toolbox.

BSP Binary Space Partitioning.

CAD Computer-Aided Design.

CPPF Color Point Pair Feature.

CPU Central Processing Unit.

CUDA Compute Unified Device Architecture.

CVFH Clustered Viewpoint Feature Histogram.

DOF Degrees Of Freedom.

EPnP Efficient Perspective-n-Point.

FBO FrameBuffer Object.

GLSL OpenGL Shading Language.

GPU Graphics Processing Unit.

HOG Histogram of Oriented Gradients.

HSV Hue, Saturation, and Value.

ICP Iterative-Closest Point.

IRLS Iteratively Reweighted Least Squares.

L2L Line-to-Line.

MERL Mitsubishi Electric Research Labs.

MOSI Multiple Objects Single Instance.

OpenCV Open Source Computer Vision.

OpenGL Open Graphics Library.

PCL Point Cloud Library.

PF Particle Filter.

PPF Point Pair Feature.

PnP Perspective-n-Point.

RAM Random-Access Memory.

RANSAC RANdom SAmple Consensus.

RGB Red, Green, and Blue.

RGB-D RGB with Depth.

RMS Root Mean Square.

xii

S2B Surface-to-Boundary.

S2S Surface-to-Surface.

SIFT Scale-Invariant Feature Transform.

SIMD Single Instruction Multiple Data.

SISD Single Instruction Single Data.

SLAM Simultaneous Localization And Mapping.

SOMI Single Object Multiple Instances.

SSE Streaming SIMD Extensions.

SURF Speeded Up Robust Features.

TSDF Truncated Signed Distance Function.

VFH Viewpoint Feature Histogram.

xiii

MATHEMATICAL NOTATION

(x, y) e center location of the detected edge template.

X́∗(n)
t ∈ SE(3) e optimized particle state of X∗(n)

t by the IRLS.

Ć e set of keypoint correspondences aer the ratio test.

αl e particle survival rate at layer l.

αm e intermediate angle.

∠(v1, v2) ∈ [0, π) e angle between two vectors, v1 and v2 ∈ R3.

βl e rate of annealing at layer l.

σ ∈ R3 e quantization levels for color vectors.

Σn ∈ RNz×Nz e covariance matrix of nt.

Σw ∈ R6×6 e covariance matrix of the Wiener process noise.

δ e matching cost of the object detection.

δ e quantization level for distance.

γs e search radius for (color) point pair feature.

µ̂ ∈ R6 e motion velocity that minimizes the residual vector.

κ ∈ Z e 64-bit encoded key of either FPPF or FCPPF.

λa e AR process parameter.

λc e parameter that controls the sensitivity of the ratio of Np −Ni to Np to the likelihood.

λr e parameter that controls the sensitivity of the arithmetic mean of the residual vector r̄
to the likelihood.

λv e parameter that controls the sensitivity of the ratio of Nz −Nẑ to Nz to the likelihood.

λδ e parameter that controls the sensitivity of the cost δ to the initial particle weight.

c ∈ R3 e color vector.

dWt ∈ se(3) eWiener process noise on se(3) at time t.

Ei ∈ se(3) e ith basis elements of se(3).

ei e ith edge in mesh models.

FCPPF ∈ R10 e color point pair feature descriptor.

FPPF ∈ R4 e point pair feature descriptor.

J ∈ RNẑ×6 e Jacobian matrix of nT
i pi with respect to µ obtained by computing partial derivatives at

the current pose.

K ∈ R2×3 e intrinsic camera parameters.

n ∈ R3 A face normal unit vector in mesh models.

n ∈ R2 e unit normal vector in 2D images.

nt e Gaussian noise in the measurement at time t.

xiv

p ∈ R2 Projected 2D image coordinates of a 3D point.

P ∈ R4 3D homogeneous coordinates of a 3D point.

pm
i ∈ R3 e reference model point.

pm
j ∈ R3 e referred model point.

ps
i ∈ R3 e reference scene point.

ps
j ∈ R3 e referred scene point.

r ∈ RNz e residual vector from the residuals of visible sample points pi.

R ∈ SO(3) A rotation matrix.

Rx(α) ∈ SO(3) e rotation matrix around the x-axis with angle α.

Tm→g ∈ SE(3) e transformations from the model coordinate systems to the intermediate coordinate sys-
tem.

Ts→g ∈ SE(3) e transformations from the scene coordinate systems to the intermediate coordinate sys-
tem.

W ∈ RNẑ×Nẑ A weighted diagonal matrix.

Xt ∈ SE(3) A rigid body transformation or pose on the SE(3) group at time t.

X(n)
t ∈ SE(3) e nth particle state at time t.

A e intermediate angle array.

C e set of putative keypoint correspondences.

D e set of object detections.

Dh e array of duplication numbers inH.

F e set of keyframes.

H e array of quantized hash keys.

Hr e reduced array ofH.

Hs e sorted array ofH.

I An input image.

Irs e indices from the reduced arrayHr to the sorted arrayHs.

Iso e indices from the sorted arrayHs to the original arrayH.

M e object model point cloud.

S e scene point cloud.

St e set of weighted particles at time t.

V e votes array in global memory.

ν ∈ Z e 64-bit encoded vote.

exp : se(3) 7→ SE(3) e exponential map from se(3) onto SE(3).

log : SE(3) 7→ se(3) e logarithmic map from SE(3) onto se(3).

⊘ Component-wise division.

xv

π
(n)
t e normalized weight of the nth particle state at time t.

ρ e probability in which at least one set of randomly sampled m correspondences is from
inliers.

σ e scale of the detected edge template.

τn e minimum required number of keypoint correspondences for the initialization.

τr e threshold value for the ratio test.

τs e threshold value for the salient edge selection.

τϵ e Euclidean distance threshold value for determining inlier keypoint correspondences.

θ e quantization level for angle.

θe(qi) e orientation of the image edge point qi.

θm(pi) e orientation of the model edge to which the sample point pi belongs.

π̃
(n)
t e unnormalized weight of the nth particle state at time t.

Ĉ e set of keypoint correspondences having themaximumnumber of inlier correspondences
between the input image I and the keyframes F .

N̂eff e approximated effective particle size.

C̃ A set of randomly chosen keypoint correspondences from Ĉ.

{(pi,ni), (pj ,nj)} e pair of two oriented points.
CTO ∈ SE(3) e pose of the object with respect to the camera frame estimated by our visual tracker.
CT̂O ∈ SE(3) e pose of the rendered object with respect to the virtual camera frame saved in OpenGL

rendering.
Ouy = (0, 1, 0, 0)T e unit vector of the axis of symmetry of the object.

A : SE(3) 7→ se(3) A possibly nonlinear map.

g : SE(3) 7→ RNz e nonlinear measurement function.

m e minimum number of keypoint correspondences to perform EPnP.

N e number of particles.

Ni e number of inlier keypoint correspondences.

Np e number of putative keypoint correspondences.

Nv e size of the votes array V

Nz e number of visible sample points.

Neff e effective particle size.

Nthres e threshold value for the re-initialization.

Nẑ e number of matched sample points.

ri e residual which is the Euclidean distance between pi and qi.

xvi

SUMMARY

As robotic systems move from well-controlled seings to increasingly unstructured environments, they are re-

quired to operate in highly dynamic and cluered scenarios. Finding an object, estimating its pose, and tracking its

pose over time within such scenarios are challenging problems. Although various approaches have been developed

to tackle these problems, the scope of objects addressed and the robustness of solutions remain limited. In this thesis,

we target a robust object perception using visual sensory information, which spans from the traditional monocular

camera to the more recently emerged RGB-D sensor, in unstructured environments. Toward this goal, we address

four critical challenges to robust 6-DOF object pose estimation and tracking that current state-of-the-art approaches

have, as yet, failed to solve.

e first challenge is how to increase the scope of objects by allowing visual perception to handle both textured

and textureless objects. A large number of 3D object models are widely available in online object model databases,

and these object models provide significant prior information including geometric shapes and photometric appear-

ances. We note that using both geometric and photometric aributes available from these models enables us to

handle both textured and textureless objects. is thesis presents our efforts to broaden the spectrum of objects to

be handled by combining geometric and photometric features.

e second challenge is how to dependably estimate and track the pose of an object despite the cluer in back-

grounds. Difficulties in object perception rise with the degree of cluer. Background cluer is likely to lead to false

measurements, and false measurements tend to result in inaccurate pose estimates. To tackle significant cluer in

backgrounds, we present two multiple pose hypotheses frameworks: a particle filtering framework for tracking and

a voting framework for pose estimation.

Handling of object discontinuities during tracking, such as severe occlusions, disappearances, and blurring,

presents another important challenge. In an ideal scenario, a tracked object is visible throughout the entirety of

tracking. However, when an object happens to be occluded by other objects or disappears due to the motions of the

object or the camera, difficulties ensue. Because the continuous tracking of an object is critical to robotic manipula-

tion, we propose to devise a method to measure tracking quality and to re-initialize tracking as necessary.

e final challenge we address is performing these tasks within real-time constraints. Our particle filtering

and voting frameworks, while time-consuming, are composed of repetitive, simple and independent computations.

Inspired by that observation, we propose to run massively parallelized frameworks on a GPU for those robotic

perception tasks which must operate within strict time constraints.

xvii

CHAPTER I

INTRODUCTION

Robot systems are gradually geing deployed in everyday situations for assistance and collaboration with humans.

It implies that robots are being operated in environments that are at best semi-structured. A typical scenario involves

pick-and-place tasks, where a robot has to detect the presence of an object, pick it up, andmove it to another location.

An important challenge is, thus, designing of a system that can detect, recognize and perform pose estimation for

a diverse set of objects. at is by no means a new problem. Early work dates back to the 60s (Roberts 1965).

Since then, there have been significant efforts to improve the robustness of the solution (Guzman 1971, Binford 1971,

Underwood and Coates Jr 1975, Murase and Nayar 1995, Lowe 2004, Collet et al. 2011, Hinterstoisser et al. 2012a).

Nonetheless, most of the available techniques are limited in terms of the scope of objects, robustness to background

cluer and occlusions, and computational efficiency. Whereas simple geometric models had been used in the early

stage of machine perception, local appearance descriptor models are popular nowadays. e former models are

good for textureless objects, while the laer models are preferred for well-textured objects. Although these two

kinds of models complement each other, surprisingly there has been few efforts to exploit both, and thus the variety

of objects existing approaches can deal with is still limited. In addition, despite significant progress, most of the

existing approaches have poor degradation in the presence of significant occlusions and cluer. We also scarcely see

efficient object perception algorithms which perform within time constraints.

Along with the robotic migration from controlled environments to unstructured surroundings, we recently ob-

serve a big transition in imaging devices. Microso introduced a motion sensing device, Kinect, which has an RGB

video camera and an infra-red depth sensor. Since its first release in November 2010, it has been sold more than

24 million units over the world (Epstein 2013), and ASUS (Xtion Pro Live) and Intel (Creative Senz3D) also released

similar RGB with depth (RGB-D) cameras on the market. Moreover, these sensors are geing smaller and are even-

tually about to be embedded in mobile phones. Google recently announced its initiative for mobile depth sensing

throughout the Project Tango (Google 2014), and Apple Inc. also recently bought the PrimeSense company which

is behind the 3D sensing technology of Kinect (Chen 2014). Since early in the 21st century, the majority of mobile

phones came with cameras. Photos and videos captured from the camera have been one of the most important media

to deliver information, and a large amount of the media has gathered on the Internet. For instance, as of 2013, more

than 350 million photos are uploaded every day on average, and more than 250 billion photos have been uploaded

to Facebook (Internet.org 2013). Given the trend, there is no doubt that the RGB-D sensors will augment the domi-

nating media and enable us to capture 3D world, to exchange 3D visual information, and to organize 3D data on the

Internet.

1

is trend is especially promising in robotics, since robots are existing in 3D space and are required to interact

in 3D. e monocular camera has been widely adopted as a visual sensory input for object perception. When a 3D

representation of an object and the intrinsic calibration of the camera are known, it is possible to recover the full six

degrees-of-freedom (DOF) transformation between the object and the sensor coordinate systems via 2D-3D feature

matching. ough the 2D-3D configuration is a sufficient condition for the problem of pose estimation and tracking,

an additional depth modality can be significantly beneficial to the object perception problem. Especially, the 3D-

3D configuration is preferred because we can rigorously exploit various geometric features available from both 3D

models and 3D depth scenes, and in particular it will be beneficial to handling of less textured or textureless objects.

Moreover, subtracting foreground objects is a trivial task with the depth information, while it is still a difficult task

in 2D images. Stereo rigs have been actively studied in the computer vision literature. However, they are mainly

limited due to the unreliable depth values around less textured or textureless regions. e aforementioned RGB-D

sensors overcome this limitation by adopting an active illumination sensing technique, and more importantly these

affordable sensors provide depth data along with color image in real-time speed¹ that is an important, necessary

condition for robotic sensors. Given this big transition in sensing devices, it is of interest to investigate how these

sensors can impact on visual perception research.

Since the pioneeringwork of Roberts (1965), visual object perception had progressed based on 3D geometric mod-

els for several decades, oen known as the ‘Geometric Era’ (Guzman 1971, Binford 1971). ough there had been

significant progress during this era, it could not help but yield aention to appearance-based approaches (Murase

and Nayar 1995, Lowe 2004) because of its restricted performance in case of textured surfaces and the assumption

about the 3D models. Interestingly, together with the 3D sensing trend, it seems that revisiting 3D models in visual

perception is timely more than ever. Nowadays, hundreds of thousands of 3D object models are geing accumu-

lated on the Internet, such as TurboSquid (TurboSquid 2014), Google 3D Warehouse (Google 2013), and KIT object

models web database (Kasper et al. 2012). So it is highly anticipated that a significant number of new object models

will be additionally clustered on the Internet, as obtaining 3D models is going to be a trivial task with the RGB-D

sensor (Newcombe et al. 2011). In addition, unlike purely geometric objects used in the classic geometric era, a

large portion of existing 3D object models on the web also accompany color or texture information, which is easily

aainable via the RGB-D sensor. is fact implies that exploiting both geometric shape information and photometric

appearance aributes is naturally anticipated, and thus closing the loop of the geometric era and the currently dominant

appearance age might be possible in the near future. Note that these 3D model databases are significant prior infor-

mation for visual perception. erefore, an interesting challenge is to consider how such prior information about

geometry and appearance can be utilized in the object perception problems.

¹Ream-time speed means 30 frames per second or 30 Hz (about 33 ms).

2

1.1 Motivation and Challenges

While many approaches have addressed the pose estimation and tracking problem over the last five decades (Klein

and Murray 2006, Aldoma et al. 2011, Collet et al. 2011, Hinterstoisser et al. 2012a), their scope of targeted objects

is still narrowly bounded. In addition, the robustness of the existing approaches is still limited in that they do not

work properly in heavily cluered environments. Moreover, most of the work for object tracking does not actively

address the object discontinuous cases. Object perception does not tend to perform in a timely manner due mainly

to the heavy computation of underlying algorithms. In this thesis, we were mainly motivated by these challenges

and actively address them to contribute toward robust and efficient object perception in unstructured environments.

(a)With and without textures (b) Cluer

(c) Out of field of view (d) Blur

Figure 1.1. Challenges in visual object perception. (a) Perceiving both textured (book) and textureless (white
cup) objects is still a challenging problem. (b) Cluered backgrounds make data association harder, and hence pose
estimates in significant cluer are oen erroneous. (c, d) Object discontinuous cases may happen during tracking,
such as going out of the field of view or image blur, due to the motions of objects or camera.

1.1.1 Objects with and without Textures

Handling both textured and textureless objects is still a challenging problem. Figure 1.1a depicts example objects with

and without textures. When objects are well textured like the book object, some photometric features capturing tex-

ture are well suited. As invariant keypoints and their descriptors have been introduced, most of the recent progress

in object recognition and pose estimation relies on keypoint matching. ese keypoint-based approaches are appli-

cable to highly textured objects, but many objects, such as dishes, glasses, industrial parts, still lack enough textures.

For those textureless objects, it is required to exploit geometric features instead. For monocular approaches, edges

from boundaries of objects are well suitable; for 3D depth-based approaches, depth discontinuities, point normals,

or high curvature regions can be employed.

We employ both photometric and geometric features to handle both classes of objects. With a monocular camera,

3

we present our object pose estimation and tracking algorithm using keypoint and edge features. When an RGB-

D sensor is available, we combine color, 3D points, depth discontinuities, and surface normals to perform pose

estimation and tracking regardless of the degree of object texture.

1.1.2 Clutter

e difficulties of finding an object and tracking its pose depend on the degree of cluer in backgrounds. While most

of the related efforts work well in backgrounds having a reasonable amount of cluer, it is still demanding to estimate

the pose of an object with significant cluer as shown in Figure 1.1b. e cluer in backgrounds oen causes false

measurements, and these measurements tend to lead to false pose estimates. e false estimates commonly make

tracking get stuck in local minima. When backgrounds are relatively simple, pose estimation approaches oen adopt

an object segmentation as a pre-processing step so that an object level matching scheme can be employed. However,

this segmentation may not always be straightforward in heavily cluered scenes. In addition, wrong segmented

regions worsen precision of object perception.

For robust tracking, we devise a multiple pose hypotheses tracking based on a particle filtering framework.

By maintaining multiple pose hypotheses, our tracking follows the global optimum despite significant background

cluer. We also employ an additional refinement process based on the RANSAC algorithm in which wrong edge data

associations are discarded to enhance the accuracy of pose estimates calculated from the measurement associations.

In pose estimation, our approach does not hinge upon the top-down pre-processing segmentation which is easily

deteriorated in cluered seings. Instead, low-level pair features are used to determine feature correspondences

between a model and a scene. Our approach is very robust with respect to background cluer by employing a voting

framework, in which a set of most likely pose hypotheses is obtained as a boom-up fashion.

1.1.3 Object Discontinuities

An ideal tracking scenario is that the tracked object is visible during the entire tracking. However, in reality the

object happens to be occluded by other objects, human, or robots. As shown in Figure 1.1c and 1.1d, sometimes the

object may be going out of the camera’s field of view or blurred due to the motions of the object or the camera. ese

object discontinuous cases should be appropriately handled for realistic scenarios. However, few efforts addressed

such cases. To tackle these challenges, the tracking is expected to re-initialize itself when the discontinuities occur.

We propose a re-initialization scheme based on a likelihoodmeasure, which is calculated from the particleweights

in our particle filter framework. From the measure, the local tracking triggers the global pose estimation when it is

necessary. In this way, our pose estimation and tracking algorithms are systematically integrated with our particle

filtering framework.

1.1.4 Real-time Constraints

Robotic perceptions are typically constrained by a timing limitation as they should reactively interact with objects

or environments. Reliable robotic manipulations require high frame-rate tracking, and even a global pose estimation

4

algorithm should process a given scene in seconds to be effective in real scenarios. As we consider more objects and

deal with more cluer, the search space of the problem is geing larger, and consequently, it is not straightforward

to finish the computation under the time constraints.

One way to tackle the timing challenge is to exploit the power of parallel computation. Our particle filtering and

voting frameworks are composed of a large number of repetitive yet simple operations, and thus, the frameworks can

inherently be parallelizable. Modern graphics processing units (GPU) provide massive parallel computation power

beyond rendering purposes for an affordable price. We investigate how to take advantage of the parallel power of

the GPU to enable our approaches to comply with the time constraints.

1.2 Definition and Scope

e terminology in robotics and computer vision areas is convenient yet oen confusing and even possibly mislead-

ing readers. To avoid that, we explicitly introduce important terms used in this thesis and mention the addressed

scope of the thesis in this section.

In this thesis, we explore the problem of model-based visual object perception in unstructured environments.

e meaning of model-based is that 3D object models are given a priori. Various 3D object model representations

might be possible, but we choose the most general format, 3D polygonal mesh models, since that representation has

been widely adopted in the computer graphics area, and a significant number of geometric processing techniques on

the model type are readily available. A broad definition of object perception is the task of identifying correspond-

ing name or a unique identification number of a given object. In this thesis, however, it also includes 6-DOF pose

estimation and tracking because our main applications are in robotic perception. A 6-DOF pose is a point on the

smooth manifold, SE(3) group, which represents a translation in 3D Euclidean space along with a 3D orientation

in SO(3) group (Ma et al. 2004). It usually describes a rigid body transformation between two coordinate systems,

but here it mainly represents a rigid transformation from a sensor coordinate system to an object coordinate system.

Pose estimation is the task of global searching for a set of most likely pose hypotheses complying with measure-

ments while pose tracking is the locally recursive estimation of the posterior pose hypothesis given the prior pose

hypothesis of the previous time step. ese tasks can be achieved with various sensory modalities, but in this thesis

we focus on visual object perception. e addressed visual sensors aremonocular and depth cameras. e un-

structured environments represent considerably cluered scenes oen with unexpected occlusions and any other

dynamic perturbations.

roughout this thesis, two sorts of visual features are employed: photometric and geometric features. Pho-

tometric features include image intensity, color, edges from texture, keypoints (including corners), and their local

descriptors. ese features are mainly obtained from photometric image formation in 2D. Another set of features is

geometric features that are edges from geometric shapes (e.g. boundaries or sharp edges), lines, planes, depth points,

surface normals, and high curvatures. While photometric features are mostly related to brightness, color, and texture,

5

geometric features are closely affiliated with geometric shapes. Please note that the photometric and geometric fea-

tures are tightly interconnected. For instance, 2D edges from geometric shapes are typically calculated from gradient

response images of an intensity image; color and intensity values are results of the interaction between lights and

surface normals; keypoint and descriptors might depend on geometric texture.

1.3 Thesis Statement

A concise statement of this thesis is presented as follows:

“Multiple pose hypotheses frameworks, such as a particle filter for tracking and a voting procedure for pose estimation,

incorporating both photometric and geometric features handle an increased spectrum of objects and are robust solutions

for visual object perception in unstructured environments, wherein significant cluer and occlusions exist.”

1.4 Summary of Contributions

In this section, we summarize the main contributions of this thesis. e contributions are as follows:

• Employing keypoint features to initialize tracking. While most tracking approaches have not addressed

the tracking initialization or initialize from scratch, we adopt a guided search based on a photometric feature

(keypoint) matching between object models and an input image sequence. is initialization further enables

the system to be capable of doing re-initialization. (Choi and Christensen 2010, 2011, 2012c)

• Re-initialization for object discontinuities. We proposed a re-initialization scheme that uses the number

of effective particle size as a likelihood measure of tracking quality. (Choi and Christensen 2011, 2012c).

• Refining edge correspondences with the RANSAC algorithm. Edge data association between projected

model wireframes and image edges is enhanced with a sampling-based hypothesize-and-testing framework to

rule out wrong edge correspondences possibly from background cluer or non-Lambertian reflectance. (Choi

and Christensen 2011, 2012c)

• Coarse 3D pose estimation using an efficient chamfer matching. An edge-based pose estimation is

proposed for textureless objects and integrated with our particle filtering framework. (Choi and Christensen

2012b)

• Color Point Pair Feature (CPPF) for voting-based pose estimation. CPPF from RGB-D data was devised

and applied in a voting framework. As a large portion of potentially false feature matches is skipped thanks

to an additional color similarity measure, our approach turned out to be more robust and more efficient. (Choi

and Christensen 2012a, 2014)

• Parallel implementation of voting framework. e time-consuming voting process is parallelized on GPU

so that pose estimation is done within a second regardless of the degree of cluer. (Choi and Christensen 2014)

6

• Pair features based on boundary information. We propose novel pair features using object boundary

information which are more effective for many industrial and real-world objects that are mostly planar. (Choi

et al. 2012)

• Employing rich features from an RGB-D sensor for visual tracking. Unlike 2D edges or intensity differ-

ences on which most previous work has relied, we proposed a robust likelihood function that uses photometric

(colors) and geometric (3D points and surface normals) features available from RGB-D channels. (Choi and

Christensen 2013)

• Parallel particle filter accelerated in GPU. Inspired by the fact that the likelihood evaluation of each par-

ticle is independent of the other particles, our particle filtering framework is massively parallelized in GPU

so that it can employ several thousands of particles yet show real-time performance. (Choi and Christensen

2013)

1.5 Outline

e thesis is organized as follows. In Chapter 2, an extensive literature survey of visual object perception is presented.

In Chapter 3, our particle filtering framework on the SE(3) group combining texture and boundary information is

shown, and its extension to textureless objects is delineated in Chapter 4. Pose estimation algorithms based on our

voting framework are described in Chapter 5, in which the color point pair feature is proposed for daily objects and

the boundary pair features are devised for industrial objects. Aer showing our effort to real-time object tracking

using an RGB-D camera in Chapter 6, we conclude our thesis in Chapter 7.

1.6 Publication Note

Our initial work on the monocular tracking combining edge and keypoint features appeared in Choi and Christensen

(2010), and more robust visual tracking using a particle filter on the SE(3) group was presented in Choi and Chris-

tensen (2011). is work was then published as a journal paper (Choi and Christensen 2012c). While the previous

work only considered the keypoint-based initialization, an edge-based initialization was also addressed in Choi and

Christensen (2012b) to take into account textureless objects. Our depth sensor-based pose estimation research (Choi

et al. 2012) was initiated from the work in Mitsubishi Electric Research Labs (MERL) wherein I was a research intern.

An extension of Choi et al. (2012) to RGB-D appeared in Choi and Christensen (2012a), and the work was further

enhanced with GPU parallel computations. Lastly, a real-time RGB-D object tracking accelerated in GPU appeared

in Choi and Christensen (2013).

7

CHAPTER II

RELATEDWORK

In this chapter, we survey various efforts from historically seminal work to recent state-of-the-art approaches which

are related to the thesis topic, 6-DOF object pose estimation and tracking. In Section 2.1, a set of pioneering efforts

of the early computer vision era is revisited. Recent state-of-the-art research based on a monocular camera and a

depth sensor is then examined in Section 2.2 and Section 2.3, respectively. We also review some initial efforts to

accelerate computation of perception algorithms in Section 2.4.

2.1 Inception of Object Perception

e main theme of object recognition is to model objects and to register the models to a visual sensory input. e

early stage, called the blocks world, goes back to the 60s where Roberts (1965) pioneered an object recognition sys-

tem. e experimental setup was limited in that several bright and geometrically simple objects were placed in a

dark uniform background. Even so, the work devised a perspective projection model and an edge detection method

followed by a method to do line segmentation. From a polyhedral object representation, it generated various hy-

potheses for 3D vertices and edges through feature grouping. is early work assumed geometrically simple objects,

so it could not solve for complex polygonal shaped or more generally curved objects. Aer this work, a series of

efforts had tried to overcome the limitation by devising a part-based approach for generic curved objects (Guzman

1971) and introducing the generalized cylinder primitives (Binford 1971, Agin 1972, Nevatia and Binford 1973, 1977,

Brooks 1982). In automotive industries, Perkins (1978) introduced a recognition system for a bin-picking problem

which is to estimate poses of 3D industrial parts in a uniform background. A general framework was, though there

were some differences between approaches, to select a minimum set of matched features and to generate model

hypotheses from the matchings (Huenlocher and Ullman 1987). An efficient feature matching scheme, called geo-

metric hashing, with a voting scheme appeared to address partial occlusions (Lamdan andWolfson 1988). While most

of the efforts considered matching from 3D models to 2D images, Ikeuchi and Kanade (1988) used 3D orientations

from depth information along with 3D geometric models. 3D geometric models had prevailed for many reasons.

ey are viewpoint invariant in that it is possible to take into account geometric changes with respect to viewpoint

variations, and hence, it is rather straightforward to predict the shape under perspective or affine projection. e fact

that CADmodels of a large number of manufactured objects were readily available also contributed to the popularity

of the geometric models.

Interesting enough, there was an alternative avenue in which a set of multiple 2D views of a polyhedral object

replaced the 3D geometric model. e set of views was oen organized in a network structure, so-called aspect

8

graph, in which nodes and edges of the network represent polyhedral faces and adjacent relations of the faces re-

spectively (Underwood and Coates Jr 1975). is aspect graph can be regarded as an ancestor of template matching

approaches for generic object recognition and was succeeded by Dickinson et al. (1992) with geons primitives (Bie-

derman 1985). One major problem of the aspect graph approach was the high complexity of the graph structure,

since it significantly grows as the geometry of the object model gets complex.

A major limitation of purely geometric models is that surfaces on objects should be less textured or bland as

performance of most of approaches relying on geometric models is significantly degraded with complex texture on

surfaces. In the mid-90s, a totally new direction appeared based on appearance models. Murase and Nayar (1995)

introduced appearance manifolds, oen called eigenspace, which are low dimensional subspaces reduced from a large

image set. It is interesting to note that recognition problem was reformulated as finding a nearest neighbor in the

eigenspace of an object and coordinates in the eigenspace are corresponding to a pose of the object. Considering

appearances of objects further results in local appearance features, such as affine patch features (Rothganger et al.

2006) or scale invariant keypoint descriptor (Lowe 2004), and these local descriptors have widely been used in object

recognition and categorization research for the last decade (Pinz 2005). An extensive literature survey in object cate-

gorization can be found in Dickinson (2009), and a survey in the early geometric era is also available as a retrospective

(Mundy 2006).

2.2 Monocular-based Approaches

One of the most popular sensors for robotic manipulation is monocular camera. Since monocular camera is cost

effective sensor and allows fast image acquisition, it has been widely adopted for various visual object perception

problems.

2.2.1 Pose Estimation using Keypoints

For the last decade, stable keypoint descriptors (Lowe 2004, Bay et al. 2008) have led to successful progress on object

recognition. As these keypoint descriptors are invariant to changes in illumination and moderate geometric trans-

formations, keypoint correspondences across different images can be reliably determined. For robotic manipulation,

a set of 3D coordinates of the keypoints is required as an object model so that a full 6-DOF object pose can be recov-

ered. ese keypoint coordinates can be calculated via structure from motion (Collet et al. 2009) or back-projecting

2D keypoints to a 3D CAD model (Choi and Christensen 2012c). One of the major bolenecks in the keypoint-based

pose estimation is finding correspondences between an object model database and an input image sequence. Exact

search tends to be an exhaustive search, and hence several efforts tackled the boleneck by either using randomized

tree structures to perform an approximated search (Lepetit and Fua 2006) or exploiting the parallel power of the GPU

for a brute-force search (Collet et al. 2011).

9

2.2.2 Pose Estimation using Edges

Keypoint descriptors are suitable for well-textured objects, but a large number of daily or industrial objects lack

texture. For less textured objects, as most of the classic approaches adopted, edge features are preferred since they

correspond to the geometric shape of the objects. A common approach is that a set of edge image templates of an

object is known a priori, and in the testing phase the templates are matched with a given edge image. Please note that

this idea goes back to Underwood and Coates Jr (1975). In classic computer vision, the chamfer (Barrow et al. 1977)

and Hausdorff (Huenlocher et al. 1993) distances were proposed as robust metrics, and they were further enhanced

by considering edge orientations (Olson and Huenlocher 1997, Liu et al. 2010a). Common methods to extract edge

features from an image are image gradient-based, such as the Canny edge detector (Canny 1986). However, these

methods oen result in unnecessary edges from surface texture or non-Lambertian reflectance. Since meaningful

boundary edges are oen obtained from depth discontinuities, Raskar et al. (2004) introduced the multi-flash camera

to detect depth edges by casting shadows from multiple flashes. e sensor was successfully employed in several

robotic pose estimation algorithms (Agrawal et al. 2010, Liu et al. 2010b). While that work has relied on edge feature,

Rodrigues et al. (2012) exploited geometric surface shapes of industrial objects. To capture the surface shapes with a

single camera, they also employed a multiple-light seing which was inspired by the photometric stereo (Woodham

1980). A random forest (Amit and Geman 1997, Breiman 2001, Criminisi and Shoon 2013) was then used to solve the

data associations between training and testing local patches. e random forest is learned from a set of training local

patches at a fixed distance, and thus the pose estimation performance of the approach oen degrades in a different

depth.

2.2.3 Pose Tracking with Single Pose Hypothesis

While pose estimation problem is a global search of a 6-DOF transformation from a given model to a scene image,

pose tracking problem is a local search estimating inter-frame motions over multiple image frames. Typical scenario

is that a tracking starts from a given pose and recursively estimates the 6-DOF pose vector in the sequence of images.

Given a 3DCADmodel of an object and a prior pose, the 3Dmodel is projected to the current 2D image. Due to a small

inter-frame motion, the 3D model and its corresponding region in the 2D image happen to be slightly misaligned,

and tracking task is minimizing the misaligned errors. In the seminal work of Harris (1992), edge feature was used to

measure perpendicular errors between the projected model and the image, and a least square method was employed

for the minimization. Since the work of Harris (1992), there have been active efforts to enhance the early edge-based

tracking system at general scale (Drummond and Cipolla 2002, Comport et al. 2004) and at micro or nano scales (Yesin

and Nelson 2005, Kratochvil et al. 2009, Tamadazte et al. 2010). Edges have been preferred because they are easy to

compute and invariant to illumination and pose changes. However, a critical disadvantage of using edges is that they

look similar to each other, and, as a result, it is tricky to perform data associations. In general, edge correspondences

are determined by local search based on a prior pose estimate. So the tracking performance of an edge-based tracker

directly depends on correct pose priors. To improve the pose priors, there have been various efforts to enhance the

10

pose accuracy by incorporating interest points (Vacchei et al. 2004, Rosten and Drummond 2005, Pressigout and

Marchand 2006) or employing additional sensors (Klein and Drummond 2004). While that work relies on edge data

association between projected model edges and image edges, there was an effort based on a region segmentation

approach (Bibby and Reid 2008). Prisacariu and Reid (2012) presented a real-time 3D object tracking based on a

segmented region-based tracking. is work can be seen as an extension of the 2D free-form visual tracking using

pixel-wise posterior (Bibby and Reid 2008) to 3D pose tracking, via optimizing the energy function with respect

to 6-DOF pose parameters. For robust tracking, the approach maintains a generative probabilistic color model for

both foreground and background, but it oen backfires in the cases of occlusions and cluered backgrounds that

violate the generative color distribution. is work maintains a single hypothesis for the 6-DOF pose. When a target

object is visually distinctive or its motion is rather simple, visual tracking is robust with these single pose hypothesis

tracking approaches. However, these approaches are significantly challenged in the presence of background cluer

and object discontinuous cases.

2.2.4 Pose Tracking using Multiple Pose Hypotheses

To overcome the limitation of the single pose hypothesis tracking, there have been active efforts to consider multiple

pose hypotheses. Considering multiple edge correspondences was one of the efforts. Since edges are ambiguous

and false edge correspondences directly lead the tracker to false pose estimates, some approaches have considered

multiple hypotheses on edge correspondences (Vacchei et al. 2004, Kemp and Drummond 2005). However, their

work was still limited in that only one or two hypotheses were maintained from the multiple correspondences.

More general multiple pose hypotheses tracking has been implemented in particle filtering frameworks. Particle

filter (Gordon et al. 1993, Doucet et al. 2001) is a Bayesian filtering method based on sequential simulation from

posterior probability distributions. For the last two decades, this method has become popular since it can handle

nonlinear and non-Gaussian dynamics, so it has oen been regarded as a good alternative to the filtering methods

designed upon Gaussian probability distributions. Isard and Blake (1998) introduced a 2D contour-based particle

filter to computer vision community and showed great potential. Affine 2D visual trackers have also been proposed

in a particle filter framework with incremental measurement learning (Ross et al. 2008, Kwon and Park 2010). For

3D visual tracking, Pupilli and Calway (2006) have shown the possibility of applying a particle filter to 3D edge-

based tracking. While they demonstrated the tracking of simple 3D objects, Klein and Murray (2006) implemented

a particle filtering approach which tracks a complex full 3D object in real-time by exploiting parallel power of GPU.

Mörwald et al. (2010) also used GPU to implement a fast model-based 3D visual tracker. With edges from a 3D CAD

model, they also employed edges from texture that possibly contribute to avoiding false edge correspondences as

well as to enhance the accuracy of pose estimates. Teulière et al. (2010) addressed a similar problem by maintaining

multiple hypotheses from low-level edge correspondences.

With a few exceptions (Kyrki and Kragic 2005, Mörwald et al. 2010), most of the work has made an assumption,

in which trackers start from a given pose. Several efforts (Klein and Murray 2006, Pupilli and Calway 2006) used

11

annealed particle filters to find the true pose from scratchwithout performing an appropriate initialization. However,

the search space might be too large to converge to the true pose in reasonable time, and it might not converge to the

pose aer enough time elapses.

2.3 Depth-based Approaches

As RGB-D sensors have recently been introduced at low cost, 3D based object perception can be more feasible than

ever. e depth data from the sensors preserves 3D information, while 2D images lose 3D information of scenes

via the perspective projection onto a 2D image plane. is 3D information enables us to exploit various geometric

features, such as 3D surface normals, 3D edges, and so on, which are beyond the photometric features. As 3Dmodels

are given a priori and the geometric features are available in themodels, we can rely on the direct geometric matching

between the models and a 3D depth scene.

2.3.1 Pose Estimation using 3D Point Clusters

When the background of a given scene is known, we can easily segment foreground objects from the background.

Imagine that several objects are placed on a table. If we find a dominant plane on the table by fiing a 3D plane

model, separating object segments from the table is a straightforward task. is segmentation scheme significantly

reduces the search space of object perception problem, and thus this planar background assumption has been widely

adopted in robotic manipulations. Aldoma et al. (2011) devised the clustered viewpoint feature histogram (CVFH)

which is an extension of the viewpoint feature histogram (VFH) (Rusu et al. 2010) to 6-DOF pose estimation on seg-

mented object clouds. Lai et al. (2011) proposed a tree structure for scalable object recognition and pose estimation,

but the pose estimation is limited in that it can only estimate coarse 1-DOF rotation of the object pose. Although

these approaches can recognize object pose efficiently, they hinge upon perfect segmentation from the background.

us, these approaches are only applicable to the well structured table-top manipulation, but they are not robust in

cluered environments.

2.3.2 Pose Estimation using 3D Point Descriptors

When the prior knowledge about the background structure is unavailable, it is required to match a set of object mod-

els directly with a given scene. Similar to 2D local image keypoint descriptors, several 3D point descriptors have been

proposed based on the distribution of surface normal around a point (Stein andMedioni 1992), surface curvature (Do-

rai and Jain 1997), spin image (Johnson and Hebert 1999), relative angles between neighboring normals (Rusu et al.

2009), and neighboring range values around an interest point (Steder et al. 2011). While these features are invariant

to rigid body transformation, they are in general sensitive to noise, feature parameters, and resolution difference of

point clouds. Moreover, stable point descriptions on geometrically simple objects are limited, and hence estimating

pose only with these point descriptors might not be a dependable solution.

12

2.3.3 Pose Estimation using Pair Features

A pair of primitive features is a more general way to describe characteristics of shape of objects since a set of pair

features encodes both local and global shape descriptions. In addition, the pair features are inclusive in that they can

represent both geometrically salient areas and dull regions. Drost et al. (2010) adopted a pair feature using two points

and their normals. In the learning phase, a set of pair features from an object is calculated and saved in a hash table

for fast retrieval. In the testing phase, points are randomly sampled from the sensor data, and each pair matched

with pairs in the learned model casts a vote for a pose hypothesis. Aer the voting process, a set of high votes over

a certain confidence level is aggregated to form possible object pose hypotheses. is approach was enhanced by

incorporating the visibility context (Kim and Medioni 2011) or considering object boundary information (Choi et al.

2012). e overall system resembles the classical object perception systems (Huenlocher and Ullman 1987, Lamdan

and Wolfson 1988) in the sense that a minimum set of local features is used to generate multiple pose hypotheses,

and several consistent hypotheses are determined from them. e point pair feature can be seen as a successor of

the surflet pairs (Wahl et al. 2003), and using a hash table for fast matching is also presented in Mian et al. (2006),

Lamdan and Wolfson (1988). While the voting scheme is a popular idea in object recognition (Ballard 1981, Lamdan

and Wolfson 1988, Mian et al. 2006, Pham et al. 2011, Woodford et al. 2011), the point pair feature was also used in a

RANSAC (Fischler and Bolles 1981)-based sampling approach in Papazov et al. (2012).

2.3.4 Pose Estimation using Templates

ere are efforts to solve the pose estimation problem via augmented template matching approaches in which depth

information is used for beer recognition performance. Park et al. (2010) exploited the depth information to detect

edges from depth discontinuities and adopted a template matching of the signed distance transformed images. Hin-

terstoisser et al. (2012a) combined the image gradient from RGB channels and the surface normal vectors calculated

from the depth channel. e work employs a large number of templates for each object to take into account the

variability of shape, and it uses the modern SSE instructions for parallel computation in CPU. While the initial work

learns object templates online, the later work (Hinterstoisser et al. 2012b) automatically generates templates from 3D

mesh models. Although this work can rapidly detect objects from RGB-D scenes, it is not free from the limitations of

template matching: high false positive rates, low pose accuracy, and not reliable detection outside the learned depth

range.

2.3.5 Pose Tracking with Depth Information

Reliable depth information is preferred to find correspondences in visually featureless environments, so it has been

actively used in registration and tracking problems. e iterative-closest point (ICP) algorithm (Besl and McKay

1992) is well-known for the registration of 3D point clouds, but it strictly requires a good initial pose estimate so

as to converge to the global optimum. Beam-based models (run et al. 2005, Herbst et al. 2011) were proposed

to enhance the ICP algorithm by taking into account the viewpoint constraint and the noise model of the sensor.

13

Recently, these models were further improved by exploiting over-segmentation to take into account the free-space

constraint (Krainin et al. 2012).

For environment mapping, Newcombe et al. (2011) presented a real-time mapping and pose tracking system,

which fuses a live depth stream into a volumetric scene model called the truncated signed distance function (TSDF)

and tracks the camera pose with respect to the scene model using the ICP algorithm. While this work is suitable

for small scale mapping, Henry et al. (2010) showed a large 3D modeling approach relying on visual and shape

information from the RGB-D camera.

For object tracking, several initial work using point clouds have been proposed using particle filters. Choi et al.

(2011) combined multiple cues from both RGB and depth modalities in a particle filter for robust people tracking.

A particle filter-based tracking in the Point Cloud Library (PCL) (Rusu and Cousins 2011) can track the 6-DOF

pose of a reference point cloud model over a sequence of RGB-D images by the using point and color likelihood

functions (Bersch et al. 2012). Pauwels et al. (2013) recently showed a real-time tracking which utilizes dense motion

from optical flow and depth information calculated via stereo matching. ough the approach maintains single pose

hypothesis, GPU-accelerated computation makes the approach robust with respect to occlusions and tracking.

For the sake of pose tracking over intra-class variations, random forest (Amit and Geman 1997, Breiman 2001,

Criminisi and Shoon 2013) is a popular approach due mainly to its efficiency and generalization capability. Shoon

et al. (2011) addressed the human pose estimation problem as a body part classification problem where each part

is predicted by learned random forests using a simple depth image feature. While this work transformed from the

regression to the classification problem, Fanelli et al. (2011) used the random forests for a regression problem so as

to directly estimate the pose of objects.

2.4 Parallelized Object Perception

Visual perception requires processing of massive visual data. e traditional computing architecture is the single

instruction single data (SISD) which restricts perception algorithms to iterating a set of operations over entire data,

and hence executing typical perception algorithms takes a significant amount of time. Interestingly, a lot of visual

perception algorithms are composed of repetitive yet simple computations. As computing architecture evolves, single

instruction multiple data (SIMD) architecture enables these perception algorithms to run in parallel. Hinterstoisser

et al. (2012a) is one example of using SIMD instructions to parallelize its computation in CPU. In addition to CPU,

modern graphics processing unit (GPU) provides massive parallel computation power beyond rendering purposes,

and it is thus a natural idea to design perception algorithms in parallel to take advantage of the computing power of

the GPU. Collet et al. (2011) exploited the parallel power of GPU to perform a brute-force keypoint matching, and

Prisacariu and Reid (2012) also implemented time-consuming routines in the GPU in which finding the 2D contour

of 3D object projection and performing pose optimization were parallelized. Pauwels et al. (2013) also borrowed the

GPU power to accelerate optical flow, stereo matching, and pose estimation routines.

14

Our main computing frameworks, voting and particle filtering, are composed of an amount of repetitive oper-

ations, and hence the algorithms are inherently possible to be parallelized. Particle filter (Isard and Blake 1998) is

straightforward to be parallelized as the likelihood evaluation of each particle is independent of the other particles.

Montemayor et al. (2004) showed a preliminary design of a particle filter on the GPU for a simple 2D object tracking,

and some approaches presented GPU accelerated particle filters for 3D object pose tracking, for which they render

a 3D object model to the GPU and a CUDA kernel directly accesses the rendering results to calculate importance

weights of the particles (Azad et al. 2011, Mateo Lozano and Otsuka 2009). e work of Park et al. (2010) was also

parallelized on GPU, where the distance transform and the downhill simplex optimization were accelerated. Salas-

Moreno et al. (2013) recently showed a parallel implementation of Drost et al. (2010) for an object-based camera

localization and mapping by employing a GPU parallel library, AMD Bolt C++ library (AMD 2012).

15

CHAPTER III

COMBINING TEXTURE AND BOUNDARY INFORMATION (2D)

In this chapter, we delineate a 3Dmodel-based visual tracking approach using edge and keypoint features in a particle

filtering framework. Recently, particle filtering-based approaches have been proposed to address very challenging

visual tracking problems and have shown good performance, but most of the work has made an assumption that

an initial pose is given. To ameliorate this limitation, we employ keypoint features for initialization of the filter.

Given 2D-3D keypoint correspondences, we randomly choose a set of minimum correspondences to calculate a

set of possible pose hypotheses. Based on the inlier ratio of correspondences, a set of poses is drawn to initialize

particles. Aer the initialization, edge points are employed to estimate inter-frame motions. While we follow a

standard edge-based tracking, an additional refinement process is performed to improve the edge correspondences

between sampled model edge points and image edge points. For beer tracking performance, we employ a first

order autoregressive (AR) state dynamics, which propagates particles more effectively than Gaussian random walk

models. e proposed system re-initializes particles by itself when the tracked object moves out of the field of view

or is occluded. e robustness and accuracy of our approach are demonstrated via comparative experiments on

synthetic and real image sequences.

is chapter is organized as follows. Our main contributions are explained in Section 3.1. In Section 3.2, we

define the monocular camera model and explain the automatic salient edge selection process on 3D object models.

In Section 3.3.1 and 3.3.2, we introduce a particle filtering framework with state and measurement equations. e

AR state dynamics adopted in the framework is then presented in Section 3.3.3. Aer explaining how particles are

initialized and their likelihoods are evaluated in Section 3.3.4 and 3.3.5, respectively, the optimization performed for

each particle is explained in Section 3.3.6. Lastly, the re-initialization scheme is presented in Section 3.3.7, followed

by experimental results on both synthetic and real image sequences in Section 3.4.

3.1 Contributions

e key contributions of the work in this chapter are as follows:

• We employ keypoint features as additional visual cues. While Klein and Murray (2006), Pupilli and Calway

(2006) have used an annealing particle filter to find the initial pose, we initialize particles to highly probable

states based on pose estimates calculated from keypoint correspondences so that initialized particles tend to

converge faster than the usual annealed particle filtering.

• We refine edge correspondences between the projected model edges and the image edges via a RANSAC

16

(Fischler and Bolles 1981). Most of the edge-based tracking approaches have used the nearest edge corre-

spondences without performing an appropriate refining process (Harris 1992, Drummond and Cipolla 2002,

Comport et al. 2004, Choi and Christensen 2010), except a few work in Armstrong and Zisserman (1995),

Teulière et al. (2010). Given that the edge correspondences directly affect the measurement likelihood and

thus entire tracking performance, we employ a RANSAC approach to ensure consistent edge data associa-

tions. While Armstrong and Zisserman (1995) applied a RANSAC on each 2D line segments individually, we

perform that on 3D sampled points and their corresponding 2D closest edge points.

• While most of the existing edge-based trackers (Klein and Murray 2006, Teulière et al. 2010) have employed

random walk models as a motion model, we apply a first-order autoregressive (AR) state dynamics on the

SE(3) group to guide particles more effectively.

• To be fully automatic and reliable in practical seings, our approach monitors the number of effective particle

size and uses the measure to decide when the tracker requires re-initialization.

3.2 Camera and Object Models

In this section, we introduce the monocular camera model and the visible edge determination method from 3D mesh

models.

3.2.1 Camera Model

Our system employs a calibrated monocular camera so that we have the intrinsic and lens distortion parameters

known a priori. Given the known camera parameters, we rectify input images in order to remove the lens distortion

effect. us, as a camera model we use the standard pin-hole model given by:

p = Project(K,Xt,PO) = K


xC

zC

yC

zC

1

 (3.1)

PC = XtPO (3.2)

where p = (u, v)T is the projected 2D image coordinates, PO = (xO, yO, zO, 1)T and PC = (xC , yC , zC , 1)T are the

3D homogeneous coordinates of a point in object and camera coordinate systems, respectively, and Xt ∈ SE(3) is

the pose of the camera at time t. e matrix K represents the intrinsic parameters of the camera:

K =

fu 0 u0

0 fv v0

 (3.3)

where fu and fv are the focal length in pixel dimensions, and u0 and v0 represent the position of the principal point.

17

Figure 3.1. Original CAD models (upper row) and selected salient edges (lower low) of our target objects.
Our approach automatically selects sharp edges that are likely to be visible in real images. From le to right, “Teabox”,
“Book”, “Cup”, and “Car door”.

Sharp Edge Dull Edge

n1i n2i
n2in1i

e i e i

Figure 3.2. Determining salient edges. We use the face normal vectors available in the model.

3.2.2 3D Object Model and Salient Edge Selection

Most objects existing in our environments are manufactured, so their CAD models are likely to be available or at

least obtainable via either manual 3D modeling or automatic 3D scanning (Newcombe et al. 2011). Although there

are various formats for CADmodels, most of them can be represented as a polygon mesh. A polygon mesh is usually

composed of vertices, edges, faces, polygons and surfaces. To estimate the pose difference between two consecutive

frames, we employ edge features in images coming from a monocular camera. So we should determine which edges

in the CADmodel of a targeted object would be visible in the images. Here we make an assumption that sharp edges

in the model are more likely to be salient in images. To identify sharp edges, we use the face normal vectors from

the model. As illustrated in Figure 3.2, if the face normal vectors of two adjacent faces are close to perpendicular, the

edge shared by the two faces is regarded as a sharp edge. Similarly, if two face normal vectors are close to parallel,

the edge is regarded as a dull edge. For the decision, we employ a simple thresholding scheme using the value of the

inner product of two normal vectors. More formally, we can define an indicator function with respect to the edges

in the model by:

I(ei) =

 1 if n1T
i n2

i ≤ τs

0 otherwise
(3.4)

18

where n1
i and n2

i are the face normal unit vectors of the two adjacent faces which share the ith edge, ei. We found

the threshold τs = 0.3 is a reasonable value in most cases. is salient edge selection is performed offline, and the

selected edges are saved for online tracking. e original 3D CAD model edges and the selected sharp edges are

displayed in Figure 3.1. In general, the salient edges are only considered in edge-based tracking, but when dull edges

constitute the object’s boundary, such as for the “Cup” object, they are also considered. To determine these boundary

edges, we find edges shared by a front face and a back face. Testing front or back faces is done by calculating inner

products of the face normal vectors and the z-axis of the camera. Testing boundary of the dull edges is performed

at run-time, and it is thus desirable to avoid using dull edges when dull boundary edges are not the dominant edges

in the target object.

3.3 Particle Filter on the SE(3) Group

In 3D visual tracking, a state represents a 6-DOF pose of a tracked object, and tracking estimates time-varying change

of coordinates. It is well known that the trajectory is not on a general vector space, rather it is on Lie groups, in

general, the Special Euclidean group SE(3) and the affine group Aff(2) in 3D and 2D visual tracking, respectively.

Since the trajectorywewant to estimate is on a Lie group, the particle filter should be applied on the Lie group. Monte

Carlo filtering on Lie groups is explicitly addressed in (Chiuso and Soao 2000, Kwon et al. 2007, Kwon and Park 2010).

It is well known that if a local coordinate system, an ad-hoc representation of motions (e.g. Euclidean embedding),

is employed, the same perturbation on different states oen results in different motions. us filtering performance

and noise distribution of local coordinate-based particle filtering approaches are dependent on the choice of the local

coordinates, while particle filtering on Lie groups is coordinate-invariant. is coordinate-invariance issue is well

addressed in Kwon et al. (2007) and Kwon and Park (2010).

3.3.1 State and Measurement Equations

From the continuous general state equations on the SE(3) group, discrete system equations are acquired via the

first-order exponential Euler discretization (Kwon et al. 2007):

Xt = Xt−1 · exp(A(X, t)∆t+ dWt

√
∆t), (3.5)

dWt =
6∑

i=1

ϵt,iEi,

ϵt = (ϵt,1, . . . , ϵt,6)
T ∼ N (06×1,Σw)

whereXt ∈ SE(3) is the state at time t,A : SE(3) 7→ se(3) is a possibly nonlinear map, dWt represents theWiener

process noise on se(3) with a covariance Σw ∈ R6×6, and Ei are the ith basis elements of se(3):

E1 =

(
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

)
,E2 =

(
0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

)
,E3 =

(
0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

)
,

E4 =

(
0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

)
,E5 =

(
0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

)
,E6 =

(
0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

)
. (3.6)

19

Algorithm 3.1: Particle Filtering on the SE(3) group
Data: I = {I0, I1, · · · , II},F = {(p1,P1), · · · , (pF ,PF)}
Result: S = {S0,S1, · · · ,SI}
Params: N,Σw, λa, λv, λr, Nthres

1: t← 0
2: init← 1
3: A0 ← 04×4

4: while It ̸= 0 do
5: if init = 1 then
6: St ← InitParticle(It,F) ⟨3.2⟩
7: if St ̸= {ϕ} then
8: init← 0

else
9: for n← 1 to N do

10: X∗(n)
t ← Propagate(X(n)

t−1,A
(n)
t−1,Σw) (3.13)

11: A∗(n)
t ← AR_vel(X∗(n)

t ,X∗(n)
t−1 , λa) (3.14)

12: Z∗(n)
t ← Measurement(X∗(n)

t , It) (3.7)
13: Ẑ∗(n)

t ← RANSAC(Z∗(n)
t) ⟨3.3⟩

14: π̃
∗(n)
t ← Likelihood(Z∗(n)

t , Ẑ∗(n)
t , λv, λr) (3.21)

15: X́∗(n)
t ← IRLS(X∗(n)

t , Ẑ∗(n)
t) (3.22)(3.23)

16: π∗
t ← Normalize(π̃∗

t) (3.16)
17: N̂eff ← Neff(π∗

t) (3.25)
18: if N̂eff ≥ Nthres then
19: St ← Resampling(S∗t)

else
20: init← 1

21: t← t+ 1

Note that the stochastic state equation in (3.5) is equivalent to a convolution of probability densities (Park et al. 2008,

Wang and Chirikjian 2006), except that the laer does not assume Gaussian noise.

e corresponding measurement equation is then:

Zt = g(Xt) + nt, nt ∼ N (0Nz×1,Σn) (3.7)

where g : SE(3) 7→ RNz is a nonlinear measurement function and nt is a Gaussian noise with a covariance Σn ∈

RNz×Nz .

3.3.2 Particle Filter

In a generic particle filtering framework, the posterior density function p(Xt|Z1:t) is represented as a set of weighted

particles by

St = {(X(1)
t , π

(1)
t), . . . , (X(N)

t , π
(N)
t)} (3.8)

where the particlesX(n)
t ∈ SE(3) represent samples of the current stateXt, the normalized weights π(n)

t are propor-

tional to the likelihood function p(Zt|X(n)
t), andN is the number of particles. e current state Xt can be estimated

20

Algorithm 3.2: InitParticle(I,F)
Data: I,F = {(p1,P1), · · · , (pF ,PF)}
Result: S = {(X(1), π(1)), · · · , (X(N), π(N))}
Params: τr, τn, N,m,K, τϵ, λc

1: l̂← 0

2: Ĉ ← {ϕ}
3: pi ← ExtractSURF(I) (Bay et al. 2008)
4: for f ← 1 to F do
5: {ṕi, Ṕf} ← BBF(pi,pf ,Pf , τr) (Beis and Lowe 1997)
6: C ← {ṕi, Ṕf}
7: Ć ← RatioTest(C, τr) (Lowe 2004)
8: l← length(Ć)
9: if l > l̂ then

10: l̂← l

11: Ĉ ← C

12: if l̂ > τn then
13: Np ← l̂
14: for n← 1 to N do
15: C̃ ← RandomSample(Ĉ,m)
16: X∗(n) ← EPnP(K, p̃i, P̃f) (Lepetit et al. 2009)
17: ṕ← Project(K,X∗(n), P̂f) (3.1)(3.2)
18: H ← {ϕ}
19: for s← 1 to Np do
20: ϵ(s) ← ∥p̂(s)

i − ṕ(s)∥2
21: if ϵ(s) < τϵ then
22: H ← H∪ {s}

23: Ni ← length(H)
24: π̃∗(n) ← KeypointLikelihood(Np, Ni, λc) (3.15)

25: π∗ ← Normalize(π̃∗) (3.16)
26: S ← Resampling(S∗)

else
27: S ← {ϕ}

by the weighted particle mean:

Xt = E [St] =
N∑

n=1

π
(n)
t X(n)

t (3.9)

or the mode:

Xt =M[St] = X(j)
t , j = argmax

j
π
(j)
t . (3.10)

Whenwe apply the mean, however, there is a problemwhere the arithmetic average ofX(n)
t is not valid in the SE(3).

More specifically, let R(n)
t ∈ SO(3) be the rotation part of the X(n)

t . en the arithmetic mean Rt =
1
N

∑N
n=1 R

(n)
t

is not usually on the SO(3) group. As an alternative, Moakher (2003) showed that a valid average of a set of rotations

can be calculated by the orthogonal projection of Rt onto SO(3) as

Rt =


VUT when det(RT

t) > 0

VHUT otherwise,
(3.11)

21

where U and V are estimated via the singular value decomposition of RT
t (i.e. RT

t = UΣVT) andH = diag[1, 1,−1].

erefore, the valid arithmetic mean of the particles can be determined as

Xt = ESE(3)[St] =

 Rt Tt

01×3 1

 (3.12)

where Tt =
1
N

∑N
n=1 T

(n)
t and T(n)

t ∈ R3 is the translation part of X(n)
t . A more detailed discussion of mean and

covariance on the SE(3) group is presented in Wang and Chirikjian (2008).

3.3.3 AR State Dynamics

e dynamics model for the state evolution is an essential part in that it has a significant impact on tracking per-

formance. However, many particle filter-based trackers have been based on a random walk model because of its

simplicity (Klein and Murray 2006, Teulière et al. 2010). e first-order autoregressive (AR) state dynamics is a good

alternative since it is flexible, yet simple to implement. In the state equation (3.5), the term A(X, t) determines the

state dynamics. A trivial case, A(X, t) = 0, is a random walk model. Kwon and Park (2010) modeled this via the

first-order AR process on the Aff(2) as:

Xt = Xt−1 · exp(At−1 + dWt

√
∆t), (3.13)

At−1 = λa log(X−1
t−2Xt−1) (3.14)

where λa is the AR process parameter. Since the SE(3) is a compact connected Lie group, the AR process model

also holds on the SE(3) group (Xavier and Manton 2006).

3.3.4 Particle Initialization using Keypoint Correspondences

Most of the particle filter-based trackers assume that an initial state is given. In practice, however, the initial seing

of particles is crucial to ensure convergence to the true state. Several trackers (Klein and Murray 2006, Pupilli and

Calway 2006) search for the true state from scratch, but it is desirable to initialize particle states by using other

information. Keypoint features are good for wide baseline matching between images, and hence keypoint corre-

spondences are well suited for filter initialization.

For initialization, we employ so-called keyframes F = {(p1,P1), · · · , (pF ,PF)} which are composed of F sets

of SURF keypoints (Bay et al. 2008) coordinates in 2D and 3D. e appearance of SURF keypoints is moderately

variant with respect to viewpoint variations. As a result, it requires to capture multiple keyframes covering different

views of an object. e keypoint coordinates in 2D (pf) are easily determined from SURF keypoints extraction, while

3D coordinates (Pf) are determined by back-projecting 2D points onto surfaces of the tracked object. For the back-

projection, we need to know the exact pose of the tracked object. It is possible to get the pose using a calibrated turn

table, but we used our particle filter-based tracking started from a known pose. e keyframes are saved manually

by user input during tracking. At runtime, an input image I coming from a monocular camera is matched with the

22

Algorithm 3.3: RANSAC(X,Z)
Data: X,Z = {p,P}
Result: Ẑ = {p̂, P̂}
Params: imax,m,K, τϵ, ρ

1: i← 0
2: n̂← 0
3: κ←∞
4: Ĥ ← H ← {ϕ}
5: S ← length(p)
6: while i < κ and i < imax do
7: Z̃← RandomSample(Z,m)
8: X̃← IRLS(X, Z̃) (3.22)(3.23)
9: ṕ← Project(K, X̃,P) (3.1)(3.2)

10: H ← {ϕ}
11: for s← 1 to S do
12: ϵ(s) ← ∥p(s) − ṕ(s)∥2
13: if ϵ(s) < τϵ then
14: H ← H∪ {s}

15: n← length(H)
16: if n > n̂ then
17: n̂← n

18: Ĥ ← H
19: κ← log(1− ρ)/ log(1− (n̂/S)m)

20: i← i+ 1

21: Ẑ← Z(Ĥ)

saved keyframes by extracting keypoints pi from I and comparing them with F . To find keypoint correspondences

C = {ṕi, Ṕf} efficiently, we employ the Best-Bin-First (BBF) algorithm using a kd-tree data structure (Beis and Lowe

1997) that allows execution of the search inO(n logn). As described in Lowe (2004), the ratio test is then performed

to find distinctive feature matches Ć with the threshold τr = 0.7.

While we employed RANSAC (Fischler and Bolles 1981) aer determining putative correspondences in our pre-

vious work (Choi and Christensen 2010), we skip this procedure because in the particle filter framework we can

initialize particles in an alternative way. e basic idea is similar to RANSAC, but it considers multiple pose hy-

potheses. Instead of explicitly performing RANSAC, we randomly select a set of correspondences C̃ from the given

putative correspondences Ĉ having a maximum number of correspondences over keyframes F and estimate a pos-

sible set of poses X∗(n) from C̃. Since we maintain 3D coordinates Pf of keypoints in keyframes, we can get 2D-3D

correspondences from the matching process. So we can regard this problem as the Perspective-n-Point (PnP) prob-

lem, in which the pose of a calibrated monocular camera is estimated from n 2D-3D point correspondences. To find

a pose from the correspondences, we use the Efficient Perspective-n-Point (EPnP) algorithm (Lepetit et al. 2009) that

provides a O(n) time non-iterative solution for the PnP problem.

Aer a particle pose X∗(n) is initialized from randomly selected minimum correspondences, all 3D points P̂f

from the putative correspondences Ĉ are projected into 2D points ṕ and compared with 2D keypoints p̂i. We then

23

count the number of inlier correspondencesNi whose Euclidean distances between ṕ and p̂i is within the threshold

τϵ = 20.0. For n = 1, . . . , N where N is the number of particles, the weights of particles are assigned by the

ratio of the number of putative correspondences Np, which is the number of entries in Ĉ, and the number of inlier

correspondences Ni as:

π̃∗(n) ∝ p(Zt|X∗(n)
t) ∝ exp(−λc

Np−Ni
Np

) (3.15)

where λc is the parameter that controls the sensitivity of the ratio of Np − Ni to Np to the likelihood. en the

weights π̃∗(n) are normalized by:

π∗(n) =
π̃∗(n)∑N
i=1 π̃

∗(i)
. (3.16)

Aer normalization, particles are randomly drawn with probabilities proportional to these weights. Since weights

are proportional to Ni, pose hypotheses having more inliers are likely to survive in the random sampling. is ini-

tialization process is similar to RANSAC, but it maintains multiple hypotheses of the initial poses while the RANSAC

only finds the best hypothesis.

e initialization process is presented in Algorithm 3.2 where referred work and equations are cited in the com-

ments area. Given an input image I and keyframes F , the algorithm returns the set of initialized particle states S .

Among the parameters, τn is the minimum required number of keypoint correspondences for the initialization,m is

the minimum number of correspondences to perform EPnP, and K is the intrinsic parameters of the camera in (3.3).

We found that 7 and 9 are well suited tom and τn, respectively.

3.3.5 Edge-based Measurement Likelihood

qi

q2

q3
q4

q5

q6

q1

pi
p1 p2

p3
p4 p5

p6
...

...

Figure 3.3. Residual determination for calculating the likelihood. Residual errors between projected model
(yellow lines) and extracted image edges (black tortuous lines) are calculated. Sample points pi are generated along
the model per a fixed distance and are matched to image edge points qi by performing 1D search along the direction
orthogonal to the model edge.

Once each particle is initialized and propagated according to the AR state dynamics and Gaussian noise, it has to

be evaluated based on its measurement likelihood. In general edge-based tracking, a 3Dwireframemodel is projected

into a 2D image according to a pose hypothesis X∗(n)
t . en a set of points is sampled along edges in the wireframe

model per a fixed distance. As some of sampled points are occluded by the object itself, a visibility test is necessary.

24

While Drummond and Cipolla (2002) used a Binary Space Partitioning (BSP) tree for hidden line removal, OpenGL

occlusion query is an easy and efficient alternative in which the sampled points are tested for occlusion (Klein and

Murray 2006). e visible sampled points are then matched to edge points, which are obtained by using the Canny

edge detector (Canny 1986), from the input image by performing 1D perpendicular search (Drummond and Cipolla

2002, Choi and Christensen 2010). In the matching, most approaches have tried to match the sampled points to

closest edge points without examining their orientation characteristics. However, it is well known that using edge

orientation significantly enhances the quality of edge correspondences (Olson and Huenlocher 1997, Liu et al.

2010a). Especially when the object contains relatively complex textures on its surfaces or it is located in cluered

environments, erroneous edge correspondences are oen obtained from textures or background edges. ese false

correspondences result in a bad state hypothesis, and thus it is natural to exclude the edge correspondences having

significant differences in orientation. is can be achieved by defining an indication function as

I(pi,qi) =

 1 if |θm(pi)− θe(qi)| ≤ τθ

0 otherwise
(3.17)

where θm and θe return the orientation of the model edge to which the sample point pi belongs and of the image

edge point qi, respectively. Note that the computation burden is not significant since orientations of sampled points

on the model edge and their corresponding edge points are only required to be determined.

Aer the orientation testing, the residual ri which is the Euclidean distance between pi and qi is calculated. By

stacking all of the residuals of visible sample points, the residual vector r ∈ RNz is obtained as follows

r = (r1, r2, . . . , rNz)
T (3.18)

whereNz is the number of valid sample points (i.e. visible sample points correspond to the image edges). Along the

residual r, the unit normal vectors ni ∈ R2 of the residual are also saved to be used in the optimization explained in

the next section:

{n1,n2, . . . ,nNz}. (3.19)

Once we have edge correspondences, we refine them using RANSAC (Fischler and Bolles 1981). Although we

discard matches having significant orientation differences, false matches may still remain. Some efforts tried to

enhance these matches through maintaining multiple low-level edge clusters (Teulière et al. 2010) or applying a

RANSAC on each 2D line segments (Armstrong and Zisserman 1995). One drawback of both work is the possibility

of inconsistent refinement because edge or line segments are individually corrected. Another drawback is that

their methods can be applied only to line segments and if the model of an object is composed of an amount of

small line segments the effect of correction would be negligible or wrong. For consistent refinement of the edge

correspondences, we perform a RANSAC on 3D sampled points P and their corresponding 2D closest edge points

25

p. Our approach consistently discards outliers by estimating the best 3D pose containing large number of inliers

Ĥ. e RANSAC algorithm is presented in Algorithm 3.3 which finds the refined edge correspondences Ẑ = {p̂, P̂}

given the current pose hypothesisX and the original edge correspondences Z = {p,P}. Among the parameters, imax

is the maximum number of iterations, againm is the minimum number of correspondences required for EPnP, and ρ

is the probability in which at least one set of randomly sampled m correspondences is from inliers. e ρ, typically

set to 0.99, is used to estimate the required number of iterations κ which is adaptively adjusted in the iteration.

Figure 3.3 illustrates the residual calculation in which each residual arrow represents rini. Note that the second

edge correspondence of p2 and q2 is wrong since q2 comes from background cluer, but it is soon discarded via the

RANSAC refinement. e fih edge correspondence is also erroneous because q5 does not belongs to edges from

the object, but it is excluded via the orientation comparison.

Aer the edge correspondences are refined, the measurement likelihood can be calculated from the ratio between

the number of matched sample points Nẑ which are le aer the RANSAC and the number of visible sample points

Nz which pass a self-occlusion test as:

p(Zt|Xt) ∝ exp(−λv
(Nz−Nẑ)

Nz
) (3.20)

where λv is the parameter that controls the sensitivity of the ratio ofNz−Nẑ toNz to the likelihood. is likelihood

has been similarly used in Klein and Murray (2006). Another choice is employing r̄ which is an arithmetic average

of the residual r (Teulière et al. 2010):

p(Zt|Xt) ∝ exp(−λr r̄)

whereλr is the parameter that controls the sensitivity of the arithmeticmean of the residual vector r̄ to the likelihood.

We noticed that both likelihoods are valid, and we empirically found that using both terms shows beer results.

erefore, in our approach the measurement likelihood is evaluated as:

p(Zt|Xt) ∝ exp(−λv
(Nz−Nẑ)

Nz
) exp(−λr r̄) . (3.21)

3.3.6 Optimization using IRLS

One of the challenges in particle filtering for 3D visual tracking is the large state space, and hence a large number

of particles is usually required for reliable tracking performance. To reduce the number of particles, Klein and

Murray (2006) have used an annealed particle filter, while Bray et al. (2004) and Teulière et al. (2010) have selectively

employed local optimizations in a subset of particles. For more accurate results, we optimize states of particles as

well, for which Iteratively Reweighted Least Squares (IRLS) is employed (Drummond and Cipolla 2002, Choi and

Christensen 2010). From IRLS, the optimized particle X́∗(n)
t is calculated as follows:

X́∗(n)
t = X∗(n)

t · exp(
6∑

i=1

µ̂iEi) (3.22)

µ̂ = (JTWJ)−1JTWr̂ (3.23)

26

where µ̂ ∈ R6 is the motion velocity that minimizes the residual vector r̂ ∈ RNẑ , J ∈ RNẑ×6 is a Jacobian matrix of

nT
i pi with respect toµ obtained by computing partial derivatives at the current pose, andW ∈ RNẑ×Nẑ is a weighted

diagonal matrix. e derivation of the Jacobian matrix J and more detailed information about IRLS are explained in

the Appendix.

Note that the measurement likelihood in (3.21) is calculated before the IRLS optimization. To assign weights of

particles, we have to evaluate the likelihood againwith the optimized state X́∗(n)
t . However, computing the likelihood

again is computationally expensive because it requires the self-occlusion test and 1D perpendicular search for each

particle. As an alternative, we can note that IRLS is a local optimization, and hence it highly depends on the previous

state. us particles having higher likelihood tend to exhibit still higher likelihood aer IRLS. But lower likelihood

particles are likely to get stuck in local minima due to erroneous or insufficient edge correspondences. erefore,

we can approximate p(Zt|X́∗(n)
t) as:

π̃
∗(n)
t ∝ p(Zt|X́∗(n)

t) ≈ p(Zt|X∗(n)
t) (3.24)

While this approximation leads to slight discrepancy, it is an efficient alternative especially when computation time

does maer. Aer assigning weights of the particles, the weight π̃∗(n)
t is then normalized to π

∗(n)
t by (3.16).

3.3.7 Re-initialization based on N̂eff

Ideally a tracked object should be visible during an entire tracking session. In reality, however, it is quite common

that the object moves out of frame or is occluded by other objects. In these cases, the tracker is required to re-

initialize tracking. In general sequential Monte Carlo methods, the effective particle size Neff has been used as a

suitable measure of degeneracy (Doucet et al. 2000). Since it is hard to evaluate Neff exactly, an alternative estimate

N̂eff is defined in Doucet et al. (2000):

N̂eff =
1∑N

i=1(π̃
(i))2

. (3.25)

Oen it has been used as a measure to execute the resampling procedure. But, in our tracker we resample particles

every frame, and hence we use N̂eff as a measure to do re-initialization. When the number of effective particles is

below a fixed threshold Nthres, the re-initialization procedure is performed.

e overall algorithm describing the particle filtering on the SE(3) group is shown in Algorithm 3.1 where

referred algorithms and equations are cited as ⟨·⟩ and (·) in the comments area, respectively. It requires a sequence

of images I and the keyframes F as an input and estimates the posterior density as a set of weighted particles S in

each time t.

3.4 Experimental Results

In this section, we validate our proposed particle filter-based tracker via comprehensive experiments. We compare

the performance of our approach with that of the single pose hypothesis tracker (Choi and Christensen 2010) and a

27

state-of-the-art tracker, BLORT (Mörwald et al. 2010). For the comparison, we obtained a set of real image sequences

as well as synthetic image sequences for quantitative analysis.

To obtain the synthetic image sequences, we first tuned the projectionmatrix inOpenGLwith the intrinsic camera

parameters of our monocular camera. We then rendered the objects with texture mapping to visualize our target

objects as realistic as possible. In addition, we prepared two backgrounds, simple white and complex textured, so that

the performance comparison between two different background is possible. During rendering, we was continuously

changing the camera position and orientation in OpenGL to simulate the real camera motion. e object poses

during the rendering were saved to be used as known ground truth. For the real image sequences, we placed the

monocular camera around the target objects and moved the camera.

Our system is composed of a standard desktop computer (Intel Core2 ad CPU Q9300, 3.25G RAM, NVIDIA

adro FX 570) and a Point Grey Research’s Flea 1394 camera (640 × 480 resolution). e CAD models of the

“Teabox”, “Book” and “Cup” were designed by using Blender™ which is an open source 3D modeling tool. e “Car

door” model was provided by an automobile company. We converted all of the models to the OBJ format to be used

in our C++ implementation.

To verify our approach, we presents a series of comparative experiments:

1. Effectiveness of considering edge orientations

2. Effectiveness of considering multiple pose hypotheses

3. Effectiveness of performing RANSAC

4. Effectiveness of employing AR state dynamics

First, we examine the effect of considering edge orientations in §3.4.1 where our approach with only one particle

is compared with the baseline in Choi and Christensen (2010). Second, the effectiveness of considering multiple

pose hypotheses is verified through a comparison between trackers having single and multiple particles in §3.4.2.

In §3.4.3, the effectiveness of the refinement process using RANSAC is scrutinized. Lastly, the benefit of employing

the first-order AR state dynamics is discussed in §3.4.4. Each comparative experiment represents results of synthetic

followed by real image sequences. For fair performance comparison, all parameters are the same except the compared

parameter. Aer showing the comparative experiments, we show the re-initialization capability of our approach in

§3.4.5. Finally, we compare the performance of our approach with that of a state-of-the-art tracker in §3.4.6.

3.4.1 Effectiveness of Considering Edge Orientations

When we find edge correspondences, we consider orientations of the edge points. By looking up orientations, we

exclude edge correspondences having large differences in orientation between the sample points on model edges

and the corresponding edge points from an input image. For this orientation testing, a simple indication function

was defined in (3.17). It seems a simple enhancement, but even this modification significantly enhance tracking

performance.

28

(a)e synthetic image sequence of the “Teabox” object: simple background case

(b) e real image sequence of the “Cup” object

Figure 3.4. Tracking results showing the effectiveness of considering edge orientation. Results of our ap-
proach with only one particle (i.e. N = 1) are depicted in yellow wireframes. As a baseline, tracking results of Choi
and Christensen (2010) are shown in red wireframes. In spite of the limited number of particles, the proposed ap-
proach shows good tracking performance in the simple background sequence and acceptable tracking performance
in the cluered background real sequence, while the baseline is frequently stuck in local minima, and hence it dris
over the textured regions of the object or the background cluer. is difference is mainly due to false edge corre-
spondences in the baseline, while the proposed approach discards some portion of the false edge correspondences
by comparing edge orientation.

To investigate the effectiveness of considering edge orientations, we run our approach with only one particle in

the synthetic and real image sequences. Since only one particle is considered in here, Gaussian noise is not added

in propagation. As a reference, a similar single pose hypothesis tracker of Choi and Christensen (2010) that does

not consider the edge orientations was also run in the same image sequences. e tracking results are presented

in Figure 3.4 where the results with and without considering edge orientations, which is equivalent to the baseline,

are depicted in yellow and red wireframes respectively. Note that both of the pose results are depicted in the same

image sequences to clearly show the difference of the two approaches. Although the proposed approach uses the

limited number of particles, it shows good tracking performance in the simple background synthetic sequence (Figure

3.4 (a)) and acceptable tracking performance in the cluered background real sequence (Figure 3.4 (b)). However,

29

0 200 400 600 800 1000
−400

−200

0

200

400
x Translation

Frame number

(m
m

)

0 200 400 600 800 1000
−50

0

50

100
Roll (α) Angle

Frame number

(d
eg

re
e)

0 200 400 600 800 1000
−200

0

200

400
y Translation

Frame number

(m
m

)

0 200 400 600 800 1000
−100

−50

0

50
Pitch (β) Angle

Frame number

(d
eg

re
e)

0 200 400 600 800 1000
0

500

1000

1500
z Translation

Frame number

(m
m

)

0 200 400 600 800 1000
−150

−100

−50

0

50
Yaw (γ) Angle

Frame number

(d
eg

re
e)

Ground Truth
Single IRLS
PF (N = 1, λa = 0.0)

0 200 400 600 800 1000
0

500

1000

1500
Normalized Translational Residual: || (Δx, Δy, Δz)T ||

Frame number

(m
m

)

0 200 400 600 800 1000
0

50

100

150

200
Normalized Rotational Residual: || (Δα, Δβ, Δγ)T ||

Frame number

(d
eg

re
e)

Single IRLS
PF (N = 1, λa = 0.0)

Figure 3.5. e 6-Dpose andnormalized residual plots of the results in Figure 3.4 (a). eproposed approach,
particle filer (N = 1, λa = 0.0), shows reasonable accuracy, while the baseline from Choi and Christensen (2010) has
significant errors. e baseline recovers from localminima via the re-initialization described in Choi andChristensen
(2010), but it soon dris again.

the baseline is frequently stuck in local minima, and hence it dris over the textured regions of the object or the

background cluer. To decompose pose results, 6-D pose and residual plots of the “Teabox” object are presented in

Figure 3.5. According to the plots, we can easily see the difference where the proposed approach, PF (N = 1, λa =

0.0), showsmuch beer results than the previous approach, Single IRLS. A quantitative analysis of this and following

tests on synthetic sequences is presented in Table 3.1 which shows the rootmean square (RMS) errors. For each image

sequence, the upper row shows the RMS errors of the baseline and the lower fives rows are the RMS errors of the

proposed approach in various parameter seings for which the number of particles N , the AR parameter λa, and

operation of RANSAC were altered.

e difference between the previous and the proposed approaches is mainly due to false edge correspondences

30

(a)e synthetic image sequence of the “Book” object: complex background case

(b) e real image sequence of the “Teabox” object

Figure 3.6. Tracking results showing the effectiveness of considering multiple pose hypotheses. Results
of our approach maintaining 1 and 100 particles are depicted in red and yellow wireframes, respectively. For fair
comparison, the same parameters are used except the number of particles. e complex background textures oen
cause false edge correspondences. us the single pose hypothesis tracker dris during the entire tracking, while
the tracker considering 100 pose hypotheses shows robust tracking results.

in the baseline, while the proposed approach discards some portion of the false edge correspondences by compar-

ing edge orientation. ese experimental results clearly support the argument that considering edge orientations

enhances the quality of the matching between edge points.

3.4.2 Effectiveness of Considering Multiple Pose Hypotheses

As shown in §3.4.1, when the background is relatively simple, single pose hypothesis edge-based tracking shows

reasonable performance. But it is quite challenging to reliably track an object when the background is complex

or there is an amount of cluer. ese challenging situations oen make erratic edge correspondences, and hence

single pose hypothesis tracking can be a fragile solution in these cases. To validate this argument, we compare two

versions of our tracker using 1 and 100 particles. e comparative tracking results are shown in Figure 3.6, where

results of the proposed tracker with 1 and 100 particles are drawn in red and yellow wireframes, respectively. For

31

Table 3.1. RMS errors and computation time in synthetic image sequences (Baseline vs. PF).

Objects Mode RMS Errors⋆ Time§
X Y Z Roll Pitch Yaw

Teabox

Baseline (single IRLS)† 51.131 44.509 263.258 26.280 24.330 48.323 20.62

PF (N = 1, λa = 0.0) 5.234 3.323 16.034 3.555 4.626 6.727 18.11
PF (N = 100, λa = 0.0) 4.616 2.498 13.623 2.558 3.940 3.867 450.57
PF (N = 100, λa = 0.5) 4.272 2.255 12.430 2.375 3.882 3.628 449.39
PF (N = 100, λa = 0.0, RANSAC) 3.503 1.930 8.917 1.936 3.227 2.597 459.49
PF (N = 100, λa = 0.5, RANSAC) 3.234 1.829 8.062 1.843 3.057 2.530 464.69

Baseline (single IRLS)† 63.074 27.075 83.377 25.028 38.839 62.695 23.05

PF (N = 1, λa = 0.0) 20.209 21.130 55.466 35.613 28.153 61.006 22.61
PF (N = 100, λa = 0.0) 4.521 8.357 13.974 4.431 7.717 5.593 471.78
PF (N = 100, λa = 0.5) 3.028 4.846 11.739 3.313 5.965 3.637 504.13
PF (N = 100, λa = 0.0, RANSAC) 3.125 4.398 10.207 2.712 4.976 3.324 497.05
PF (N = 100, λa = 0.5, RANSAC) 2.795 4.953 9.503 2.410 4.854 3.400 519.03

Book

Baseline (single IRLS)† 16.980 37.375 131.320 8.372 22.691 20.273 21.83

PF (N = 1, λa = 0.0) 76.376 95.839 92.012 3.571 14.141 27.524 20.90
PF (N = 100, λa = 0.0) 4.633 3.570 22.881 1.107 1.718 3.661 802.08
PF (N = 100, λa = 0.5) 4.502 3.402 22.240 0.954 1.508 3.791 799.30
PF (N = 100, λa = 0.0, RANSAC) 4.298 3.420 21.107 1.037 1.618 3.563 815.76
PF (N = 100, λa = 0.5, RANSAC) 4.140 3.171 20.084 0.876 1.408 3.545 811.00

Baseline (single IRLS)† 242.794 71.234 168.683 35.455 42.016 18.776 25.61

PF (N = 1, λa = 0.0) 53.528 61.926 177.906 13.346 15.161 17.974 25.03
PF (N = 100, λa = 0.0) 11.663 14.519 28.967 3.276 2.771 4.189 771.41
PF (N = 100, λa = 0.5) 10.343 15.288 27.654 4.208 2.881 3.904 816.39
PF (N = 100, λa = 0.0, RANSAC) 4.554 4.751 9.156 1.772 1.967 3.746 819.32
PF (N = 100, λa = 0.5, RANSAC) 3.195 3.843 8.239 1.589 1.979 3.697 819.85

Cup‡

Baseline (single IRLS)† 36.317 31.552 122.737 – 78.843‡ – 33.65

PF (N = 1, λa = 0.0) 189.488 19.947 58.342 – 25.917 – 32.63
PF (N = 100, λa = 0.0) 3.842 3.098 14.837 – 2.116 – 1915.49
PF (N = 100, λa = 0.5) 3.574 3.008 13.820 – 1.960 – 1910.34
PF (N = 100, λa = 0.0, RANSAC) 3.112 2.544 12.076 – 1.777 – 1928.42
PF (N = 100, λa = 0.5, RANSAC) 2.933 2.422 11.063 – 1.515 – 1925.59

Baseline (single IRLS)† 126.662 57.309 127.284 – 33.180‡ – 37.67

PF (N = 1, λa = 0.0) 65.645 48.978 100.036 – 71.873 – 36.53
PF (N = 100, λa = 0.0) 8.856 11.778 22.064 – 7.041 – 1913.69
PF (N = 100, λa = 0.5) 8.312 11.417 20.045 – 6.186 – 1911.11
PF (N = 100, λa = 0.0, RANSAC) 7.111 18.625 15.577 – 6.197 – 1936.90
PF (N = 100, λa = 0.5, RANSAC) 6.997 18.516 17.134 – 6.333 – 1949.41

Car door

Baseline (single IRLS)† 6.446 8.435 9.615 0.398 0.771 1.529 33.50

PF (N = 1, λa = 0.0) 5.206 6.821 11.921 0.333 0.974 1.523 40.93
PF (N = 100, λa = 0.0) 4.645 6.437 11.129 0.292 0.841 1.209 2699.23
PF (N = 100, λa = 0.5) 4.049 6.003 11.113 0.254 0.797 1.114 2702.93
PF (N = 100, λa = 0.0, RANSAC) 4.388 6.166 9.189 0.318 0.718 0.967 2691.41
PF (N = 100, λa = 0.5, RANSAC) 3.831 5.778 9.281 0.281 0.658 0.944 2676.74

Baseline (single IRLS)† 93.991 70.093 323.827 16.753 7.972 60.336 37.16

PF (N = 1, λa = 0.0) 12.550 29.420 80.789 1.636 5.055 14.382 45.46
PF (N = 100, λa = 0.0) 9.872 14.614 28.212 0.913 3.257 5.960 2796.06
PF (N = 100, λa = 0.5) 7.488 11.584 24.185 0.731 1.865 4.096 2793.18
PF (N = 100, λa = 0.0, RANSAC) 6.167 11.721 17.653 0.822 2.384 4.417 2733.86
PF (N = 100, λa = 0.5, RANSAC) 4.787 9.137 15.942 0.617 1.400 2.758 2737.89

⋆e error units of translation and rotation are millimeter and degree, respectively. Beer results are indicated in bold type.
§e unit of computation time is milliseconds per frame.
†e results of the previous approach (Choi and Christensen 2010) are compared as a baseline.
‡ Since the “Cup” object is symmetric and thus exact orientation cannot be estimated, we calculate the angle of the axis of symmetry.

32

(a) e synthetic image sequence of the “Cup” object: complex background case

(b) e real image sequence of the “Book” object

Figure 3.7. Tracking results showing the effectiveness of performing RANSAC.e yellow wireframes rep-
resent estimated poses of our approach with RANSAC refinement; e red wireframes are the results of the same ap-
proachwithout RANSAC. Both use the same number of particles and the AR process parameter (N = 100, λa = 0.0).
While both show good tracking results, the one with RANSAC clearly exhibits beer results. By performing
RANSAC, some false edge correspondences which are inconsistent with the best pose hypothesis are discarded. us
our approach with RANSAC tracks robustly, while the one without RANSAC is frequently misled by the complex
background cluer.

clear visualization, we only display the mean of particles calculated via the valid mean of particles in (3.12). For fair

comparison, the same parameters are used except the number of particles.

e complex background textures oen cause false edge correspondences. us the single pose hypothesis

tracker dris during the entire tracking, while the tracker considering multiple pose hypotheses shows robust track-

ing results. Since our particle filter considers multiple pose hypotheses and resamples based on measurement likeli-

hood, it is quite robust to false edge correspondences fromwhich the single pose hypothesis tracker is oen suffered.

3.4.3 Effectiveness of Performing RANSAC

As comparing orientations of edge points, our approach discards some false edge correspondences. But it still tend

to have false edge matches because it might happen to have similar orientations but false correspondences. Our

33

(a) e synthetic image sequence of the “Car door” object: complex background case

(b) e real image sequence of the “Car door” object

Figure 3.8. Tracking results showing the effectiveness of employing AR state dynamics. To investigate the
advantage of incorporating the AR state dynamics in our framework, we run our approach with (λa = 0.5) and
without (λa = 0.0) the dynamics. Results of our approach with and without AR state dynamics are depicted in
yellow and red wireframes, respectively. Both maintain 100 particles and perform RANSAC. e only difference is
the AR parameter λa. As the linear state dynamics propagates particles with respect to their velocities, the particle
filtering evolves effectively, and hence mean of particles represented in the yellow wireframes follows the global
optimum. But the one without AR state dynamics which is equivalent to a random walk model is occasionally stuck
in local minima.

approach takes an additional refinement process based on RANSAC (Fischler and Bolles 1981). In this section, we

examine the advantage of performing RANSAC refinement. e results of our approach with (N = 100, λa =

0.0, RANSAC) and without (N = 100, λa = 0.0) RANSAC are shown in yellow and red wireframes in Figure 3.7

respectively.

In the RMS error calculation, it is straightforward to compare rotational errors except the “Cup” object because

it is symmetric and thus an exact set of three orientations cannot be estimated. Instead of estimating the three

rotations, we calculate the angle between unit vectors whose directions are coincide with the axis of symmetry of

34

0 200 400 600 800 1000 1200
−400

−200

0

200

400
x Translation

Frame number

(m
m

)

0 200 400 600 800 1000 1200
−20

−10

0

10
Roll (α) Angle

Frame number

(d
eg

re
e)

0 200 400 600 800 1000 1200
−200

−100

0

100

200
y Translation

Frame number

(m
m

)

0 200 400 600 800 1000 1200
−10

0

10

20
Pitch (β) Angle

Frame number

(d
eg

re
e)

0 200 400 600 800 1000 1200
1000

1200

1400

1600
z Translation

Frame number

(m
m

)

0 200 400 600 800 1000 1200
−40

−30

−20

−10

0

Yaw (γ) Angle

Frame number

(d
eg

re
e)

Ground Truth
PF (N = 100, λa = 0.0, RANSAC)
PF (N = 100, λa = 0.5, RANSAC)

0 200 400 600 800 1000 1200
0

50

100

150

200
Normalized Translational Residual: || (Δx, Δy, Δz)T ||

Frame number

(m
m

)

0 200 400 600 800 1000 1200
0

10

20

30
Normalized Rotational Residual: || (Δα, Δβ, Δγ)T ||

Frame number

(d
eg

re
e)

PF (N = 100, λa = 0.0, RANSAC)
PF (N = 100, λa = 0.5, RANSAC)

Figure 3.9. e 6-D pose and normalized residual plots of the results in Figure 3.8 (a). With the AR state
dynamics, our approach shows beer performance in terms of accuracy than the one without the dynamics. Es-
pecially, when the camera undergoes abrupt changes in position or orientation, the approach with the linear state
dynamics exhibits agile responses, while the approach without the state dynamics results in bigger errors.

the object in the object coordinate system via

Cuy = CTO ·O uy (3.26)

Cûy = CT̂O ·O uy (3.27)

where CTO ∈ SE(3) is the pose of the object with respect to the camera frame estimated by our visual tracker,
CT̂O ∈ SE(3) is the pose of the rendered object with respect to the virtual camera frame saved in OpenGL rendering,

and Ouy = (0, 1, 0, 0)T is the unit vector of the axis of symmetry of the object. Note that the fourth element of Ouy

is 0, and hence only rotation is considered. e angle between these unit vectors can be calculated by the inner

35

(a)e “Book” object

(b) e “Car door” object

Figure 3.10. Tracking results showing the capability of re-initialization. e set of green wireframes rep-
resent 100 particles and the yellow thick wireframe shows the mean of particles on each image. When the tracked
object moves out of the field of view and images are blurred because of camera shaking, our tracker re-initializes by
itself. At frame number t = 0, 247, 462, 844 at the “Book” and t = 0, 314, 585, 743 at the “Car door”, our approach
is (re-)initialized. Since some keypoint correspondences were wrong, there are erroneous initial pose hypotheses.
But the tracker quickly converges to the global optimum as the bad pose hypotheses are removed in the importance
resampling process.

product as

θ = arccos (CuT
y

Cûy). (3.28)

e rotational RMS errors of the “Cup” object are calculated with this angle in Table 3.1.

According to results in Figure 3.7 and Table 3.1, the one with RANSAC clearly exhibits beer results. By perform-

ing RANSAC, some false edge correspondences which are inconsistent with the best pose hypothesis are discarded.

36

0 200 400 600 800 1000
0

50

100

150

Frame number

̂Neff

Nthres

Figure 3.11. e N̂eff plot of the results in Figure 3.10 (a). When the number of effective particles is under the
threshold Nthres, our system re-initializes by itself.

us our approach with RANSAC tracks robustly, while the one without RANSAC is frequently misled by the com-

plex background cluer.

3.4.4 Effectiveness of Employing AR State Dynamics

To verify the effect of the AR state dynamics, we execute the proposed approach with and without the AR state

dynamics. To disable the dynamics, we set the parameter λa in the AR state dynamics equation (3.14) as 0 which is

equivalent to a random walk model. For fair comparison, we use the same parameters except the AR parameter. We

test in the synthetic and real image sequences of the “Car door” object. e tracking results are presented in Figure

3.8.

Although both use the same number of particles, Gaussian noise, and measurement likelihood, the tracking

performances are quite distinctive. is difference is mainly due to the AR state dynamics which propagates particles

according to the camera motion.

3.4.5 Re-initialization

In our previous system (Choi and Christensen 2010), we used a simple heuristic in which the difference in position

of the object between frames and the number of valid sample points are monitored to trigger re-initialization. While

that heuristic works well when the pose hypothesis dris fast, it might not always be the case when the hypothesis

stuck in local minima. We propose another way for re-initialization by taking advantage of multiple pose hypotheses.

As in Algorithm 3.1, our system re-initializes when the number of effective particles N̂eff is below a threshold.

To verify this method, we run the proposed tracker on two real image sequences. e tracking results are shown

in Figure 3.10, and the number of effective particles for the first image sequence (Figure 3.10 (a)) is ploed over

the frame numbers in Figure 3.11. When the tracked object moves out of the field of view or images are blurred

because of camera shaking, the N̂eff decreases significantly below the threshold value Nthres, and that triggers the

re-initialization. is also works when the object is disappearing slowly. When the object gradually moves out of

the field of view, the particles still follow the real trajectory of the object. Aer the object is completely disappeared,

the particles have no visible sample points. Since it is impossible to evaluate the likelihood (3.21) without visible

sample points and edge correspondences from them, the weight of the particle is set to zero. is reduces the

number of effective particles, and thus it enables the re-initialization process. During re-initialization, the tracker

37

0 200 400 600 800 1000 1200
−200

0

200

400
x Translation

Frame number

(m
m

)

0 200 400 600 800 1000 1200
0

5

10

15
Roll (α) Angle

Frame number

(d
eg

re
e)

0 200 400 600 800 1000 1200
−100

0

100

200
y Translation

Frame number

(m
m

)

0 200 400 600 800 1000 1200
−40

−20

0

20

40
Pitch (β) Angle

Frame number

(d
eg

re
e)

0 200 400 600 800 1000 1200
300

400

500

600

700
z Translation

Frame number

(m
m

)

0 200 400 600 800 1000 1200

−50

0

50
Yaw (γ) Angle

Frame number

(d
eg

re
e)

Ground Truth
BLORT (N = 200, R = 4)
PF (N = 100, λa = 0.5, RANSAC)

0 200 400 600 800 1000 1200
0

20

40

60

80
Normalized Translational Residual: || (Δx, Δy, Δz)T ||

Frame number

(m
m

)

0 200 400 600 800 1000 1200
0

20

40

60
Normalized Rotational Residual: || (Δα, Δβ, Δγ)T ||

Frame number

(d
eg

re
e)

BLORT (N = 200, R = 4)
PF (N = 100, λa = 0.5, RANSAC)

Figure 3.12. e 6-D pose and normalized residual plots of the results of our particle filter and BLORT on
the synthetic “Book” object sequence (simple background case). With the sufficient number of particles and
recursions (N = 200, R = 4), BLORT reports similar performance to our particle filter. BLORT even shows slightly
beer results in z translation possibly due to considering edges from texture of the object. However, BLORT severely
suffers from jier noise in rotations.

matches keypoints until it has at least the minimum number of keypoint correspondences τn. Once enough keypoint

correspondences are acquired, the proposed system initializes particles as explained in §3.3.4 and Algorithm 3.2.

3.4.6 Comparison with BLORT tracker

So far we have shown a series of comparative experiments with Choi and Christensen (2010) or our proposed ap-

proach with several different parameters. However, it would be more convincing if we compare our proposed ap-

proach with the state-of-the-art tracker. To compare the performance of our approach with an existing solution,

we chose BLORT tracker (Mörwald et al. 2010) because it combines state-of-the-art methods for object recognition

38

(a) e real image sequence of the “Book” object

(b) e real image sequence of the “Cup” object

Figure 3.13. A comparison between the tracking results of our particle filter (yellow wireframes) and
BLORT (red wireframes) on real image sequences. In both image sequences, our particle filter (N = 100, λa =
0.5, RANSAC) is compared with BLORT (N = 200, R = 4). While our particle filter well tracks the target objects,
BLORT loses the targets in the middle of the sequences. Even before the tracking failures, pose results from BLORT
are not well aligned to the global optimum.

and tracking as well as is publicly available.¹ By combining SIFT-based object recognition and edge-based particle

filtering, BLORT provides reliable solution for robotic research. For robustness, BLORT considers edges from sur-

face texture of objects in particle likelihood evaluation. Time consuming parts, such as hidden face removal, image

processing, texture mapping, and particle filtering, are efficiently processed by GPU.

We used default parameters provided in the BLORT soware package except the number of particles N and

recursions R. Since BLORT employs the recursive particle filtering (Mörwald et al. 2009), the number of recursion

also determines the robustness of tracking. us we changed these parameters in order to compare our approach

with various seings of BLORT. Since BLORT cannot handle arbitrary complex shaped objects, we excluded “Car

door” object in this experiments. We converted our OBJ formaed 3D polygonal mesh models to PLY format, which

BLORT accepts. In addition, texture images of these objects were learned to be used in the likelihood evaluation

¹BLORT - e Blocks World Robotic Vision Toolbox: http://users.acin.tuwien.ac.at/mzillich/?site=4

39

http://users.acin.tuwien.ac.at/mzillich/?site=4

Table 3.2. RMS errors and computation time in synthetic image sequences (PF vs. BLORT).

Objects Mode RMS Errors⋆ Time§
X Y Z Roll Pitch Yaw

Teabox

PF (N = 100, λa = 0.5, RANSAC) 3.234 1.829 8.062 1.843 3.057 2.530 464.69

BLORT (N = 100, R = 2) 6.344 3.570 6.825 1.915 8.753 4.146 99.72
BLORT (N = 200, R = 2) 4.747 3.164 5.878 1.528 6.879 3.228 174.36
BLORT (N = 100, R = 4) 3.897 3.169 5.605 1.511 6.127 3.353 173.96
BLORT (N = 200, R = 4) 3.684 2.289 4.821 1.276 5.572 1.946 325.03

PF (N = 100, λa = 0.5, RANSAC) 2.795 4.953 9.503 2.410 4.854 3.400 519.03

BLORT (N = 100, R = 2) 12.639 5.808 18.893 3.559 16.471 11.607 104.37
BLORT (N = 200, R = 2) 42.314 25.175 110.392 4.246 28.717 10.883 101.15
BLORT (N = 100, R = 4) 5.101 2.630 7.608 2.550 7.379 3.836 190.70
BLORT (N = 200, R = 4) 6.411 3.180 16.986 3.745 6.537 3.744 331.18

Book

PF (N = 100, λa = 0.5, RANSAC) 4.140 3.171 20.084 0.876 1.408 3.545 811.00

BLORT (N = 100, R = 2) 6.651 6.194 29.169 2.439 11.056 14.747 85.71
BLORT (N = 200, R = 2) 4.736 5.989 22.240 1.904 7.898 11.589 147.94
BLORT (N = 100, R = 4) 3.962 6.119 21.459 1.399 5.777 9.643 150.55
BLORT (N = 200, R = 4) 3.643 5.893 18.073 1.132 4.346 8.780 275.86

PF (N = 100, λa = 0.5, RANSAC) 3.195 3.843 8.239 1.589 1.979 3.697 819.85

BLORT (N = 100, R = 2) 73.011 79.695 262.610 27.580 47.031 38.527 37.32
BLORT (N = 200, R = 2) 73.198 90.931 216.233 44.918 17.872 23.865 51.41
BLORT (N = 100, R = 4) 73.824 86.040 232.869 38.145 31.934 23.138 48.50
BLORT (N = 200, R = 4) 59.819 76.913 229.491 56.344 37.451 29.128 75.40

Cup†

PF (N = 100, λa = 0.5, RANSAC) 2.933 2.422 11.063 – 1.515† – 1925.59

BLORT (N = 100, R = 2) 41.878 24.509 187.267 – 57.789 – 36.91
BLORT (N = 200, R = 2) 30.419 26.715 93.366 – 83.586 – 63.46
BLORT (N = 100, R = 4) 56.216 45.414 610.823 – 55.184 – 52.97
BLORT (N = 200, R = 4) 3.979 5.006 27.852 – 5.091 – 222.57

PF (N = 100, λa = 0.5, RANSAC) 6.997 18.516 17.134 – 6.333† – 1949.41

BLORT (N = 100, R = 2) 86.748 75.334 226.736 – 69.987 – 37.03
BLORT (N = 200, R = 2) 79.777 35.124 114.818 – 69.422 – 56.70
BLORT (N = 100, R = 4) 36.628 73.228 179.439 – 85.200 – 77.02
BLORT (N = 200, R = 4) 64.853 52.676 132.043 – 105.518 – 98.50

⋆e error units of translation and rotation are millimeter and degree, respectively. Beer results are indicated in bold type.
§e unit of computation time is milliseconds per frame.
† Since the “Cup” object is symmetric and thus exact orientation cannot be estimated, we calculate the angle of the axis of symmetry.

of its particle filtering, and SIFT features were also saved to be used in the SIFT-based object recognition. For our

tracker, 100 particles, the AR state dynamics, and RANSAC refinement were employed (i.e. N = 100, λa = 0.5,

RANSAC).

Our approach and BLORT were tested in the synthetic image sequences. While we fixed the parameters of our

approach, we tried several different numbers of particles (N = 100 or N = 200) and recursions (R = 2 or N = 4)

for BLORT so that we can compare our approach with various seings of BLORT.² Figure 3.12 shows the 6-D pose

and residual plots of the result in the “Book” simple background image sequence. With the sufficient number of

particles and recursions (N = 200, R = 4), BLORT reports similar performance to our particle filter. BLORT even

shows slightly beer results in z translation possibly due to considering edges from texture of the object. However,

BLORT severely suffers from jier noise in rotations.

ese plots in Figure 3.12 are the best results from BLORT. In many cases, BLORT lost tracking in the middle

of image sequences. In Table 3.2, RMS errors and computation time of all experiments for the synthetic image

sequences are presented. As shown in the table, BLORT reports poor accuracy, especially in complex background

²e default number of particles and recursions in BLORT areN = 200 and R = 2 respectively.

40

sequences (e.g. “Book” and “Cup”). While our approach outperforms BLORT in terms of accuracy in many cases,

BLORT shows comparable results in “Teabox” object. e reason why BLORT gives beer results for “Teabox” object

is possibly due to the amount of texture. Since BLORT takes advantage of edges coming from surface texture in its

particle filtering, sufficient texture information is crucial to a robust tracking. “Teabox” object has relatively plentiful

textures compared to “Book” and “Cup” objects. us BLORT reports less RMS errors even in the “Teabox” complex

background sequence, while it even shows large errors in “Cup” simple background sequence. On the contrary, our

particle filter relies on sharp edges in the 3D polygonal model, and thus our approach is independent of textures.

Beer accuracy of our tracker is further achieved via IRLS optimization, AR state dynamics, and RANSAC refinement.

Nor surprisingly, accuracy of BLORT gets beer as the number of particles N or recursions R increases, but at the

same time the computation time increases. As BLORT exploited the parallel power of GPU, it shows higher frame

rates than our approach.

Similar comparative experiments are done in the real image sequences. e results in the “Book” and “Cup” image

sequences are presented in Figure 3.13. While our particle filter (yellow wireframes) well tracks the target objects,

BLORT (red wireframes) loses the targets in the middle of the sequences. Once BLORT failed to track the target, it

remained as lost without any successful recovery until the end of sequence. Even before the tracking failures, pose

results from BLORT are not well aligned to the global optimum.

BLORT reported good performance in simple background image sequences with well textured objects. However,

it did poorly perform in relatively complex background with less textured objects, and its tracking was not as agile

as our tracker. e pose results of BLORT showed severe jier noise, especially in rotation, which is not desirable

for robotic applications. We note the high frame rates of BLORT due mainly to the parallelization of the algorithm in

GPU. It might imply that exploiting the parallel power from GPU would be worthwhile to accelerate the processing

time of our approach.

3.5 Summary

We have presented an approach to 3D visual object tracking based on a particle filtering algorithm on the SE(3)

group. For fast particle convergence, we employed keypoint features and initialized particles by solving the PnP

problem. Particles are propagated by the state dynamics which is given by the AR process on the SE(3), and

the state dynamics distributed particles more effectively. Edge correspondences were first enhanced by considering

orientations of the edge points, and theywere further refined through the RANSAC process. Measurement likelihood

was calculated from both the residual and the number of valid sample points of the edge correspondences. During

the tracking, the proposed system appropriately re-initialized by itself when the number of effective particles was

below the threshold. Our approach has been tested via various experiments in which our multiple pose hypotheses

tracker has shown notable performance on challenging background and cluer.

41

CHAPTER IV

EXTENDING TO TEXTURELESS OBJECTS (2D)

While the previous chapter described the textured object pose tracking, this chapter presents an extension of our

previous approach to textureless objects. For the initialization of a textureless object pose, an efficient chamfer

matching is employed so that a set of coarse pose hypotheses is estimated from matching results between 2D edge

templates of an object and a query image, and particles are then initialized from the coarse pose hypotheses. To

ensure the initialized particles are at or close to the global optimum, an annealing process is further performed aer

the initialization.

Our key contributions are as follows:

• We employ an efficient chamfer matching to find a set of starting states. Most particle filtering approaches as-

sume that an initial state is given or is searched from scratch with the simulated annealing (Klein and Murray

2006). Several approaches have presented keypoint-based initialization (Choi and Christensen 2011), but key-

points are not usually applicable to textureless objects. us, we present a 3D pose estimation from a chamfer

matching (Liu et al. 2010a) using a set of 2D edge templates.

• Although initial particles are assigned via the coarse pose hypotheses, they would be occasionally stuck in

local optima right aer the initialization. To ensure that initial states are at or close to the global optimum, we

run a particle annealing method (Deutscher et al. 2000) right aer the (re-)initialization.

is chapter is organized as follows. e edge template generation by rendering a CAD model of an object is

described in Section 4.1.1, followed by the coarse pose estimation in Section 4.1.2. e annealed particle filtering,

which is employed for more robust convergence of the initialized particles, is presented in Section 4.1.3. We also

address how to reduce the search space of the particle filter in the case of symmetric objects in Section 4.1.4. In

Section 4.2, comparative results for several image sequences are shown to validate the effectiveness of our approach.

4.1 Edge-based Pose Estimation

To initialize particles, coarse poses are estimated by employing an efficient chamfer matching (Liu et al. 2010a) that

provides a sub-linear time solution for the matching and shows fewer false positive rates via the piecewise smooth

cost function. For this, a set of edge templates is obtained offline from polygonal mesh models as training data.

4.1.1 Generating Edge Templates

We obtain a set of edge templates T = {T1, T2, · · · , TT } from a polygonal mesh model of an object, where T is

the number of templates. To generate these templates, the projection matrix in OpenGL is set from the intrinsic

42

· · ·

T1 T2 T3 T4 T5 T6 T7 T48 T49

· · ·

· · ·

· · ·

(b)(a)
Figure 4.1. Polygonal mesh models and edge templates. (a) We chose 4 IKEA objects so that replicating our
experiments would be easier. From top to boom, REKO glass, FARGRIK glass, POKAL glass, and SVALKA red wine
glass. (b) Only visible edges were determined from the mesh models. To handle pose variations, the objects were
rotated in x and z axes.

camera parameters of the monocular camera, which will be used in real experiments. e model is then rendered in

OpenGL at a fixed depthZ0. To identify visible edges, we use the face normal vectors frommesh models as described

in Section 3.2.2. As appearances of the models change with respect to rotational variations, multiple templates are

obtained as in Figure 4.1 (b). To cover usual shape variations, the objects are rotated in x and z axes per 10◦ and 5◦,

respectively. Seven steps of rotations are sampled in each axis so that T = 49 templates are obtained per object.

4.1.2 Coarse Pose Estimation

With the set of templates generated in Section 4.1.1, the chamfer matching is performed on an input image It. Since

the edge templates were obtained with a fixed depth Z0, we run the chamfer matching in multiple scale to address

different scales of the object in the image depending on the distance between the camera and the object. As a result of

the chamfer matching, a set of detection windows are returned. Among the detection windows, we first consider the

windows whose detection cost is under a threshold δth, then the non-maxima suppression is performed to have the

lowest cost detection among the overlapped detection. As a result, we have a set of detectionsD form = 1, . . . ,M :

D = {x(m), y(m), δ(m),R(m), σ(m)} (4.1)

where x(m) and y(m) are the center location of the detected template in the input image, δ(m) means the cost from

the chamfer matching, R(m) ∈ SO(3) is the corresponding rotation matrix saved in the template generation, σ(m)

represents of the scale of the detected edge template, and M is the number of detections. e set of detections is

sorted in order of increasing cost δ(m).

Given D, a set of coarse poses is estimated. Please note that we can only approximate the current pose from

the edge templates, as the edge templates do not cover the entire appearance variations. For this approximation,

43

Algorithm 4.1: ChamferPose(I, T)
Data: I, T = {T1, T2, · · · , TT }
Result: S = {(X(1), π(1)), · · · , (X(N), π(N))}
Params: Z0, u0, v0, fx, fy, δth, λδ

1: D ← {x(ϕ), y(ϕ), δ(ϕ),R(ϕ), σ(ϕ)} (4.1)
2: for t← 1 to T do
3: for σ ← σmin to σmax do
4: {x′, y′, δ′,R′} ← ChamferMatch(I, Tt, σ, δth) Liu et al. (2010a)
5: D′ ← {x′, y′, δ′,R′} ∪ {σ}
6: D ← D ∪D′

7: Sort(D)
8: M ← length(D)
9: form← 1 to M do

10: Z(m) ← Z0/σ
(m) (4.2)

11: X(m) ← (x(m) − u0)Z
(m)/fx (4.3)

12: Y (m) ← (y(m) − v0)Z
(m)/fy (4.4)

13: P(m) ← CoarsePose(X(m), Y (m), Z(m),R(m)) (4.5)

14: for n← 1 to N do
15: X∗(n) ← P(n mod M+1) (4.6)
16: π∗(n) ← exp(−λδδ

(n mod M+1)) (4.7)

17: π∗ ← Normalize(π∗) (4.8)
18: S ← Resampling(S∗)

two assumptions are considered. e first assumption is that although the center location (x(m), y(m)) might be

slightly far from the principal point (u0, v0), the rotation matrix can be adopted from one at the principal point.

us rotation of the object can be determined byR(m). e second assumption is that the 3D center location of the

object can be estimated via similar triangles in the perspective projection. Under this assumption, we can determine

the z coordinate of the object Z(m) with respect to the camera by

Z(m) =
Z0

σ(m)
. (4.2)

Once Z(m) is determined, it is straightforward to calculate X(m) and Y (m) using similar triangles:

X(m) =
(x(m) − u0)

fx
Z(m) (4.3)

Y (m) =
(y(m) − v0)

fy
Z(m) (4.4)

where fx and fy are focal length of the camera in x and y directions, respectively. If we apply (4.2) to (4.3) and

(4.4), we can represent the approximate pose hypothesis P(m) ∈ SE(3) of the object with respect to the camera

coordinate system as follows

P(m) =


R(m)

(x(m)−u0)
fx

Z0

σ(m)

(y(m)−v0)
fy

Z0

σ(m)

Z0

σ(m)

0 0 0 1


. (4.5)

44

Algorithm 4.2: ParticleAnnealing(I,S)
Data: I,S = {(X(1), π(1)), · · · , (X(N), π(N))}
Result: S0 = {(X(1)

0 , π
(1)
0), · · · , (X(N)

0 , π
(N)
0)}

Params: α = {α0, · · · , αL}, β = {β0, · · · , βL},Σw,0

1: SL+1 ← S
2: for l← L to 0 do
3: for n← 1 to N do
4: X∗(n)

l ← Propagate(X(n)
l+1,Σw,l, α) (4.11)(4.12)

5: Z∗(n) ← Measurement(X∗(n)
l , I) (3.7)

6: Ź∗(n) ← RANSAC(Z∗(n))

7: π
∗(n)
l ← Likelihood(Ź∗(n), λv, λe, βl) (3.21)(4.10)

8: π∗
l ← Normalize(π∗

l) (4.8)
9: Sl ← Resampling(S∗l)

Aer P(m) is calculated for all M detection, the N particles and their weights are initialized as

X∗(n) = P(n mod M+1) (4.6)

π∗(n) = exp(−λδδ
(n mod M+1)) (4.7)

where λδ is a parameter, which controls the sensitivity to the costs. e weights are normalized via

π∗(n) =
π∗(n)∑N
i=1 π

∗(i)
. (4.8)

e particles are then randomly drawn with probability proportional to these weights, and we finally have a set of

weighted particles St aer the initialization. is pose estimation procedure is presented in Algorithm 4.1 where

relevant work and equations are cited in the comments area.

4.1.3 Annealed Particle Filtering

Although our particle filter starts from the most likely pose hypotheses, we cannot always guarantee that the fil-

ter converges to the global optimum. Since the sparse edge templates could not cover all possible ranges of pose

variations, the errors come from this discrepancy might lead to local optima. Another limitation comes from the

low precision of the chamfer matching. In cluered backgrounds, the chamfer matching may return false positives

which lead to poor initial states. Aside from these limitations, it is well known that even if a number of particles are

employed, the particle filter might be stuck in local maxima.

To ensure that our particle filter starts near the global maximum, a simulated annealing (Deutscher et al. 2000)

is performed aer every initialization or re-initialization (Section 3.3.7). e set of weighted particles in (3.8) is

augmented with the annealing layer l as

St,l = {(X(1)
t,l , π

(1)
t,l), . . . , (X

(N)
t,l , π

(N)
t,l)}. (4.9)

e annealing starts at layer l = L where L is the number of annealing layers and the weights are determined by

π
(n)
t,l ∝ p(Zt|X(n)

t)βl (4.10)

45

where βl (1 = β0 > β1 > · · · > βL) controls the rate of annealing at each layer. Aer normalization of the weights,

N particles are randomly drawn from St,l with the probability of their weights π(n)
t,l . e particles of the next layer

St,l−1 are then propagated as

X(n)
t,l−1 = X(n)

t,l · exp (dWt,l

√
∆t) (4.11)

where dWt,l is the Wiener process noise with covariance Σw,l. is annealing process is iterated until it arrives at

X(n)
t,0 . In Deutscher et al. (2000), the Σw,l was defined by

Σw,l = Σw,0(αLαL−1 . . . αl) (4.12)

where αl represents the particle survival rate which is equivalent to N̂eff/N in (3.25). ey argued that α0 = α1 =

· · · = αL = 0.5 provide sufficient results. In the parameter βl, one can determine to adjust an initial rate of αinit to

αl using a gradient descent method (Deutscher et al. 2000). As a simple alternative, we empirically found βl = (0.5)l

shows good performance as well. e annealing algorithm is shown in Algorithm 4.2.

4.1.4 Symmetric Objects

Some of our objects (Figure 4.1) are symmetrical so that rotation about the axis of symmetry, y-axis in our object

models, cannot be uniquely determined. It is problematic when our particle filter searches the 6D pose space because

it may result in a ridge posterior distribution. us, it is more efficient to search a 5D pose space instead of the full

6D space. is can be easily modified through our Lie group formulation. Recall that se(3) has 6 basis elements as

shown in (3.6), and exponentiating the term of the fih basis E5 results in the rotation about y-axis in SE(3):

exp(γE5) =

(
cos γ 0 sin γ 0
0 1 0 0

− sin γ 0 cos γ 0
0 0 0 1

)
. (4.13)

erefore, it is possible to suppress rotating motion about the axis of symmetry by seing 0 in the fih coefficient

for E5 corresponding to the term A(X, t) and dWt in (3.5), dWt,l in (4.11), and µ in (3.23).

4.2 Experimental Results

In this section, we validate our proposed solution via several experiments. REKO, SVALKA, POKAL glasses were

chosen from the KIT ObjectModels Web Database (Kasper et al. 2012) in which more than 100 object models of

household items are provided in 3D polygonal meshes and stereo images, and FARGRIK glass model obtained from

Google 3Dwarehouse (Google 2013). We only use the providedmeshmodels in our experiments which were scanned

via a high-accuracy laser scanner. e mesh models are represented in Figure 4.1 (a). We only use the provided mesh

models in our experiments which are shown in Figure 4.1 (a). From these models, we prepare 49 edge templates

per each object offline as shown in Figure 4.1 (b). ese templates are used in the chamfer matching to initialize

particles. To obtain test image sequences, a calibrated monocular camera was placed around the target objects, and

the camera was moved so that the captured image sequences show significant variations in translation, rotation, and

velocity.

46

Figure 4.2. Tracking results showing effectiveness of considering multiple hypotheses. Results with 100
particles (yellow wireframe) and 1 particle (red wireframe) are shown in the sequence of the POKAL glass. Note that
the yellow wireframe is well localized by calculating the mean of multiple hypotheses, while the red wireframe is
dried during entire tracking. e frame number is shown in the top le corner of each image.

Figure 4.3. Tracking results showing effectiveness of suppressing the rotating motion about the axis of
symmetry. Results with (yellowwireframe) and without (red wireframe) the suppression are shown in the sequence
of the FARGRIK glass. Although they use the same number of particles and the parameters, the red wireframe starts
to dri before the frame number 698 due to larger search space.

To validate our particle filtering approach, we first executed our system on the sequence of the POKAL glass

with 1 and 100 particles. For fair comparison, we set the same parameters except the number of particles. In Figure

4.2, results of the system using 1 and 100 particles are depicted in red and yellow wireframes, respectively. While

the red wireframes are suffered from driing, the yellow ones are well fied to the object. Since the particle filter

considers multiple hypotheses, it is not stuck in local optima.

To verify the effectiveness of suppressing the rotating motion discussed in Section 4.1.4, the proposed approach

was executed with and without the suppression. For fair comparison, the suppression was only altered. e tracking

results are presented in Figure 4.3. e tracking difference is possibly due to different search spaces. With the same

number of particles (N = 100), the suppressed version only searches for the global optimum in the 5D space, while

the version without the suppression fails to find the optimum in the 6D space.

We prove the effectiveness of annealed particle filtering by turning on and off the annealing stage aer the

initialization. e experiment was executed with the same parameters except the annealing. e comparison of the

two tracking results are presented in Figure 4.4. It is clear that employing the annealing process helps the tracker to

start from the global optimum.

As monitoring the effective number of particles N̂eff, the proposed system can re-initialize by itself when it is

required. To verify this capability, we tested on a challenging image sequence, in which the object is oen disap-

peared because of the camera motion (Figure 4.5). When these cases are occurred, N̂eff falls significantly. us our

system re-initializes the tracking and successfully recovers from the failure cases.

47

Figure 4.4. Initialization and annealed particle filtering. e top-le image shows the chamfer matching
results which are depicted in cyan bounding boxes, except that the lowest cost window (i.e. best result) is drawn in
the yellow box. e next image shows initial states in cyan wireframes determined by our algorithm. e upper and
lower rows of the center to right columns present results without and with the annealing, respectively. Intermediate
annealing results are shown in the boom-le two images (annealing layer l is 4 and 2 from total L = 5 layers). e
particle filter without annealing is oen stuck in local optima, and thus it could not recover to the global optimum,
while our annealed particle filter can converge.

Figure 4.5. Tracking results showing the re-initialization capability. Based on the value of N̂eff, our system
can re-initialize when the object goes out of the field of view.

4.3 Summary

We presented a particle filtering approach using edge features for the textureless object detection and tracking. Our

approach started with possible pose hypotheses via the chamfer matching followed by the coarse pose estimation.

e initial poses were further refined through the annealed particle filtering to ensure they are close to the global

maximum. e proposed approach was qualitatively validated in various experiments.

48

CHAPTER V

VOTING-BASED POSE ESTIMATION (3D)

In this chapter, we describe our object pose estimation algorithm for two classes of objects. e first object class

is daily objects, which possess rich variations in color, texture, and shape. For this object class, we describe our

approach exploiting both geometric (depth) and photometric (color) features in Section 5.1. e second object class

is industrial parts, which lack sufficient color or texture variations. In Section 5.6, we delineate our approach for

industrial objects relying on geometric features (boundaries from depth discontinuities and depth points). We show

experimental results for daily and industrial objects in Section 5.4 and 5.9 respectively.

5.1 Exploiting Object Color Information

In this section, we present an object pose estimation approach exploiting both depth and color information avail-

able from an RGB-D sensor. ere have been various aempts to solve the pose recognition problem, yet most of

them have relied on an object segmentation which removes the background and clusters the remained points. is

approach might be effective with a known background structure, but it is not promising when the background is

cluered or has an unknown geometric shape. In these cases of unstructured environments, it is necessary to hy-

pothesize all possible transformations from an object model to a given scene. Recently, a voting approach, using

4D oriented point pair features, was introduced to find a set of 3D rigid transformations between the model and the

test scene. We found that exploiting color information significantly enhances the performance of the voting process

in terms of both time and accuracy. To exploit the color information, we define a color point pair feature (CPPF),

which is utilized in the voting scheme for effective and robust pose computation. We further enhance the computa-

tional performance by parallelizing in a modern computational architecture. e proposed approach is extensively

evaluated with four state-of-the-art approaches on both synthetic and real datasets.

5.2 Contributions

Our main contributions are as follows:

• We utilize color information available from the RGB-D sensor. Our color augmented point pair feature enables

the voting scheme to be more efficient by reducing the number of duplicated features in the object learning

phase. anks to the color information in CPPFs, a large number of potentially false feature matches are

skipped, and this makes our approach more robust to background cluer.

• Our algorithm is significantly parallelized on a GPU. Although our CPPF-based pose estimation is more ef-

ficient than the approach without color information (Drost et al. 2010), the speed is still prohibited for the

49

Algorithm 5.1: RGB-D Pose Estimation
Data:M = {(pm

1 ,nm
1 , cm1), · · · , (pm

Nm
,nm

Nm
, cmNm

)},S = {(ps
1,ns

1, cs1), · · · , (ps
Ns

,ns
Ns

, csNs
)}

Result: P = {(P1, v1), (P2, v2), · · · , (PN̂p
, v

N̂p
)}

Params: Nv, γs, δ, θ,σ, Nc

1: {A, Iso ,Hr,Dh, Irs} ← ObjectLearning(M) ⟨5.2⟩
2: {V, iv} ← Voting(M,S,A, Iso ,Hr,Dh, Irs) ⟨5.3⟩
3: P ← ComputePoses(M,S,V, iv) ⟨5.4⟩
4: P ← ClusterPoses(P) ⟨5.5⟩

ni

f3f2

f4

nj

d

= �d�2

f1 = �pi − pj�2

{pi, ci}{pj, cj}
f8:10 = cj f5:7 = ci

Figure 5.1. e Color Point Pair Feature (CPPF).e feature is defined by the distance (f1), relative orientations
(f2, f3, and f4), and colors (f5:7 and f8:10) of the pair of color oriented points {(pi,ni, ci), (pj ,nj , cj)}.

general robotic manipulation scenarios. By exploiting the parallel power of an off-the-shelf GPU, our algo-

rithm processes an RGB-D scene in several hundred milliseconds.

• We present an extensive dataset for the RGB-D pose estimation problem with ground truth pose information.

e dataset is composed of synthetic and real RGB-D scenes along with ten object mesh models, and it is de-

signed for various evaluations, such as noise, multiple objects single instance, single object multiple instances,

and highly cluered scenes.

5.3 RGB-D Pose Estimation

In this section, our RGB-D pose estimation algorithm is presented. By revisiting the point pair features of Drost

et al. (2010) in Section 5.3.1, we introduce our color point pair feature in Section 5.3.2. In Section 5.3.3, the parallel

object learning algorithm is presented, and the voting process and pose clustering are explained in Section 5.3.4 and

5.3.5, respectively. e overall algorithm is shown in Algorithm 5.1 which takes an object model point cloudM

and an scene point cloud S as inputs and returns a set of pose hypotheses P as an output. e more details of the

parameters and the algorithms, referred as ⟨·⟩ in the comments area, will be described in the subsequent sections.

50

5.3.1 Point Pair Feature

e point pair feature (PPF) is defined by paring two oriented points, and it has been employed in shape-based object

recognition (Wahl et al. 2003, Drost et al. 2010). Let {(pi,ni), (pj ,nj)} denote the pair of two oriented points where

pi and pj ∈ R3 are the reference and referred points on the object surface, and ni and nj ∈ R3 are their normals

respectively. e point pair feature vector FPPF ∈ R4 is then defined as

FPPF = PPF(pi,pj ,ni,nj) (5.1)

=



∥d∥2

∠(ni,d)

∠(nj ,d)

∠(ni,nj)


where d = pi − pj , and ∠(v1, v2) ∈ [0, π) represents the angle between two vectors, v1 and v2 ∈ R3. e

first dimension, ∥d∥2 = ∥pi − pj∥2, represents the Euclidean distance between the two points. e second and

third components are angles between the vector d and the surface normal vectors ni and nj , respectively. e last

component is the angle between the two normal vectors. is feature effectively encodes geometric constraints of

point cloud surfaces so that efficient matching between model and scene point clouds is possible, especially when

these point clouds contain rich surface normal variations.

5.3.2 Color Point Pair Feature

Even though the PPF might be suitable for objects having rich variations in surface normals, it is generally not

discriminative enough to describe planar or self-symmetric objects. Hence it is required to augment the pair feature

so that the feature will be more effective to these types of objects. e color point pair feature (CPPF) vector FCPPF ∈

R10 is defined by concatenating two 3D color vectors of the points:

FCPPF = CPPF(pi,pj ,ni,nj , ci, cj) (5.2)

=


PPF(pi,pj ,ni,nj)

ci

cj


where ci and cj ∈ R3 are color vectors. For generality, each color channel is normalized as c ∈ [0, 1]. Figure 5.1

illustrates the CPPF. When it comes to using color information, it is crucial to choose a proper color space to be

less variable to illumination changes. e original color information from the RGB-D sensor is in the RGB color

space. However, the RGB values tend to change much as illumination intensity varies. As an alternative, HSV (Hue,

Saturation, and Value) color space was well studied and proven to be more invariant than the RGB space with respect

to illumination changes. us we adopt the HSV color space in our experiments.

51

Algorithm 5.2: ObjectLearning(M)
Data:M
Result: A, Iso ,Hr,Dh, Irs
Params: δ, θ,σ

1: H ← 0Nm×Nm

2: A ← 0Nm×Nm

3: for i← 1 to Nm do
4: for j ← 1 to Nm do
5: if i ̸= j then
6: F← CPPF(pm

i ,pm
j ,nm

i ,nm
j , cmi , cmj) (5.2)

7: k← HashKey(F, δ, θ,σ) (5.3)
8: κ← BitEncodeCPPF(k) (5.4)
9: αm ← PlanarRotAngle(ni,pm

i ,pm
j) (§5.3.4)

10: H(i, j)← κ
11: A(i, j)← αm

12: {Hs, Iso} ← gpu::Sort(H)
13: {Hr,Dh} ← gpu::Reduce(Hs)
14: Irs ← gpu::ExclusiveScan(Dh)

5.3.3 Object Learning

In the object learning phase, an object representation is learned globally by calculating all possible CPPFs from an

object point cloud. When there areNm points in the point cloudM,Nm ×Nm CPPFs are calculated includingNm

self pairs. Once the set of CPPF features are calculated, it is saved in a data structure for the later feature matching.

Hash tables have been widely adopted for the purpose due to its fast search time (Mian et al. 2006, Drost et al. 2010,

Kim and Medioni 2011, Choi et al. 2012, Papazov et al. 2012). To use the CPPF as the key for hash table, we first need

to quantize the feature vector as

k = HashKey(FCPPF, δ, θ,σ) (5.3)

=

(
⌊∥d∥2

δ ⌋, ⌊
∠(ni,d)

θ ⌋, ⌊∠(nj ,d)
θ ⌋, ⌊∠(ni,nj)

θ ⌋, ⌊ci ⊘ σ⌋T, ⌊cj ⊘ σ⌋T
)T

where δ ∈ R, θ ∈ R,σ ∈ R3 are quantization levels for distance, angle, and color vectors, respectively. e symbol

⊘ denotes component-wise division. A key of the CPPF, k ∈ Z10, is then bit-encoded as

κ = BitEncodeCPPF(k) (5.4)

where the 64-bit key κ ∈ Z is encoded as in Figure 5.3.

Although the hash table search is designed for constant time search O(1), the performance of the hash tables

highly depends on the choice of hash function. Even though we carefully design the hash function, lots of point

pairs are inserted in a relatively small number of hash slots due to the symmetric regions of objects. As a result, each

hash search does not guarantee the optimal search time. In our approach, we employ the modern parallel computing

architecture which is called GPU. For computational acceleration on the GPU, it is required to maintain the data in

a simple structure so that a large number of threads can efficiently process the data in parallel. In this respect, we

52

α
x

y

z

Tm→g

Ts→g

ps
i

ps
j

pm
j�

pm
i�

nm
i�

αm

αs

ns
i

pm
j�

ps
j

ns
i ,n

m
i�

ps
i ,p

m
i�

Figure 5.2. Aligning pair features in the intermediate coordinate system. By Ts→g , the scene reference point
ps
i is moved to the origin and its orientation (normal or direction) ns

i is aligned to the x-axis. e model reference
point is similarly transformed by Tm→g so that the positions and orientations of the reference points are aligned.
e referred points ps

j and pm
j′ are then aligned by a rotation with angle α around the x-axis.

maintain the set of keys in an array storage and use parallel operations for faster search later.

e object learning process is presented in Algorithm 5.2 where referred equations and sections are marked as

(·) and (§·) in the comments area, respectively. Given an object model point cloudM, the algorithm returns the

reduced hash keysHr with the intermediate angle arrayA and other data required for the later voting process. e

Nm designates the number of points inM, and the αm is the intermediate angle stored in A that will be explained

in Section 5.3.4. e for-loop in line 3 is parallelized so that each thread takes care of each (i, j) pair. Once the keys

are calculated and saved in H, they are first sorted (Hs) and then reduced so that duplicated keys are removed. By

reducing, the sorted keysHs are shrunk to the reduced keysHr with the array of duplication numbers Dh. e Dh

is further utilized to come up with the indices from the reduced array to the sorted array Irs . Similarly, the Iso has the

indices from the sorted array to the original array. ese two arrays of indices are necessary to map from the reduced

array Hr to the original array H for the voting process. e parallel primitive operations, such as sort, reduce, and

exclusive scan, are readily available via GPU C++ template libraries, such as NVIDIA rust library (Hoberock and

Bell 2010) or AMD Bolt library (AMD 2012). Since all data resides in GPU, we can easily call these parallel operations

on GPU and process the massive data very efficiently.

e quantization parameters δ, θ,σ are important to set. While choosing very large levels reduce the discrimi-

native power of the feature, using very small levels make the algorithm sensitive to noise. For the color quantization

levels σ, we use the HSV color space. e V (value or intensity) channel is not generally invariant to illumination

changes, and hence a relatively larger level is used. In our experiment, we empirically found these values and more

details will be described in Section 5.4.

53

5.3.4 Voting Scheme

Let’s assume that we found a correct match of CPPFs between scene and model point clouds. As described in

Figure 5.2, we can align two normal vectors {ns
i ,nm

i′ } of the two reference points {ps
i ,pm

i′ } in an intermediate

coordinate system. e alignment of two reference points constrains 3-DOF translation and the alignment of the

two normals further constrains 2-DOF rotation. erefore, there is only 1-DOF rotation ambiguity α ∈ R around

the x-axis of the intermediate coordinate system. Once the α is determined by the two vectors ps
j−ps

i and pm
j′ −pm

i′ ,

we can recover the pose of the object, P ∈ SE(3), which is the full 6-DOF rigid body transformation from the model

coordinate system to the scene coordinate system via

P = Tm→s

= T−1
s→gRx(α)Tm→g (5.5)

where Rx(α) ∈ SO(3) is the rotation around the x-axis with angle α, Ts→g ∈ SE(3) and Tm→g ∈ SE(3) are the

transformations from the scene and model coordinate systems to the intermediate coordinate system, respectively.

For a quick verification, the referred points {ps
j ,pm

j′ } can be aligned by P as

ps
j′ = Ppm

j′

= T−1
s→gRx(α)Tm→gpm

j′ .

It is possible to choose any arbitrary intermediate coordinate system, but a trivial choice is choosing the sensor

coordinate system.

Unfortunately, the aforementioned assumption of a correct correspondence between two CPPFs is not always

valid. In reality, there is a nontrivial amount of similar geometric and colored surfaces between the actual object and

cluered background point clouds. Due in part to sensor noise and to illumination changes, it happens that these

similar regions result in incorrect pose hypotheses. To address this issue, a voting process is performed so that it

finds the most likely pose hypothesis from the bin earned the maximum number of votes (Drost et al. 2010). e

usual approach is employing two dimensional accumulator space for the voting process, in which the rows are the

model reference points and the columns are discretized bins of α (Drost et al. 2010, Choi et al. 2012). ough it is

possible to allocate a big memory space in CPU memory, it is technically impossible to assign the big voting space to

each thread in GPU. As a workaround, a big chunk of global memory V , where the maximum size isNv , is allocated

and every votes are accumulated in V . Algorithm 5.3 carefully describes the voting process. Given the model point

cloudM, scene point cloud S , and other data obtained from Algorithm 5.2, each reference scene point ps
i is paired

with the other scene points ps
j . When the Euclidean distance between these two points are within the given search

radius γs, the CPPF from the two points is calculated and is searched in the model keys Hr via the binary search.

SinceHr is already sorted and reduced, the binary search is done inO(logn)where n is the number of reduced keys.

If the corresponding key is found, the number of duplicated keysNd is looked up via Dh and the model point index

54

Algorithm 5.3: Voting(M,S,A, Iso ,Hr,Dh, Irs)
Data:M,S,A, Iso ,Hr, Irs ,Dh

Result: V, iv
Params: Nv, γs, δ, θ,σ

1: V ← 01×Nv

2: iv ← 0
3: for i← 1 to Ns do
4: for j ← 1 to Ns do
5: if i ̸= j and ∥ps

i − ps
j∥ < γs then

6: F← CPPF(ps
i ,ps

j ,ns
i ,ns

j , csi , csj) (5.2)
7: κ← HashKey(F, δ, θ,σ) (5.3)
8: αs ← PlanarRotAngle(ns

i ,ps
i ,ps

j) (§5.3.4)
9: ir ← BinarySearch(Hr, κ)

10: if ir ̸= {ϕ} then
11: Nd ← Dh(ir)
12: is ← Irs (ir)
13: for d← 1 to Nd do
14: io ← Iso(is + d)
15: αm ← A(io)
16: α← αm − αs (5.7)
17: îv ← AtomicAdd(iv , 1)
18: V(îv)← BitEncodeVote(i, io

Nm
, ⌊αθ ⌋) (5.6)

of the sorted array is is found from Irs . Finally, the original index in the original key array io is determined from Iso ,

and this index is used to refer the pre-calculated intermediate angle from A. e set {i, io
Nm

, ⌊αθ ⌋} comprises a vote

for a pose hypothesis, and for the later computation each vote is bit-encoded as

ν = BitEncodeVote(i,
io
Nm

, ⌊α
θ
⌋) (5.6)

where the 64-bit vote ν ∈ Z is encoded as in Figure 5.4, i and io
Nm

are indices of scene and model reference points,

respectively, and the last term ⌊αθ ⌋ is the discretized angle of α. To avoid race condition in the array V , the atomic

add operation is required. Note that the α could be calculated online, but it is more efficient if αm, the angle between

the vector pm
j′ − pm

i′ and the upper xy half-plane, is pre-calculated and saved in A (Drost et al. 2010). en all α for

every corresponding model features can be determined by one calculation of αs and minus operations as

α = αm − αs. (5.7)

e set of votes V is then used to compute the final pose hypotheses in Algorithm 5.4 which shows how a set of

pose hypotheses is obtained. Given the votes array V and its associated size iv , it calculates a set of poses and vote

numbers P , in which each element is the pair of a pose hypothesis Pi ∈ SE(3) and its number of votes vi ∈ Z. As

in Algorithm 5.2, V is sorted and then reduced to avoid redundant calculations on the same votes. In this process,

duplicated elements in V are removed and the number of duplication is updated in Dv . Inside the for-loop, each

unique vote element is bit-decoded so that the index of scene reference point is (i in Figure 5.4), the index of model

reference point im (io
Nm

in Figure 5.4), and the index of alpha iα (⌊αθ ⌋ in Figure 5.4) can be obtained. From the indices,

55

Algorithm 5.4: ComputePoses(M,S,V, iv)
Data:M,S,V, iv
Result: P = {(P1, v1), (P2, v2), · · · , (PNp , vNp)}
Params: δ, θ,σ

1: Vs ← gpu::Sort(V, iv)
2: {Vr,Dv} ← gpu::Reduce(Vs)
3: for i← 1 to Length(Vr) do
4: v ← Vr(i)
5: is ← ScenePointIndex(v)
6: im ← ModelPointIndex(v)
7: iα ← AlphaIndex(v)
8: Ts→g ← InterTransform(ps

is
,ns

is
)

9: Tm→g ← InterTransform(pm
im
,nm

im
)

10: P ← P ∪ {GetPose(Ts→g,Tm→g, iα),Dv(i)} (5.5)

0

�
∠(ni, d)

θ
��

∠(nj , d)

θ
��

∠(ni, nj)

θ
��

ci(1)

σ(1)
��

ci(2)

σ(2)
��

ci(3)

σ(3)
��

cj(1)

σ(1)
��

cj(2)

σ(2)
��

cj(3)

σ(3)
� �

�d�2
δ

�

151622 2128 2734 3339 3844 4349 4854 5359 5863Bits

Elements

Figure 5.3. Bit-encoded 64-bit CPPF key. e quantized CPPF descriptor k in Equation (5.3) is bit-encoded so that the
discretized distance ⌊ ∥d∥2

δ
⌋, discretized angles ⌊∠(ni,d)

θ
⌋, ⌊∠(nj ,d)

θ
⌋, ⌊∠(ni,nj)

θ
⌋, and the discretized color values ⌊ci⊘σ⌋, ⌊cj⊘σ⌋

are stored in a 64-bit key.

05632 3163Bits

Elements �
α

θ
�i

io

Nm

Figure 5.4. Bit-encoded 64-bit vote. Each vote is composed of three values: the index of scene reference point i, the index of
model reference point io

Nm
, and the quantized α angle ⌊α

θ
⌋. ese values are encoded in a 64-bit vote, and a set of votes is further

processed to result in a set of pose hypotheses.

the intermediate transforms Ts→g and Tm→g are recovered, and finally the pose estimate is calculated via Equation

(5.5). e sorting and reducing are performed via the parallel library, and the for-loop is parallelized on GPU.

5.3.5 Pose Clustering

In Algorithm 5.4, it is important to note that each pair of pose and vote number in P is calculated from the pair of

is-th scene point and im-th model point. Since the object hasNm model points, many pairs in P should represent a

consistent pose hypothesis. For instance, if a half ofNm points are visible in the given scene, then the ideal number

of pairs in P should be Nm

2 . But, in reality, the number tends to be much more or less due mainly to scene noise,

the occlusion ratio of the object, false matches from cluer, and multiple instances of the same object. To take into

account these cases, we need to aggregate similar pose hypotheses. Since advanced clustering methods such as

mean shi (Tuzel et al. 2005, Pham et al. 2011) are computationally expensive, we employ an efficient agglomerative

clustering. While Drost et al. (2010), Kim and Medioni (2011), Choi et al. (2012) have done the similar clustering, we

further enhance this process on GPU so that hundreds of thousands elements in P can be clustered in parallel.

e clustering process on GPU is shown in Algorithm 5.5. It takes unclustered pose hypotheses P as an input,

and it sorts P in descending order of the number of votes vi to make sure that the elements are grouped together to

the several most likely pose hypotheses. e algorithm aggregates pose hypotheses until the number of clustered

56

Algorithm 5.5: ClusterPoses(P)
Data: P = {(P1, v1), (P2, v2), · · · , (PNp , vNp)}
Result: P = {(P1, v1), (P2, v2), · · · , (PN̂p

, v
N̂p

)}
Params: Nc

1: P ← gpu::SortDescending(P)
2: prev← next← 1

3: N̂p ← 0

4: while 1 ≤ next ≤ Np and N̂p < Nc do
5: next← gpu::Partition({P(i) | prev ≤ i ≤ Np},P(prev))
6: P(N̂p)← gpu::Reduce({P(i) | prev ≤ i < next})
7: N̂p ← N̂p + 1

8: P ← gpu::SortDescending(P, N̂p)

pose hypotheses N̂p reaches the maximum number of pose clustersNc or every elements are grouped together. e

main operation in here is the partition operation which reorders the elements close to the compared pose P(prev).

e similar elements to the compared one are then placed between prev and next, and they are aggregated to result

in a pose hypothesis P(N̂p) by the reduce operation. Aer the clustering, it ends with the final descending sorting

on the clustered pose hypotheses so that the most likely pose hypothesis comes first.

5.4 Experimental Results

In this section, we present a set of comparative experiments of Drost et al. (2010), Papazov et al. (2012), Hinterstoisser

et al. (2012b), and our approach. We briefly explain how we build the object models from an RGB-D camera in

Section 5.4.1. Section 5.4.2 describes our experiment setup, such as the used implementations of the approaches, the

chosen parameters associated with the implementations, and the machine specifications used for the evaluations.

We start the evaluations with a synthetic dataset to compare the performance of the approaches with respect to

Gaussian noise in Section 5.4.3. e performance of the approaches are further evaluated in two sets of synthetic

cluered scenes: multiple objects single instance seing in Section 5.4.4 and single object multiple instances seing

in Section 5.4.5. In Section 5.4.6, the approaches are compared in a set of highly cluered real RGB-D scenes, captured

by placing the random selections of the target objects with several other objects as cluer in a paper box. Lastly, we

compare the computation time of the approaches and discuss the reasons of the different efficiency in Section 5.4.7.

5.4.1 Object Models

As test objects, 10 daily objects were chosen and their polygonal mesh models were generated as shown in Figure 5.5.

To generate the mesh models, we used an RGB-D camera to capture multiple RGB-D views containing one of the

objects. For simplicity, ARTags (Fiala 2005) were employed to register the multiple RGB-D scenes, followed by a

planar segmentation which removes the background plane to result in the segmented object of interest. e mesh

models were then obtained by running the Poisson reconstruction algorithm (Kazhdan et al. 2006). Since our ap-

proach requires color information of the objects, color aributes of the point clouds were transfered to their closest

57

Figure 5.5. Polygonal mesh models of the test objects. Ten daily objects were chosen. Each object model is obtained by
combining multiple views of object point clouds, followed by the Poisson reconstruction algorithm (Kazhdan et al. 2006). From
le to right: Clorox, Flash, Kuka Mug,Milk,MVG Book, Orange Juice, Pringles, Starbucks Mug, Tide, and Wrench.

vertices in the mesh models so that the mesh models maintain the color information.

As in Algorithm 5.1, the object modelM is a model point cloud, and hence we need to convert from the mesh

models to model point clouds. For the conversion, we employ a sampling approach that randomly samples a set of

points from the faces of an object mesh model with the probability proportional to the areas of the faces. Since our

approach requires color information, the color aribute of each point is also determined by averaging the color values

of the three vertices of the randomly selected face. To generate sufficient samples, we sample 1,000,000 points per

object mesh and subsample using a voxel grid with the leaf size 5 mm. As a large number of CADmodels are available

fromweb nowadays, such as the Google 3DWarehouse (Google 2013) or the KIT object models web database (Kasper

et al. 2012), our approach can easily learn any object as long as its 3D model is available from the database.

5.4.2 Experiment Setup

For experiments, we generated a set of synthetic and real datasets. e synthetic datasets were generated by ren-

dering the polygonal mesh models (Figure 5.5) in the OpenGL. e projection matrix in the OpenGL was set in

accordance with the known intrinsic parameters of the RGB-D camera, the ASUS Xtion Pro in our experiments, so

that the rendered scenes simulate the captured scenes from the RGB-D camera. e color and depth buffers from

58

each rendering were accessed to save as an RGB-D pcd file which is a de facto standard file format of point cloud

in the Point Cloud Library (PCL) (Rusu and Cousins 2011). When we save the point cloud, the pose values of the

rendered objects were also saved as ground truth pose files for quantitative evaluations. More detailed descriptions

of the dataset generation will be stated in each following section.

Our approach is compared with Drost et al. (2010), Papazov et al. (2012), and Hinterstoisser et al. (2012b). e

approach using spin images (Johnson and Hebert 1999) is a possible baseline, but it is not considered here since both

Drost et al. (2010) and Papazov et al. (2012) reported beer results. We use our GPU accelerated version of Drost

et al. (2010), while the original implementation of Papazov et al. (2012) contributed in the PCL is chosen. Papazov

et al. (2012) has two important parameters which determines its performance significantly: the pair width d which

constraints the first dimension (distance between two points in a pair) of learned PPFs and the probability PM of

recognizing the model in a single iteration. e suggested value of d by authors is about the half of the visible object

points. So we calculate the maximum point distance in each model dmmax which is defined as

dmmax = max
i,j∈[1,Nm]

∥pm
i − pm

j ∥2 (5.8)

where Nm is the number of model pointsM and pm
i ,pm

j ∈ R3 are the i, j-th model points. en d is set as

d = γ · dmmax (5.9)

where γ is the ratio. Although the authors recommended γ = 0.5, we evaluated the performance of Papazov et al.

(2012) with different values γ = 0.3, 0.5, 0.7, and we found γ = 0.3 was the best parameter. e other parameter

PM decides the number of RANSAC iterations. e default value of PM is 0.0125, but when we evaluated with this

value, the random sampling approach of Papazov et al. (2012) barely reported true positives. e number of RANSAC

iterations with PM = 0.0125 is

Niter =
ln(1− PS)

ln(1− PM)
(5.10)

= 366.1062

where PS = 0.99 is the probability of recognizing the model in Niter trials. Since the approach searches for pose

hypotheses only 366 times, the chance of having true positive recognitions is very low. We reduced the parameter

as low as PM = 0.0005 so that the number of iterations is sufficiently high as

Niter =
ln(1− 0.99)

ln(1− 0.0005)
(5.11)

= 9208.04

which means the approach of Papazov et al. (2012) will randomly search for the pose hypotheses about 9000 times.

In this experiments, we set γ = 0.3 and PM = 0.0005 for Papazov et al. (2012).

e LINEMOD of Hinterstoisser et al. (2012a) is a template matching approach for pose estimation. Since each

template encodes the shape information of an object with a certain pose, it is generally required to have a large

59

set of templates to take into account the shape variations. While the work of Hinterstoisser et al. (2012a) learned

the templates with a manual interaction from a user, the later work (Hinterstoisser et al. 2012b) exploited 3D CAD

models to generate the templates automatically. Following the setup in Hinterstoisser et al. (2012b), we used 15

deg and 10 cm for rotation and depth step sizes. We generated multiple templates for each object by rotating the

3D object model with 15 deg step in x ∈ [−π
2 ,

π
2], y ∈ (−π, π], and z ∈ (−π, π] axes, which results in both in-

plane and out-of-plane rotations. To address scale changes depending on the distance between the sensor and the

object, templates were generated with six levels of depth: from 40 cm to 90 cm with 10 cm step size. erefore,

the total number of templates per each object is 13 × 24 × 24 × 6 = 44, 928. Please note that Hinterstoisser et al.

(2012b) sampled only the upper hemisphere of the objects, whereas we sampled the whole sphere as objects in our

datasets are randomly placed. is template matching approach requires a large number of templates, which takes an

amount of time to generate (in our experiment, it takes about 1.76 hours, on average, to generate 44,928 templates).

However, our model for each object is just a subsampled 3D point cloud, and learning CPPFs is very efficient (in

our experiment, it takes less than 50 milliseconds). In Hinterstoisser et al. (2012b), they did not explicitly show how

to recover the set of SE(3) poses from the template matching, but we used the coarse pose estimation shown in

Choi and Christensen (2012b) which estimates the rotation and translation from both the corresponding template’s

rotation information and the similar triangles. Hinterstoisser et al. (2012b) employed two post-processing stages in

which false positive detections are removed via checking color value followed by the ICP refinement (Besl andMcKay

1992). For fair comparison, the additional color checking is not performed in this experiment, but we run LINEMOD

with and without the ICP to examine the effect of performing the ICP. For the ICP parameters, we set 1 cm for the

max correspondence distance, 50 for the maximum number of iterations, and 10−6 for the transformation epsilon.

We chose the LINEMOD implementation in the OpenCV (Bradski and Kaehler 2008) and the ICP implementation in

the PCL. ere is another implementation of LINEMOD in the PCL, but in our evaluation it reported much worse

performance than the LINEMOD implementation in the OpenCV.

All approaches except Papazov et al. (2012) are deterministic in the sense that the approaches always result in

the same pose estimates if identical object model and scene point cloud are given. Papazov et al. (2012) is, however,

stochastic as it employs the RANSAC approach based on random sampling. For statistically meaningful results, we

ran 10 trials for Papazov et al. (2012) and averaged over the results of the multiple trials, while our approach, Drost

et al. (2010), and Hinterstoisser et al. (2012b) with and without the ICP were run only once.

We evaluate the performance of the five approaches quantitatively using the ground truth information. If the

difference between an estimated pose and its corresponding ground truth pose is less than 15 mm for translation and

10◦ for rotation, it is counted as a true positive. As some objects are self-symmetric, symmetry of each object is also

taken into account. For example, “Clorox” is a cylinder shape, so any rotation in the axis of symmetry is ignored for

the comparison.

For the parameters in Algorithm 5.2, we set δ = 10 mm, θ = 6◦. e default color quantization levels are

60

σ = (0.25, 0.25, 1.0)T, but σ are set differently per object to take into account the different color distributions of

the target objects as follows

σClorox = (0.2, 0.33, 1.0)T

σFlash = (0.1, 0.1, 0.5)T

σKuka Mug = (1.0, 0.2, 1.0)T

σMilk = (1.0, 0.2, 0.5)T

σMV G Book = (0.2, 0.2, 0.5)T

σOrange Juice = (0.2, 0.2, 0.5)T

σPringles = (0.15, 0.25, 1.0)T

σStarbucks Mug = (1.0, 0.33, 1.0)T

σTide = (0.25, 0.25, 1.0)T

σWrench = (0.25, 0.25, 1.0)T.

We found these values empirically, but it would be of interest to determine these quantization parameters

automatically, though we leave this as future work. We also set the maximum size of the global vote memory

Nv = 40, 000, 000 and the search radius γs = 1.0 · dmmax in Algorithm 5.3. Lastly, the maximum number of pose

clusters is set as Nc = 10 in Algorithm 5.5.

All the experiments were evaluated in a standard desktop computer with an Intel Core2 ad CPU Q9300, 8G

RAM, and an off-the-shelf GPU, NVIDIA GeForce GTX 590 with CUDA 4.1.

5.4.3 Gaussian Noise

Figure 5.6. Adding Gaussian noise in the synthetic noise dataset. To simulate the noise of RGB-D cameras,
Gaussian noise is added in the direction of the camera ray. From le to right: σ = 0, 2, 4, 6, 8, 10 mm.

To examine the performance with respect to noise, we generate a set of synthetic noise scenes by adding Gaussian

noise with different standard deviations as shown in Figure 5.6. To mimic the noise of RGB-D cameras, the Gaussian

noise is added in the direction of the camera ray as follows

ps = ps +
ps

∥ps∥2
· N (0, σ) (5.12)

61

Figure 5.7. Some “Clorox” examples of the synthetic noise dataset. To evaluate the performance of five
approaches with respect to noise, a large set of synthetic dataset was generated. For each object, its mesh model was
drawn in the OpenGL with a fixed translation (0.5 meter apart from the virtual camera) yet with random rotations.
Some scenes of “Clorox” object are shown here.

62

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
2

0.
4

0.
6

0.
81

C
lo

ro
x

R
ec

al
l

Precision

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
2

0.
4

0.
6

0.
81

F
la

sh

R
ec

al
l

Precision

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
2

0.
4

0.
6

0.
81

K
u

ka
 M

u
g

R
ec

al
l

Precision

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
2

0.
4

0.
6

0.
81

M
ilk

R
ec

al
l

Precision

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
2

0.
4

0.
6

0.
81

M
V

G
 B

o
o

k

R
ec

al
l

Precision

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
2

0.
4

0.
6

0.
81

O
ra

n
g

e
Ju

ic
e

R
ec

al
l

Precision

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
2

0.
4

0.
6

0.
81

P
ri

n
g

le
s

R
ec

al
l

Precision

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
2

0.
4

0.
6

0.
81

S
ta

rb
u

ck
s

M
u

g

R
ec

al
l

Precision

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
2

0.
4

0.
6

0.
81

T
id

e

R
ec

al
l

Precision

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
2

0.
4

0.
6

0.
81

W
re

n
ch

R
ec

al
l

Precision

O

ur
 a

pp
ro

ac
h

D
ro

st
 e

t a
l.

P
ap

az
ov

 e
t a

l.

H
in

te
rs

to
is

se
r

et
 a

l.

H
in

te
rs

to
is

se
r

et
 a

l.
+

 IC
P

Fi
gu

re
5.
8.

Pr
ec
is
io
n-
re
ca
ll
cu

rv
es

of
th
e
no

is
e
ex

pe
ri
m
en

t.
O
ur

ap
pr
oa
ch

ou
tp
er
fo
rm

st
he

ot
he
ra

pp
ro
ac
he
si
n
m
os
tc

as
es
.

e
pe
rfo

rm
an
ce

of
D
ro
st
et

al
.(
20
10
)

is
qu

ite
sim

ila
rt
o
ou

rs
in

so
m
e
ca
se
s,
bu

ti
n
ge
ne
ra
lo

ur
ap
pr
oa
ch

re
po

rts
hi
gh

er
pr
ec
isi
on

.A
cc
or
di
ng

to
th
e
re
su
lts

of
H
in
te
rs
to
iss

er
et

al
.(
20
12
b)

w
ith

an
d
w
ith

ou
tt
he

IC
P,
th
eI
CP

al
go

rit
hm

ge
ne
ra
lly

en
ha
nc
es

bo
th

pr
ec
isi
on

an
d
re
ca
ll
bu

tn
ot

al
w
ay
s.
N
ot
et
ha
tP

ap
az
ov

et
al
.(
20
12
)i
ss

uff
er
ed

fro
m

lo
w
re
ca
ll;

w
hi
le
Pa
pa
zo
v
et
al
.(
20
12
)

re
po

rts
ab
ou

t5
0%

re
ca
ll
at

be
st
,o
ur

ap
pr
oa
ch

sh
ow

sa
tl
ea
st
ab
ou

t8
0%

re
ca
ll
in

ev
er
y
ca
se
.

63

0
2

4
6

8
10

0

0.
2

0.
4

0.
6

0.
81

C
lo

ro
x

G
au

ss
ia

n
no

is
e

σ
(m

m
)

Recognition rate

0
2

4
6

8
10

0

0.
2

0.
4

0.
6

0.
81

F
la

sh

G
au

ss
ia

n
no

is
e

σ
(m

m
)

Recognition rate

0
2

4
6

8
10

0

0.
2

0.
4

0.
6

0.
81

K
u

ka
 M

u
g

G
au

ss
ia

n
no

is
e

σ
(m

m
)

Recognition rate

0
2

4
6

8
10

0

0.
2

0.
4

0.
6

0.
81

M
ilk

G
au

ss
ia

n
no

is
e

σ
(m

m
)

Recognition rate

0
2

4
6

8
10

0

0.
2

0.
4

0.
6

0.
81

M
V

G
 B

o
o

k

G
au

ss
ia

n
no

is
e

σ
(m

m
)

Recognition rate

0
2

4
6

8
10

0

0.
2

0.
4

0.
6

0.
81

O
ra

n
g

e
Ju

ic
e

G
au

ss
ia

n
no

is
e

σ
(m

m
)

Recognition rate

0
2

4
6

8
10

0

0.
2

0.
4

0.
6

0.
81

P
ri

n
g

le
s

G
au

ss
ia

n
no

is
e

σ
(m

m
)

Recognition rate

0
2

4
6

8
10

0

0.
2

0.
4

0.
6

0.
81

S
ta

rb
u

ck
s

M
u

g

G
au

ss
ia

n
no

is
e

σ
(m

m
)

Recognition rate

0
2

4
6

8
10

0

0.
2

0.
4

0.
6

0.
81

T
id

e

G
au

ss
ia

n
no

is
e

σ
(m

m
)

Recognition rate

0
2

4
6

8
10

0

0.
2

0.
4

0.
6

0.
81

W
re

n
ch

G
au

ss
ia

n
no

is
e

σ
(m

m
)

Recognition rate

O

ur
 a

pp
ro

ac
h

D
ro

st
 e

t a
l.

P
ap

az
ov

 e
t a

l.

H
in

te
rs

to
is

se
r

et
 a

l.

H
in

te
rs

to
is

se
r

et
 a

l.
+

 IC
P

Fi
gu

re
5.
9.

R
ec
og

ni
ti
on

ra
te
sa

ga
in
st

G
au

ss
ia
n
no

is
e
σ
.A

sσ
in
cr
ea
se
s,
th
ep

er
fo
rm

an
ce

of
th
efi

ve
ap
pr
oa
ch
es

de
cr
ea
se
.

ou
gh

th
ep

er
fo
rm

an
ce

of
th
ea

pp
ro
ac
he
s

sli
gh

tly
va
ry
,o
ve
ra
ll
ou

ra
pp

ro
ac
h
ou

tp
er
fo
rm

st
he

fo
ur

co
m
pa
re
d
ap
pr
oa
ch
es

in
m
os
to

bj
ec
ts
.

64

where ps ∈ R3 is a point in the synthetic scene, ps

∥ps∥2
is the unit vector of the camera ray, and N (0, σ) is the

zero-mean Gaussian noise with the standard deviation σ. e range of the standard deviations are 0, 2, · · · , 10 mm,

which are 6 different standard deviations. For statistically meaningful results, 50 different test clouds were generated

with random rotations for each object, as some of “Clorox” scenes are shown in Figure 5.7. us the total number of

tested point clouds for 10 test objects are 10× 6× 50 = 3000.

Figure 5.9 presents recognition rates with respect to the six different Gaussian noise. As we would expect, the

recognition rates of the five approaches decrease as the noise level σ increases. Our approach and Drost et al. (2010)

report similar performance in “Clorox”, “Flash”, and “Starbucks Mug”, and Drost et al. (2010) even shows slightly

beer recognition rate in “Flash”. In “KukaMug” and “StarbucksMug”, Hinterstoisser et al. (2012b) is beer or at least

comparable to both our approach andDrost et al. (2010). Except these cases, our approach reports the best recognition

performance in general, and slightly worse performance is shown by Drost et al. (2010). Hinterstoisser et al. (2012b)

shows moderate recognition rates, while Papazov et al. (2012) reports the worst recognition performance overall.

According to the results of Hinterstoisser et al. (2012b) with andwithout the ICP, the ICP refinement helps to increase

the recognition rate, but only for smaller Gaussian noise levels. As the standard deviation σ increases, the additional

ICP process even worsens due mainly to the false point data association on the noisy point cloud. It is worth to notice

that Hinterstoisser et al. (2012b) is relatively less affected by the Gaussian noise. It is because Hinterstoisser et al.

(2012b) relies on template matching in which 2D templates are matched against the input scene image. Since the

Gaussian noise is added only to the depth channel, the RGB channels are not affected at all, and thus the approach

relatively less degenerates. However, our approach still shows beer recognition rates than Hinterstoisser et al.

(2012b) in most cases.

e results are also shown as precision-recall curves in Figure 5.8. e curves were generated by varying the

threshold value on the score of the pose estimates: the number of votes for both our approach and Drost et al. (2010),

the visibility term µV which is the ratio of the model surface area matched to the scene in Papazov et al. (2012), and

the template matching score in Hinterstoisser et al. (2012b). According to the precision-recall graphs, our approach

outperforms other approaches in most cases with some minor exceptions. In both mug objects, Hinterstoisser et al.

(2012b) shows beer or comparable precision and recall to our approach. In “Orange Juice”, Hinterstoisser et al.

(2012b) with the ICP shows slightly beer precision with yet less recall. In most cases, Papazov et al. (2012) shows

poor recall, mostly lower than 30%, except “Milk” and “Tide”. Even in “Tide”, its recall is at best about 50%, while our

approach at least reports about 80% in all cases. Drost et al. (2010) exhibits comparable performance to our approach

in some objects, and yet our approach shows higher precision in general. From the results of Hinterstoisser et al.

(2012b) with and without the ICP, we can notice that the ICP enhances both precision and recall in general, but it

degrades in “Flash”, “Kuka Mug”, and “Starbucks Mug” objects which are relatively small objects.

e noise dataset only has one object per scene without any backgrounds, and thus all points are corresponding

to the test object. In these relatively simple scenes, the performance difference between our approach and other

65

approaches is not so distinctive, but we will see the gap as we evaluate them in more challenging datasets in the

following sections.

5.4.4 Synthetic Scenes: Multiple Objects Single Instance (MOSI)

As we mentioned in Section 5.4.3, when the scene is quite simple in the sense that only one object is exist in an

uncluered background, pose estimation is quite straightforward. However, as environments are more cluered the

number of possible pose hypotheses needed to hypothesize and to verify is exponentially increased with the number

of points from cluered backgrounds. To evaluate the performance of five approaches with respect to cluer, we

generated 50 synthetic scenes where random selections of our test objects were placed in either the white laundry

basket or the wire basket (Figure 5.10), whose 3D models were downloaded from Google 3D Warehouse (Google

2013). Since single instance of each object is considered, we call this setup as multiple objects single instance (MOSI).

Figure 5.10 presents selected pose estimation results from the 50 scenes. e first row shows the color images of

the synthetic scenes, and the second to sixth rows present the detection results of Hinterstoisser et al. (2012b) without

the ICP, Hinterstoisser et al. (2012b) with the ICP, Papazov et al. (2012), Drost et al. (2010), and our approach, respec-

tively. For clear visualization, only correct pose estimates are displayed with color mesh models in the monochrome

scene point clouds. Please note that except Hinterstoisser et al. (2012b) with the ICP any pose refinement processes

were not performed for the rest of approaches, though the additional refinements would enhance the final pose ac-

curacy. According to the qualitative results, it is clear that the recognition performance of our approach is superior

to the other approaches. In the cluered scenes, Hinterstoisser et al. (2012b) without the ICP does not detect any of

objects. e main reason of the discouraging performance is due to the limitation of the template matching. Please

recall that the templates were generated with the 15 deg rotational and 10 cm depth steps. Even though we employ

the significant number of templates (44,928 in our experiments), the templates do not cover entire variations in the

appearance of the object. So the detections from the template matching may not be accurate enough to be considered

as true positives. e ICP refinement certainly helps in this case. Hinterstoisser et al. (2012b) with the ICP reports

several detections in several scenes. Papazov et al. (2012) shows poor performance as it only recognizes one object

per scene at best. e reason of the substandard performance may be due to the limited number of searches in the

sampling approach. Note that we set the parameter PM in Papazov et al. (2012) small enough to ensure a sufficiently

large number of iterations. e number of iterations, 9208 in Equation (5.11), might be sufficient for simple scenes,

such as the noise experiment dataset in Section 5.4.3, but it may not be sufficiently large enough for these complex

scenes. Drost et al. (2010) seems more encouraging compared to Papazov et al. (2012), but it still fails to recognize

some objects of which our approach with CPPF can successfully recognize and estimate the poses. Due mainly to

more discriminative power of CPPF, our approach outperforms the other approaches.

Figure 5.11 presents precision-recall graphs of the MOSI experiment. Like Figure 5.8, the graphs were drawn

by varying the threshold value on the score of the pose estimates. e precision-recall curves clearly show the

distinguished performance of our approach, as it reports about 100% recall near 100% precision in some objects,

66

Fi
gu

re
5.
10

.S
el
ec
te
d
po

se
es
ti
m
at
io
n
re
su

lt
s
of

H
in
te
rs
to
is
se
r
et

al
.(
20

12
b)

w
it
ho

ut
th
e
IC

P
(s
ec
on

d
ro
w
),
H
in
te
rs
to
is
se
r
et

al
.(
20

12
b)

w
it
h
th
e
IC

P
(t
hi
rd

ro
w
),
Pa

pa
zo
v
et

al
.(
20

12
)(
fo
ur

th
ro
w
),
D
ro
st
et

al
.(
20

10
)(
fi

h
ro
w
),
an

d
ou

ra
pp

ro
ac
h
(s
ix
th

ro
w
)i
n
th
e
M
O
SI

da
ta
se
t.


efi
rs
tr
ow

sh
ow

st
he

co
lo
ri
m
ag
es

of
th
es

yn
th
et
ic
sc
en
es
.C

or
re
ct
po

se
es
tim

at
es

ar
ed

ep
ic
te
d
as

co
lo
rm

es
h
m
od

el
s

in
th
e
se
co
nd

to
six

th
ro
w
s.

In
th
es
e
cl
u

er
ed

sc
en
es
,H

in
te
rs
to
iss

er
et

al
.(
20
12
b)

w
ith

ou
tt
he

IC
P
ba
re
ly

de
te
ct
st
he

ta
rg
et

ob
je
ct
sd

ue
to

th
e
co
ar
se

sa
m
pl
in
g
of

te
m
pl
at
es
.F

ro
m

th
e
ad
di
tio

na
lI
CP

re
fin

em
en
t,

H
in
te
rs
to
iss

er
et

al
.(
20
12
b)

re
po

rts
so
m
e
de
te
ct
io
ns
,b
ut

it
is
m
uc
h
in
fe
rio

rt
o
bo

th
D
ro
st
et

al
.(
20
10
)a

nd
ou

ra
pp

ro
ac
h.

Pa
pa
zo
v
et

al
.(
20
12
)a

lso
w
or
ks

po
or
ly

m
ai
nl
y
du

e
to

th
e
in
su
ffi
ci
en
tn

um
be
ro

fs
ea
rc
he
s

in
th
e
sa
m
pl
in
g
ap
pr
oa
ch
.D

ro
st
et

al
.(
20
10
)s
ho

w
sb

e
er

re
su
lts

th
an

Pa
pa
zo
v
et

al
.(
20
12
)v

ia
th
e
vo
tin

g
pr
oc
es
st
ha
tc
on

sid
er
sa

m
uc
h
la
rg
e
nu

m
be
ro

fp
os
e
hy

po
th
es
es
,b
ut

th
is
ap
pr
oa
ch

st
ill

m
iss

es
a
nu

m
be
r

of
tru

e
po

sit
iv
e
de
te
ct
io
ns
.

an
ks

to
th
e
ad
di
tio

na
lc
ol
or

in
fo
rm

at
io
n
en
co
de
d
in

CP
PF

s,
ou

ra
pp

ro
ac
h
sh
ow

st
he

be
st
pe
rfo

rm
an
ce

am
on

g
th
e
fiv

e
ap
pr
oa
ch
es

in
th
es
e
cl
u

er
ed

en
vi
ro
nm

en
ts
.

67

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
2

0.
4

0.
6

0.
81

C
lo

ro
x

R
ec

al
l

Precision

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
2

0.
4

0.
6

0.
81

F
la

sh

R
ec

al
l

Precision

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
2

0.
4

0.
6

0.
81

K
u

ka
 M

u
g

R
ec

al
l

Precision

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
2

0.
4

0.
6

0.
81

M
ilk

R
ec

al
l

Precision

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
2

0.
4

0.
6

0.
81

M
V

G
 B

o
o

k

R
ec

al
l

Precision

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
2

0.
4

0.
6

0.
81

O
ra

n
g

e
Ju

ic
e

R
ec

al
l

Precision

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
2

0.
4

0.
6

0.
81

P
ri

n
g

le
s

R
ec

al
l

Precision

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
2

0.
4

0.
6

0.
81

S
ta

rb
u

ck
s

M
u

g

R
ec

al
l

Precision

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
2

0.
4

0.
6

0.
81

T
id

e

R
ec

al
l

Precision

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
2

0.
4

0.
6

0.
81

W
re

n
ch

R
ec

al
l

Precision

O

ur
 a

pp
ro

ac
h

D
ro

st
 e

t a
l.

P
ap

az
ov

 e
t a

l.
H

in
te

rs
to

is
se

r
et

 a
l.

H
in

te
rs

to
is

se
r

et
 a

l.
+

 IC
P

Fi
gu

re
5.
11

.P
re
ci
si
on

-r
ec
al
lc
ur

ve
so

ft
he

m
ul
ti
pl
e
ob

je
ct
ss

in
gl
e
in
st
an

ce
(M

O
SI
)e
xp

er
im

en
t.
O
ur

ap
pr
oa
ch

sig
ni
fic
an
tly

ou
tp
er
fo
rm

st
he

fo
ur

ot
he
ra

pp
ro
ac
he
s

in
bo

th
pr
ec
isi
on

an
d
re
ca
ll.

H
in
te
rs
to
iss

er
et
al
.(
20
12
b)
w
ith

ou
tt
he

IC
P
is
th
ew

or
st
ap
pr
oa
ch

in
th
is
M
O
SI
se
i
ng

,b
ut

w
ith

th
eh

el
p
of

th
eI
CP

re
fin

em
en
ti
ts
re
co
gn

iti
on

pe
rfo

rm
an
ce

is
en
ha
nc
ed

as
go

od
as

th
e
pe
rfo

rm
an
ce

of
Pa
pa
zo
v
et

al
.(
20
12
).

68

2
4

6
8

10
0

0.
2

0.
4

0.
6

0.
81

C
lo

ro
x

T
op

 N

Recognition rate

2
4

6
8

10
0

0.
2

0.
4

0.
6

0.
81

F
la

sh

T
op

 N

Recognition rate

2
4

6
8

10
0

0.
2

0.
4

0.
6

0.
81

K
u

ka
 M

u
g

T
op

 N

Recognition rate

2
4

6
8

10
0

0.
2

0.
4

0.
6

0.
81

M
ilk

T
op

 N

Recognition rate

2
4

6
8

10
0

0.
2

0.
4

0.
6

0.
81

M
V

G
 B

o
o

k

T
op

 N

Recognition rate

2
4

6
8

10
0

0.
2

0.
4

0.
6

0.
81

O
ra

n
g

e
Ju

ic
e

T
op

 N

Recognition rate

2
4

6
8

10
0

0.
2

0.
4

0.
6

0.
81

P
ri

n
g

le
s

T
op

 N

Recognition rate

2
4

6
8

10
0

0.
2

0.
4

0.
6

0.
81

S
ta

rb
u

ck
s

M
u

g

T
op

 N

Recognition rate

2
4

6
8

10
0

0.
2

0.
4

0.
6

0.
81

T
id

e

T
op

 N

Recognition rate

2
4

6
8

10
0

0.
2

0.
4

0.
6

0.
81

W
re

n
ch

T
op

 N

Recognition rate

O

ur
 a

pp
ro

ac
h

D
ro

st
 e

t a
l.

P
ap

az
ov

 e
t a

l.
H

in
te

rs
to

is
se

r
et

 a
l.

H
in

te
rs

to
is

se
r

et
 a

l.
+

 IC
P

Fi
gu

re
5.
12

.R
ec
og

ni
ti
on

ra
te
s
of

to
p
N

po
se

re
su

lt
s
in

th
e
M
O
SI

ex
pe

ri
m
en

t.
If
th
e
gr
ou

nd
tru

th
po

se
is
w
ith

in
th
e
to
p
N

po
se
s,
it
is
co
un

te
d
as

a
tru

e
po

sit
iv
e.

O
ur

ap
pr
oa
ch

sh
ow

st
he

be
st
re
co
gn

iti
on

ra
te
si
n
ev
er
y
ob
je
ct
.

69

Fi
gu

re
5.
13

.S
el
ec
te
d
po

se
es
ti
m
at
io
n
re
su

lt
s
of

H
in
te
rs
to
is
se
r
et

al
.(
20

12
b)

w
it
ho

ut
th
e
IC

P
(s
ec
on

d
ro
w
),
H
in
te
rs
to
is
se
r
et

al
.(
20

12
b)

w
it
h
th
e
IC

P
(t
hi
rd

ro
w
),
Pa

pa
zo
v

et
al
.(
20

12
)(
fo
ur

th
ro
w
),
D
ro
st

et
al
.(
20

10
)(
fi

h
ro
w
),
an

d
ou

r
ap

pr
oa

ch
(s
ix
th

ro
w
)i
n
th
e
SO

M
Id

at
as
et
.O

ur
ap
pr
oa
ch

ca
n
ha
nd

le
th
e
m
ul
tip

le
in
st
an
ce
ss

ce
na
rio

w
el
l,
w
he
re
as

H
in
te
rs
to
iss

er
et

al
.(
20
12
b)

an
d
Pa
pa
zo
v
et

al
.(
20
12
)f
ai
lt
o
re
co
gn

iz
e
m
ul
tip

le
in
st
an
ce
si
n
m
os
tc
as
es
.

70

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
2

0.
4

0.
6

0.
81

C
lo

ro
x

R
ec

al
l

Precision

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
2

0.
4

0.
6

0.
81

F
la

sh

R
ec

al
l

Precision

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
2

0.
4

0.
6

0.
81

K
u

ka
 M

u
g

R
ec

al
l

Precision

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
2

0.
4

0.
6

0.
81

M
ilk

R
ec

al
l

Precision

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
2

0.
4

0.
6

0.
81

M
V

G
 B

o
o

k

R
ec

al
l

Precision

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
2

0.
4

0.
6

0.
81

O
ra

n
g

e
Ju

ic
e

R
ec

al
l

Precision

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
2

0.
4

0.
6

0.
81

P
ri

n
g

le
s

R
ec

al
l

Precision

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
2

0.
4

0.
6

0.
81

S
ta

rb
u

ck
s

M
u

g

R
ec

al
l

Precision

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
2

0.
4

0.
6

0.
81

T
id

e

R
ec

al
l

Precision

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
2

0.
4

0.
6

0.
81

W
re

n
ch

R
ec

al
l

Precision

O

ur
 a

pp
ro

ac
h

D
ro

st
 e

t a
l.

P
ap

az
ov

 e
t a

l.
H

in
te

rs
to

is
se

r
et

 a
l.

H
in

te
rs

to
is

se
r

et
 a

l.
+

 IC
P

Fi
gu

re
5.
14

.
Pr

ec
is
io
n-
re
ca
ll
cu

rv
es

of
th
e
si
ng

le
ob

je
ct

m
ul
ti
pl
e
in
st
an

ce
s
(S
O
M
I)
ex

pe
ri
m
en

t.
It
is
cl
ea
rt
ha
to

ur
ap
pr
oa
ch

is
su
pe
rio

rt
o
bo

th
Pa
pa
zo
v
et

al
.

(2
01
2)

an
d
H
in
te
rs
to
iss

er
et

al
.(
20
12
b)

an
d
st
ill

be
e

rt
ha
n
D
ro
st
et

al
.(
20
10
)i
n
ge
ne
ra
l.


er
ea
so
n
of

th
es

ca
rc
ed

iff
er
en
ce

be
tw

ee
n
ou

ra
pp

ro
ac
h
an
d
D
ro
st
et

al
.(
20
10
)

in
“M

ilk
”a

nd
“S
ta
rb
uc
ks

M
ug

”c
as
es

is
du

et
o
th
em

aj
or
ity

co
lo
r,
w
hi
ch

is
w
hi
te
,o
ft
he

tw
o
ob
je
ct
s.
Si
nc
et
he

ba
ck
gr
ou

nd
co
lo
ri
sa

lso
w
hi
te
,o
ur

ap
pr
oa
ch

do
es

no
tt
ak
e

ad
va
nt
ag
e
of

us
in
g
co
lo
ri
nf
or
m
at
io
n
in

th
es
e
tw

o
ca
se
s.

71

2
4

6
8

10
0

0.
2

0.
4

0.
6

0.
81

C
lo

ro
x

T
op

 N

Recognition rate

2
4

6
8

10
0

0.
2

0.
4

0.
6

0.
81

F
la

sh

T
op

 N

Recognition rate

2
4

6
8

10
0

0.
2

0.
4

0.
6

0.
81

K
u

ka
 M

u
g

T
op

 N

Recognition rate

2
4

6
8

10
0

0.
2

0.
4

0.
6

0.
81

M
ilk

T
op

 N

Recognition rate

2
4

6
8

10
0

0.
2

0.
4

0.
6

0.
81

M
V

G
 B

o
o

k

T
op

 N

Recognition rate

2
4

6
8

10
0

0.
2

0.
4

0.
6

0.
81

O
ra

n
g

e
Ju

ic
e

T
op

 N

Recognition rate

2
4

6
8

10
0

0.
2

0.
4

0.
6

0.
81

P
ri

n
g

le
s

T
op

 N

Recognition rate

2
4

6
8

10
0

0.
2

0.
4

0.
6

0.
81

S
ta

rb
u

ck
s

M
u

g

T
op

 N

Recognition rate

2
4

6
8

10
0

0.
2

0.
4

0.
6

0.
81

T
id

e

T
op

 N

Recognition rate

2
4

6
8

10
0

0.
2

0.
4

0.
6

0.
81

W
re

n
ch

T
op

 N

Recognition rate

O

ur
 a

pp
ro

ac
h

D
ro

st
 e

t a
l.

P
ap

az
ov

 e
t a

l.
H

in
te

rs
to

is
se

r
et

 a
l.

H
in

te
rs

to
is

se
r

et
 a

l.
+

 IC
P

Fi
gu

re
5.
15

.R
ec
og

ni
ti
on

ra
te
so

ft
op

N
po

se
re
su

lt
si
n
th
e
SO

M
Ie

xp
er
im

en
t.
As

N
in
cr
ea
se
s,
th
er

ec
og

ni
tio

n
ra
te
sh

av
et

o
m
on

ot
on

ou
sly

in
cr
ea
se
,b
ec
au
se

ea
ch

sc
en
eh

as
up

to
10

in
st
an
ce
so

fe
ac
h
ob
je
ct
.W

hi
le
ou

ra
pp

ro
ac
h
an
d
D
ro
st
et

al
.(
20
10
)p

er
fo
rm

as
w
ee

xp
ec
te
d,
H
in
te
rs
to
iss

er
et

al
.(
20
12
b)

w
ith

ou
tt
he

IC
P
an
d
Pa
pa
zo
v

et
al
.(
20
12
)f
ai
lt
o
in
cr
ea
se

th
e
re
co
gn

iti
on

ra
te
s,
im

pl
yi
ng

th
at

th
ey

ar
e
no

ts
ui
ta
bl
e
fo
rt
hi
sm

ul
tip

le
in
st
an
ce
ss

e
in
g.

72

such as “Clorox”, “Flash”, “Orange Juice”, “Pringles”, and “Tide”. Drost et al. (2010) also shows good performance

especially in “Clorox”, “Flash”, and “Milk”, yet it is inferior compared to our approach in terms of both precision and

recall. Papazov et al. (2012) exhibits moderate performance in some objects, such as “Clorox” or “Tide” which are

relatively bigger size and having rich variations in surface normals. Whereas Hinterstoisser et al. (2012b) with the

ICP is comparable to Papazov et al. (2012), the approach without the ICP is the worst approach in this dataset.

e five approaches returnNc = 10 pose results in maximum, and these multiple poses are sorted in decreasing

order of the score. us it is of interest to examine the recognition rate with respect to the topN poses. Figure 5.12

presents the recognition rates of the top N pose estimates. e recognition rates are calculated by the ratio of true

positives which are counted if the ground truth pose is within the top N poses. According to the plots, the same

story is discovered; the recognition rates of our approach are highest among the five approaches, followed by Drost

et al. (2010). In both Figure 5.11 and 5.12, it is clear that the ICP increases the recognition rates a lot for Hinterstoisser

et al. (2012b).

5.4.5 Synthetic Scenes: Single Object Multiple Instances (SOMI)

Both experiments of Section 5.4.3 and 5.4.4 were designed to detect one instance of each object at a time. In many

real scenarios, however, it happens to exist more than one instance of an object in an environment. One of the most

popular scenarios especially in manufacturing is the bin-picking in which a bunch of identical objects, needed to be

picked, are placed in a pile. Even in our daily lives, identical objects are oen placed in environments, such as dishes

and silverware in a shelf or identical milk boles in a refrigerator. As such, it is of interest to evaluate the perfor-

mance of five approaches in the multiple instances seing, which is called as single object multiple instances (SOMI).

When there are multiple identical objects in a scene, it tends to have an amount of the similar local features, and

hence grouping these features and verifying multiple hypotheses calculated from the features are generally required.

e voting-based approaches are especially preferred in this seing, since it is designed to search all possible pose

hypotheses and to group together in a set of consistent pose hypotheses via the voting process. For the evaluation in

the SOMI seing, we generated 10 synthetic scenes for each object where randomly chosen numbers between 3 to

10 instances of the object were randomly placed in the white laundry basket. Like the previous experiment,Nc = 10

maximum number of clusters was used.

Some of the experimental results on the SOMI dataset are presented in Figure 5.13. Similar to Figure 5.10, the

color image of the synthetic scenes are shown in the first row, and their corresponding pose estimation results by

Hinterstoisser et al. (2012b) without the ICP, Hinterstoisser et al. (2012b) with the ICP, Papazov et al. (2012), Drost

et al. (2010), and our approach are presented in the second to sixth rows respectively. Please note that our approach

can handle this multiple instances seing very well. Our approach even reports three true positive detections in the

“Pringles” scene, which is very challenging due to the occlusion of the grid in the laundry basket.

When we look at the precision-recall curves in Figure 5.14, it is quite clear that our approach significantly out-

performs both Hinterstoisser et al. (2012b) and Papazov et al. (2012) and still beer than Drost et al. (2010) in most

73

cases. e recognition performance of our approach and Drost et al. (2010) is similar in “Milk” and “Starbucks Mug”.

It is because the majority of the colors from the two objects is white. Since the color of basket background is also

white, our approach does not take advantage of using color information, and hence the performance of our approach

is similar to the performance of Drost et al. (2010) in these cases. As we saw in the MOSI experiment, Hinterstoisser

et al. (2012b) with the ICP in “Kuka Mug” object shows the recognition performance comparable to our approach.

Other than that, the approach suffers from low precision and recall.

In the recognition rates of topN results (Figure 5.15), we can notice that the superior performance of our approach

in most cases. Since each scene in the SOMI dataset contains up to 10 instances of the tested object, the recognition

rates should monotonously increase as N increases. e recognition performance of both our approach and Drost

et al. (2010) increase as we expect, whereas Hinterstoisser et al. (2012b) without the ICP and Papazov et al. (2012)

do not. It implies that Hinterstoisser et al. (2012b) without the ICP and Papazov et al. (2012) are not encouraging in

this multiple instances scenario. It is also worth to note that the performance of Papazov et al. (2012) in this SOMI

experiment is comparable to the performance of Hinterstoisser et al. (2012b) with the ICP, while it was not in the

MOSI experiment. It is probably due to the multiple instances of the test object. As there are more than one instance,

the sampling approach of Papazov et al. (2012) may have beer chances to have true positive detections.

5.4.6 Real Cluttered Scenes

So far, we have evaluated the five pose estimation approaches in synthetic datasets which were generated by ren-

dering 3D mesh models in the OpenGL. However, it is necessary to compare the performance of the approaches in

real RGB-D scenes which contain the real sensor noise as well as background cluer. For the more realistic test

scenes, we put random subsets of our test objects in a paper box with random poses. All other objects not in our

test objects were additionally placed as cluer to make more challenging dataset. We captured 31 test scenes, and

7 of them were captured by changing illumination with a non-white lamp; the scene of the right most column in

Figure 5.16 is one example. is dataset is much more challenging than the synthetic datasets in previous sections,

since additional cluer and the target objects are superimposed each other. For quantitative evaluation, the ground

truth poses of the objects were carefully annotated. To annotate them, we first performed the five pose estimation

approaches on the test scenes and ran the ICP (Besl and McKay 1992) algorithm starting from the estimated pose

results. When none of the approaches recognized the object, we manually aligned the corresponding object model

to the scene point cloud and then ran the ICP algorithm to obtain the ground truth pose. If the refined pose was

close enough to the true pose, we saved it for quantitative analysis. We use the same criterion from the previous

experiments for counting true positives.

Figure 5.16 shows selected pose estimation results from the 31 scenes. e images in the first row are test scene

images captured from an RGB-D camera, and the second to sixth rows represent estimated poses of Hinterstoisser

et al. (2012b) without the ICP, Hinterstoisser et al. (2012b) with the ICP, Papazov et al. (2012), Drost et al. (2010), and

our approach in the scene point clouds respectively. While Hinterstoisser et al. (2012b), Papazov et al. (2012), and

74

Fi
gu

re
5.
16

.S
el
ec
te
d
po

se
es
ti
m
at
io
n
re
su

lt
s
of

H
in
te
rs
to
is
se
r
et

al
.(
20

12
b)

w
it
ho

ut
th
e
IC

P
(s
ec
on

d
ro
w
),
H
in
te
rs
to
is
se
r
et

al
.(
20

12
b)

w
it
h
th
e
IC

P
(t
hi
rd

ro
w
),
Pa

pa
zo
v
et

al
.(
20

12
)(
fo
ur

th
ro
w
),
D
ro
st

et
al
.(
20

10
)(
fi

h
ro
w
),
an

d
ou

r
ap

pr
oa

ch
(s
ix
th

ro
w
)i
n
th
e
re
al

cl
ut
te
re
d
da

ta
se
t.


e
fir
st

ro
w

sh
ow

st
he

co
lo
ri
m
ag
e
of

th
e
sc
an
ne
d
RG

B-
D

sc
en
es
.
In

th
es
e
cl
u

er
ed

sc
en
es
,n

ei
th
er

of
ap
pr
oa
ch
es

ca
n
re
ca
ll
m
or
e
th
an

ha
lf
of

th
e
ob
je
ct
se

xc
ep
to

ur
ap
pr
oa
ch
.H

in
te
rs
to
iss

er
et

al
.(
20
12
b)

w
ith

ou
tt
he

IC
P
do

es
no

td
et
ec
ta

ny
ob
je
ct
s,
w
he
re
as

it
ca
n
re
ca
ll
on

e
or

tw
o
ob
je
ct
sw

ith
th
e
he
lp

of
th
e
IC
P

al
go

rit
hm

.P
ap
az
ov

et
al
.(
20
12
)i
sa

lso
su
ffe

re
d
fro

m
lo
w

re
ca
ll
in

th
e
cl
u

er
ed

sc
en
es
,a
nd

he
nc
e
it
de
te
ct
sa

tb
es
to

ne
ob
je
ct

pe
rs

ce
ne
.D

ro
st
et

al
.(
20
10
)w

or
ks

po
or
ly

be
ca
us
e
th
e
lo
w

di
m
en
sio

na
lP

PF
fe
at
ur
e

do
es

no
tg

iv
e
go

od
m
at
ch
es

be
tw

ee
n
th
e
m
od

el
an
d
th
e
sc
en
e.
Us

in
g
th
e
co
lo
ri
nf
or
m
at
io
n,

CP
PF

is
m
or
e
di
sc
rim

in
at
iv
e
so

th
at

po
se

re
su
lts

fro
m

th
e
vo
tin

g
sc
he
m
e
ar
e
m
or
e
lik

el
y
to

be
th
e
tru

e
po

sit
iv
e
po

se
s.

75

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
2

0.
4

0.
6

0.
81

C
lo

ro
x

R
ec

al
l

Precision

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
2

0.
4

0.
6

0.
81

F
la

sh

R
ec

al
l

Precision

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
2

0.
4

0.
6

0.
81

K
u

ka
 M

u
g

R
ec

al
l

Precision

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
2

0.
4

0.
6

0.
81

M
ilk

R
ec

al
l

Precision

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
2

0.
4

0.
6

0.
81

M
V

G
 B

o
o

k

R
ec

al
l

Precision

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
2

0.
4

0.
6

0.
81

O
ra

n
g

e
Ju

ic
e

R
ec

al
l

Precision

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
2

0.
4

0.
6

0.
81

P
ri

n
g

le
s

R
ec

al
l

Precision

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
2

0.
4

0.
6

0.
81

S
ta

rb
u

ck
s

M
u

g

R
ec

al
l

Precision

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
2

0.
4

0.
6

0.
81

T
id

e

R
ec

al
l

Precision

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
2

0.
4

0.
6

0.
81

W
re

n
ch

R
ec

al
l

Precision

O

ur
 a

pp
ro

ac
h

D
ro

st
 e

t a
l.

P
ap

az
ov

 e
t a

l.
H

in
te

rs
to

is
se

r
et

 a
l.

H
in

te
rs

to
is

se
r

et
 a

l.
+

 IC
P

Fi
gu

re
5.
17

.P
re
ci
si
on

-r
ec
al
lc

ur
ve

s
fo
r
th
e
re
al

cl
ut
te
re
d
sc
en

e
ex

pe
ri
m
en

ts
.W

hi
le
ou

ra
pp

ro
ac
h
re
po

rts
go

od
pr
ec
isi
on

as
w
el
la
sh

ig
h
re
ca
ll,

ot
he
ra

pp
ro
ac
he
s

re
po

rt
su
bs
ta
nd

ar
d
re
su
lts

in
th
e
hi
gh

ly
cl
u

er
ed

ba
ck
gr
ou

nd
s.

76

2
4

6
8

10
0

0.
2

0.
4

0.
6

0.
81

C
lo

ro
x

T
op

 N

Recognition rate

2
4

6
8

10
0

0.
2

0.
4

0.
6

0.
81

F
la

sh

T
op

 N

Recognition rate

2
4

6
8

10
0

0.
2

0.
4

0.
6

0.
81

K
u

ka
 M

u
g

T
op

 N

Recognition rate

2
4

6
8

10
0

0.
2

0.
4

0.
6

0.
81

M
ilk

T
op

 N

Recognition rate

2
4

6
8

10
0

0.
2

0.
4

0.
6

0.
81

M
V

G
 B

o
o

k

T
op

 N

Recognition rate

2
4

6
8

10
0

0.
2

0.
4

0.
6

0.
81

O
ra

n
g

e
Ju

ic
e

T
op

 N

Recognition rate

2
4

6
8

10
0

0.
2

0.
4

0.
6

0.
81

P
ri

n
g

le
s

T
op

 N

Recognition rate

2
4

6
8

10
0

0.
2

0.
4

0.
6

0.
81

S
ta

rb
u

ck
s

M
u

g

T
op

 N

Recognition rate

2
4

6
8

10
0

0.
2

0.
4

0.
6

0.
81

T
id

e

T
op

 N

Recognition rate

2
4

6
8

10
0

0.
2

0.
4

0.
6

0.
81

W
re

n
ch

T
op

 N

Recognition rate

O

ur
 a

pp
ro

ac
h

D
ro

st
 e

t a
l.

P
ap

az
ov

 e
t a

l.
H

in
te

rs
to

is
se

r
et

 a
l.

H
in

te
rs

to
is

se
r

et
 a

l.
+

 IC
P

Fi
gu

re
5.
18

.R
ec
og

ni
ti
on

ra
te
s
of

to
p
N

po
se

re
su

lt
s
in

th
e
re
al

cl
ut
te
re
d
sc
en

e
ex

pe
ri
m
en

ts
.H

in
te
rs
to
iss

er
et

al
.(
20
12
b)

an
d
Pa
pa
zo
v
et

al
.(
20
12
)r
ep
or
tp

oo
r

re
co
gn

iti
on

ra
te
s,
w
he
re
as

ou
ra

pp
ro
ac
h
sh
ow

so
ut
st
an
di
ng

pe
rfo

rm
an
ce

in
m
os
tc
as
es
.

77

Drost et al. (2010) estimate only one or two object poses per scene, our approach recalls at least more than half of

the test objects in the scenes. Precision-recall curves of these approaches are presented in Figure 5.17. Similar to

the previous precision-recall curves in the previous experiments, they were drawn by varying the threshold value

on the score of the pose estimates. Whereas the performance of our approach is promising, the performance of

both Hinterstoisser et al. (2012b) and Papazov et al. (2012) is extremely not encouraging for these cluered scenes.

Especially, they barely report true positive poses in some objects such as,“Flash”, “Kuka Mug”, “MVG Book”, and

“Wrench”. Drost et al. (2010) shows beer performance than these approaches, yet it is not enough for this cluered

real dataset. In comparison with Figure 5.11 showing precision-recall curves for the synthetic MOSI experiment, the

performance of five approaches in this dataset is lower than the performance on the synthetic experiment because of

noise from the real RGB-D sensor and extra cluer. But the overall trend in the performance of the five approaches

is quite similar in the sense that our approach exhibits the best performance and Hinterstoisser et al. (2012b) without

the ICP results in the worst performance.

e recognition rates of top N poses on each object is presented in Figure 5.18. According to the plots, the

recognition rates increase as the considered number of results N increases. In “Clorox”, “Milk”, and “Tide”, our

approach shows nearly perfect performance as the first or second pose estimates are always true positives. Due

to the difficulty in the scenes, the performance of all the approaches is degraded, but our approach still shows

outstanding performance compared to the other approaches.

78

Table 5.1. Average computation time of the five approaches on the real dataset.

Object Approaches Prep. Model Prep. Scene Model2GPU§‡ Scene2GPU§ Main Comp. ICP Total†

Clorox

Ours 0.012 ± 0.001 0.086 ± 0.006 0.034 ± 0.005 0.006 ± 0.002 0.759 ± 0.179 — 0.897 ± 0.181 sec
Drost et al. 0.013 ± 0.002 0.087 ± 0.006 0.029 ± 0.003 0.005 ± 0.001 1.479 ± 0.120 — 1.613 ± 0.124 sec

Papazov et al. 0.012 ± 0.001 0.088 ± 0.005 — — 7.369 ± 1.979 — 7.469 ± 1.981 sec
Hinterstoisser et al. — — — — 14.290 ± 4.739 — 14.290 ± 4.739 sec

Hinterstoisser et al. + ICP 0.012 ± 0.002 0.087 ± 0.005 — — 14.818 ± 4.821 0.784 ± 0.692 15.701 ± 4.916 sec

Flash

Ours 0.008 ± 0.001 0.084 ± 0.004 0.018 ± 0.001 0.004 ± 0.001 0.260 ± 0.021 — 0.373 ± 0.025 sec
Drost et al. 0.008 ± 0.001 0.084 ± 0.005 0.017 ± 0.001 0.004 ± 0.000 0.968 ± 0.016 — 1.080 ± 0.016 sec

Papazov et al. 0.008 ± 0.001 0.086 ± 0.005 — — 1.624 ± 0.256 — 1.718 ± 0.257 sec
Hinterstoisser et al. — — — — 27.091 ± 5.831 — 27.091 ± 5.831 sec

Hinterstoisser et al. + ICP 0.008 ± 0.001 0.086 ± 0.005 — — 28.229 ± 6.109 0.291 ± 0.174 28.615 ± 6.153 sec

Kuka Mug

Ours 0.008 ± 0.001 0.084 ± 0.004 0.017 ± 0.001 0.004 ± 0.001 0.109 ± 0.014 — 0.222 ± 0.015 sec
Drost et al. 0.008 ± 0.001 0.084 ± 0.005 0.017 ± 0.002 0.004 ± 0.001 0.262 ± 0.023 — 0.374 ± 0.027 sec

Papazov et al. 0.008 ± 0.001 0.086 ± 0.005 — — 2.653 ± 0.445 — 2.748 ± 0.445 sec
Hinterstoisser et al. — — — — 27.478 ± 7.147 — 27.478 ± 7.147 sec

Hinterstoisser et al. + ICP 0.008 ± 0.002 0.087 ± 0.004 — — 28.572 ± 7.224 0.245 ± 0.129 28.912 ± 7.232 sec

Milk

Ours 0.013 ± 0.001 0.087 ± 0.006 0.034 ± 0.003 0.005 ± 0.001 0.346 ± 0.032 — 0.485 ± 0.035 sec
Drost et al. 0.013 ± 0.004 0.086 ± 0.006 0.030 ± 0.004 0.005 ± 0.002 0.825 ± 0.075 — 0.960 ± 0.083 sec

Papazov et al. 0.012 ± 0.001 0.086 ± 0.004 — — 6.248 ± 1.380 — 6.346 ± 1.382 sec
Hinterstoisser et al. — — — — 13.155 ± 4.102 — 13.155 ± 4.102 sec

Hinterstoisser et al. + ICP 0.012 ± 0.002 0.086 ± 0.005 — — 13.748 ± 4.149 1.130 ± 0.710 14.977 ± 4.253 sec

MVG Book

Ours 0.011 ± 0.001 0.084 ± 0.004 0.025 ± 0.002 0.004 ± 0.001 0.189 ± 0.018 — 0.312 ± 0.020 sec
Drost et al. 0.012 ± 0.001 0.085 ± 0.004 0.024 ± 0.007 0.006 ± 0.014 1.001 ± 0.049 — 1.128 ± 0.057 sec

Papazov et al. 0.011 ± 0.001 0.086 ± 0.005 — — 2.890 ± 0.490 — 2.987 ± 0.492 sec
Hinterstoisser et al. — — — — 13.205 ± 3.109 — 13.205 ± 3.109 sec

Hinterstoisser et al. + ICP 0.011 ± 0.001 0.087 ± 0.006 — — 13.744 ± 3.173 0.677 ± 0.508 14.519 ± 3.070 sec

Orange Juice

Ours 0.012 ± 0.002 0.087 ± 0.005 0.036 ± 0.006 0.006 ± 0.002 0.914 ± 0.167 — 1.055 ± 0.167 sec
Drost et al. 0.012 ± 0.002 0.087 ± 0.004 0.030 ± 0.006 0.006 ± 0.002 1.715 ± 0.022 — 1.851 ± 0.023 sec

Papazov et al. 0.011 ± 0.001 0.084 ± 0.004 — — 4.856 ± 1.084 — 4.951 ± 1.085 sec
Hinterstoisser et al. — — — — 13.272 ± 3.928 — 13.272 ± 3.928 sec

Hinterstoisser et al. + ICP 0.011 ± 0.001 0.086 ± 0.005 — — 13.892 ± 4.093 1.046 ± 0.585 15.035 ± 4.125 sec

Pringles

Ours 0.012 ± 0.003 0.090 ± 0.006 0.030 ± 0.003 0.006 ± 0.002 0.475 ± 0.060 — 0.613 ± 0.064 sec
Drost et al. 0.011 ± 0.002 0.087 ± 0.005 0.028 ± 0.004 0.006 ± 0.002 1.004 ± 0.017 — 1.135 ± 0.020 sec

Papazov et al. 0.010 ± 0.001 0.086 ± 0.006 — — 2.588 ± 0.466 — 2.683 ± 0.468 sec
Hinterstoisser et al. — — — — 15.478 ± 4.329 — 15.478 ± 4.329 sec

Hinterstoisser et al. + ICP 0.010 ± 0.001 0.087 ± 0.006 — — 16.198 ± 4.421 0.557 ± 0.347 16.852 ± 4.548 sec

Starbucks Mug

Ours 0.009 ± 0.001 0.086 ± 0.005 0.023 ± 0.005 0.005 ± 0.001 0.787 ± 0.029 — 0.910 ± 0.032 sec
Drost et al. 0.010 ± 0.002 0.088 ± 0.005 0.020 ± 0.002 0.005 ± 0.001 1.297 ± 0.081 — 1.418 ± 0.084 sec

Papazov et al. 0.008 ± 0.001 0.085 ± 0.004 — — 2.230 ± 0.341 — 2.323 ± 0.341 sec
Hinterstoisser et al. — — — — 23.733 ± 6.328 — 23.733 ± 6.328 sec

Hinterstoisser et al. + ICP 0.009 ± 0.002 0.087 ± 0.005 — — 24.676 ± 6.532 0.327 ± 0.154 25.099 ± 6.578 sec

Tide

Ours 0.014 ± 0.001 0.087 ± 0.005 0.033 ± 0.004 0.004 ± 0.001 0.373 ± 0.058 — 0.511 ± 0.058 sec

79

Table 5.1. Average computation time of the five approaches on the real dataset. (continued)

Object Approaches Prep. Model Prep. Scene Model2GPU§‡ Scene2GPU§ Main Comp. ICP Total†

Drost et al. 0.014 ± 0.002 0.086 ± 0.004 0.027 ± 0.004 0.005 ± 0.002 0.885 ± 0.011 — 1.017 ± 0.016 sec
Papazov et al. 0.012 ± 0.001 0.086 ± 0.004 — — 6.432 ± 1.386 — 6.530 ± 1.388 sec

Hinterstoisser et al. — — — — 13.072 ± 4.281 — 13.072 ± 4.281 sec
Hinterstoisser et al. + ICP 0.013 ± 0.001 0.087 ± 0.005 — — 13.714 ± 4.443 1.242 ± 0.676 15.056 ± 4.550 sec

Wrench

Ours 0.009 ± 0.001 0.087 ± 0.005 0.025 ± 0.004 0.006 ± 0.002 0.919 ± 0.050 — 1.045 ± 0.055 sec
Drost et al. 0.009 ± 0.001 0.087 ± 0.005 0.023 ± 0.005 0.005 ± 0.001 1.721 ± 0.026 — 1.845 ± 0.028 sec

Papazov et al. 0.008 ± 0.001 0.087 ± 0.005 — — 1.070 ± 0.176 — 1.164 ± 0.178 sec
Hinterstoisser et al. — — — — 30.508 ± 4.373 — 30.508 ± 4.373 sec

Hinterstoisser et al. + ICP 0.008 ± 0.001 0.086 ± 0.005 — — 31.525 ± 4.442 0.211 ± 0.131 31.830 ± 4.483 sec

†e most efficient computation time is indicated in bold type.
§ As parallel algorithms on GPU require model and scene data in GPU memory, the transfer times from CPU memory to GPU memory are
reported as well.

‡ Transfer time of model points to the GPU memory also includes the running time of the object learning algorithm shown in Algorithm 5.2.

80

5.4.7 Computation Time

Our approach is not only more accurate but also more efficient. e average processing time of the five approaches,

which is the amount of time required to estimate the pose of each object per scene, is shown in Table 5.4.6. e

preprocessing in the third and fourth columns of the table includes subsampling and normal estimation. Given a

model or scene point cloud, it subsamples the given cloud using a voxel grid that averages multiple points in a set

of voxels to result in a set of subsampled points. Since we are using the color information, the RGB color aributes

are also aggregated. As all approaches, except Hinterstoisser et al. (2012b) without the ICP, require oriented points,

which have a normal vector for each point, normal estimation is then performed on both model and scene point

clouds. e preprocessing is running in CPU, and thus the computation time of the preprocessing is nearly the same

across the five approaches. For the subsampling, the same voxel size (10 mm) for the 10 test objects was used, so we

can notice that the preprocessing time of the each object model varies depending on the size of the objects; the bigger

objects, the more time to pre-process. Since our approach and the implementation of Drost et al. (2010) used in the

experiments are parallelized on GPU, we also report the transfer time of model and scene point clouds from CPU

memory to GPU memory. In model point clouds, the transfer time includes the running time of the object learning

algorithm (Algorithm 5.2). Please note that the model transfer and the object learning can be run only one time for

each object. e main computation time is for the rest of the pose estimation procedures. As Hinterstoisser et al.

(2012b) with the ICP employs the ICP algorithm as a post-processing, the ICP time is also reported.

According to the table, the total computation time of our approach is the most efficient. Depending on the kind

of objects, the total time varies. But the maximum runtime of our approach is within about 1 second, whereas the

running time of Papazov et al. (2012) and Hinterstoisser et al. (2012b) takes up to about 7 and 30 seconds, respectively,

which are not desirable for real robotic manipulation tasks.

It is also worth to compare the computation time between our approach and Drost et al. (2010). Although both

were accelerated on GPU, our approach is about two times faster than Drost et al. (2010). Our algorithm is efficient

due to the sparsity of correspondences between model and scene CPPFs. When the object model is learned, similar

CPPFs are grouped together by the reduction parallel operation as explained in Section 5.3.3. Since our CPPF is more

discriminative than PPF of Drost et al. (2010), our approach results in a smaller number of duplication for each key.

e smaller number of duplication is directly related to the efficiency of the voting stage, as it determines the number

of iterations of the for-loop in the 13-th line of Algorithm 5.3. e efficiency of our approach further comes from

the fewer number of correspondences between model and scene CPPFs. anks to the color information, a set of

mistakenly matched point pairs between model and scene can be ruled out if their color similarities are low, while

the voting of Drost et al. (2010) cannot help skipping the false matches. is facts enable our approach to be more

efficient.

81

5.5 Summary

We presented a voting-based pose estimation algorithm by combining geometric shape and color information from

an RGB-D camera. Our color point pair feature (CPPF) was employed in the efficient voting process which can

recognize learned objects in highly cluered environments. As the voting algorithm is inherently possible to be

parallelized, we devised a set of highly parallelized algorithms that perform a large amount of repetitive operations

in the multi-processors of a GPU. For quantitative evaluations, we generated extensive synthetic and real datasets on

which our approach was systematically compared with four other state-of-the-art approaches. Our approach turned

out to be more efficient as well as more robust than the compared approaches.

5.6 Exploiting Object Boundary Information

In this section, we propose a voting-based pose estimation algorithm applicable to 3D sensors, which are fast replac-

ing their 2D counterparts in many robotics, computer vision, and gaming applications. It was recently shown that a

pair of oriented 3D points, which are points on the object surface with normals, in a voting framework enables fast

and robust pose estimation. Although oriented surface points are discriminative for objects with sufficient curva-

ture changes, they are not compact and discriminative enough for many industrial and real-world objects that are

mostly planar. As edges play the key role in 2D registration, depth discontinuities are crucial in 3D. In this section,

we investigate and develop a family of pose estimation algorithms that beer exploit this boundary information. In

addition to oriented surface points, we use two other primitives: boundary points with directions and boundary line

segments. Our experiments show that these carefully chosen primitives encode more information compactly and

thereby provide higher accuracy for a wide class of industrial parts and enable faster computation. We demonstrate

a practical robotic bin-picking system using the proposed algorithm and a 3D sensor.

5.7 Contributions

Surface points with normals are good to register objects that have rich variations in surface normals. However, they

are not very efficient in representing many industrial and real-world objects that are mostly planar. To this end,

we propose several novel pair features that exploit the depth discontinuities in 3D data. e main contribution of

this section is a comprehensive study and development of highly informative and compact features to model a 3D

object by using its surface normals, boundaries, and their geometric relationships. We exploit a voting framework

to efficiently compute poses with the compact features and apply the pose estimation algorithm to a practical bin-

picking system using a 3D sensor.

5.8 Boundary-based Pose Estimation
5.8.1 System Overview

Fig. 5.19 (top-le) shows the setup of our bin-picking system. Our system uses a 3D sensor aached on a 6-axis

industrial robot arm to estimate the poses of objects randomly placed in a bin. e 3D sensor is based on structured

82

Objects

Gripper

3D
Sensor

3D Sensing

Voting-Based
Pose Estimation

Pose Refinement
Using ICP

Grasping

Figure 5.19. System overview. (Top-le) Setup of our bin-picking system. e system uses a 3D sensor aached on
a robot arm to grasp an object randomly placed in a bin. (Top-right) Algorithm flowchart. (Boom) Pose estimation
results. Best five pose estimates are superimposed on the scanned 3D point cloud. Note that the scenario exhibits a
lot of challenges such as noise, missing data, cluer, and occlusions.

light using an infrared laser and provides 3D data as depth maps of 640 × 480 pixels. e 3D sensor is calibrated

with respect to the robot arm, thereby allowing grasping and picking of an object using the estimated pose.

Fig. 5.19 (top-right) shows the algorithm flowchart. Our system scans the bin of objects using the 3D sensor.

Given a 3D CAD model of a target object, our voting-based algorithm (described in Section 5.1) performs detection

and pose estimation of the target object using the scanned 3D point cloud. is provides multiple coarse pose

hypotheses. e system selects several top pose hypotheses and individually refines them using a variant of ICP

algorithm (Besl and McKay 1992). e refinement algorithm renders the CADmodel using the current pose estimate

and generates 3D points for the model by sampling the surface of the rendered model. It then computes the closest

3D point in the scanned point cloud for each 3D point in the model and updates the pose estimate using the 3D point

correspondences.

Aer refinement, the registration error is given by the average distance between the corresponding scene and

model points. e registration error could be high when the coarse pose computed by the voting algorithm is

incorrect, or when a part of the object is missing due to occlusion from other objects. If the registration error is

small and the estimated pose is safely reachable by the robot arm, the system grasps the object.

Please watch the accompanying video to see our bin-picking system in action.

While the CPPF is applicable to daily objects that contain various texture and color information, it may not be

a good feature for industrial objects that lack texture and surface curvature changes. For estimating poses for such

industrial parts, we present our effort to extend the voting-based pose estimation by exploiting boundary information

83

d

f2 f3

f4

= kdk2

(a) S2S

f1 = kmi �mrk2

mr

mi

nr

ni

d

f2

f3

f1 = kci � crk2 = kdk2

lr
li

l1r

l2r

l2i

l1i

ci

cr

(d) L2L

d

f2 f3

f4

= kdk2

mr

mi

f1 = kmi �mrk2

(b) B2B

n̄i

n̄r

f3

d

f2

f4

= kdk2

mi

f1 = kmi �mrk2

mr

nr

(c) S2B

n̄i

Figure 5.20. Pair features for voting-based pose estimation. (a-c) Point pair feature descriptors are defined by
the relative position f1 and orientations f2, f3, and f4 of a pair of oriented points (m,n) where blue points indicate
surface points with surface normal vectors and red points denote boundary points with directions. (d)e line pair
feature descriptor is defined by the distance f1 and the acute angle f2 between two (infinite) lines, and the maximum
distance between the two line segments f3.

of objects in this section.

5.8.2 Pair Features for Boundaries

As geometric primitives, we use oriented points and line segments. We denote a pair feature based on a pair of

oriented points on the object surface (Drost et al. 2010) as S2S, which is equivalent to the PPF described in Section

5.3.1. Here, we propose three novel pair features: (1) a pair of oriented points on the object boundary (B2B), (2) a

combination of an oriented point on the object surface with an oriented point on the object boundary (S2B), and (3)

a pair of line segments on the object boundary (L2L).

B2B (Boundary-to-Boundary): We define B2B, a new point pair feature based on two points on the object

boundary (depth edges). In contrast to surface points, boundary points do not have well defined normals. erefore,

we fit line segments to boundary points and use their directions as orientations.

We use a 3D extension of the 2D line fiing approach presented in Liu et al. (2010b). First we compute the edges

84

Figure 5.21. Geometric primitivesM for the pair features. From le to right: Surface points and normals for
S2S, boundary points and directions for B2B, their combination for S2B, and 3D boundary line segments for L2L.

in range images using the Canny edge detector (Canny 1986). Points from the edge map are randomly sampled and

3D lines are fit locally using RANSAC. By iteratively finding and removing line segments with maximum inliers, we

recover all line segments. ese line segments are further refined using least squares.

Aer line fiing, we uniformly sample boundary points on the 3D line segments. In Fig. 5.20(b), the red points

show the boundary points on two 3D line segments. We define B2B feature descriptor FB2B ∈ R4 as

FB2B =

(
∥d∥2,∠(n̄r,d),∠(n̄i,d),∠(n̄r, n̄i)

)T
. (5.13)

is descriptor is equivalent to FPPF in 5.1 except that n̄r and n̄i are directions of the 3D lines. Note that the directions

are not uniquely determined, therefore we consider two possible directions, n̄ and−n̄, when we use the B2B feature.

Object boundaries are highly informative. Compared to S2S, B2B provides more concise modeling since there are

fewer boundary points than surface points. Additionally, the orientations from local line segments are more robust

to noise compared to surface normals.

S2B (Surface-to-Boundary): A pair feature only based on boundary points is not very reliable for objects with

85

high curvature. To jointly and efficiently model both planar and curved objects, we propose S2B, a heterogeneous

pair feature using an oriented surface point and an oriented boundary point. As shown in Fig. 5.20(c), we define S2B

feature descriptor FS2B ∈ R4 as

FS2B =

(
∥d∥2,∠(nr,d),∠(n̄i,d),∠(nr, n̄i)

)T
. (5.14)

L2L (Line-to-Line): We propose L2L, a pair feature using two 3D line segments. is pair feature is particularly

efficient for polyhedral objects and objects having long boundary line segments, since the number of line segments

is fewer than that of surface points or boundary points. Let cr and ci be the closest points on the infinite lines that

contain the 3D line segments, and {l1r, l2r, l1i , l2i } denote the end points of line segments, as shown in Fig. 5.20(d). We

define L2L feature descriptor FL2L ∈ R3 as

FL2L =

(
∥ci − cr∥2,∠a(l2r − l1r, l2i − l1i), dmax

)T
, (5.15)

where ∠a(v1, v2) ∈ [0; π
2] represents the acute angle between two vectors, and

dmax = max(∥l1i − l1r∥2, ∥l1i − l2r∥2, ∥l2i − l1r∥2, ∥l2i − l2r∥2).

e first and second components are the distance and angle between the two infinite lines, while the last component

represents the maximum distance between the two line segments. Using dmax is helpful to prune false matches

between two line segments having similar distance and angle . However, line segments usually break into several

fragments during the line fiing procedure due to sensor noise, occlusion, etc. As a result, the end points of line

segments are usually unstable. us we use a bigger quantization step for this component of the descriptor. Note

that we discard pairs of parallel lines since the closest points cannot be uniquely determined.

5.8.3 Object Representation

As shown in Drost et al. (2010), we globally model an object using a set of all possible pair features computed from

the object model. Once this set is determined, we calculate pair features in the scene point cloud and match them

with the set of the model pair features.

e pair feature representation of a target object is constructed offline. We first obtain geometric primitivesM:

surface points for S2S, boundary points for B2B, both surface and boundary points for S2B, and 3D lines for L2L.ese

primitives can be calculated from either 3D scanned data with known calibration between the sensor and the object,

or synthetic depth data rendered from a known CAD model. With these primitivesM, all possible pair features,

(mr,mi) ∈M2 for S2S, B2B, or S2B and (lr, li) ∈M2 for L2L, are calculated.

For efficient feature matching, we store the set of pair features of the model in a hash table data structure H,

as in Drost et al. (2010). We quantize the pair feature descriptors and use them as the key for the hash table. Pair

features that have similar descriptors are inserted together in the same bin and matching/voting can be done in

86

α

τ

x

y

z

cs
r cm

r

lmi

lsi

os,om

lmi

cm
r

cm
i

om

dm

lmr

lsi

lsr

cs
i

cs
r

ds

os

lmr lsr

cm
i

cs
i

Tm→g

Ts→g

dm

ds

Figure 5.22. Aligning line pair features in the intermediate coordinate system. By Ts→g , the scene reference
line lsr is aligned to the x-axis and its middle point os is moved to the origin. e model reference line is similarly
transformed by Tm→g such that the reference lines are aligned. e referred lines lsi and lmi are then aligned by a
rotation with angle α and a translation with τ along the x-axis. us a 3D space (om, α, τ) is used for voting.

constant time. Note that it is important to define the quantization levels appropriately; using very large step sizes

reduces discriminative power of the descriptors, whereas using very small step sizes makes the algorithm sensitive

to noise.

5.8.4 Voting Scheme for L2L Feature

Since the point pair features—S2S, B2B, and S2B—are fundamentally equivalent, the voting scheme explained in

Section 5.3.4 is applicable to these point pair features. However, the L2L feature, defined by a pair of line segments,

requires a specialized voting scheme. Similar to the point pair features, the voting scheme for the L2L feature is

based on aligning two pair features in an intermediate coordinate system. As illustrated in Fig. 5.22, the reference

line lsr and the referred line lsi from the scene are transformed by Ts→g in order to align lsr to the x-axis and to

align the middle point os to the origin. Similarly, lmr and lmi are transformed via Tm→g . Still there are two DOF to

fully align the line pairs. As in the point pair features, the first one is the rotation around the x-axis; this angle α is

determined from the angle between ds and dm. e other DOF is the translation along the x-axis; this corresponds

to the displacement between the closest points cmr to csr , denoted as τ . erefore, we use a 3D space (om, α, τ) for

voting using the L2L feature. e transformation from (lmr , lmi) to (lsr, lsi) can be computed as

lsi = T−1
s→gTx(τ)Rx(α)Tm→glmi , (5.16)

where Tx(τ) ∈ SE(3) is the translation along the x-axis with τ .

5.8.5 Pose Clustering

In the voting scheme explained in the previous sections, raw pose hypotheses are obtained by thresholding in the

voting space. Since an object is modeled by a large set of pair features, it is expected to havemultiple pose hypotheses

each for different reference primitives, points mr or lines lmr , supporting the same pose. us, it is required to

aggregate similar poses from different reference primitives (Drost et al. 2010). Although there are several methods

for clustering in 3D rigid body transformation space SE(3) such as mean shi on Lie groups (Tuzel et al. 2005), these

87

Figure 5.23. Test objects. e 3D CAD models of these test objects are used to create the model pair features
for the voting algorithm and to generate synthetic dataset. From le to right: Circuit Breaker, Clamp, Wheel,
�-Shaped, Logo, and Weld Nuts.

methods are usually computationally prohibitive for time critical applications. Here we adopt an agglomerative

clustering approach which is very efficient.

We first sort the raw pose hypotheses in decreasing order of the number of votes. From the highest vote, we

create a new cluster. If the next pose hypothesis is close to one of the existing clusters, the hypothesis is added to

the cluster and the cluster center is updated as the average of the pose hypotheses within the cluster. If the next

hypothesis is not close to any of the clusters, it creates a new cluster. e proximity testing is done with fixed

thresholds in translation and rotation. Distance computation and averaging for translation are performed in the

3D Euclidean space, while those for rotation are performed using quaternion representation. Aer clustering, the

clusters are sorted in decreasing order of the total number of votes which determines confidence of the estimated

poses.

5.9 Experimental Results

In this section, we present an extensive evaluation of the proposed methods on synthetic and real data. We also

evaluate the performance of our bin-picking system described in Section 5.8.1.

88

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

Occlusion Rate

D
et

ec
tio

n
R

at
e

Circuit Breaker

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

Occlusion Rate

D
et

ec
tio

n
R

at
e

Clamp

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

Occlusion Rate

D
et

ec
tio

n
R

at
e

Wheel

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

Occlusion Rate

D
et

ec
tio

n
R

at
e

Γ−Shaped

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

Occlusion Rate

D
et

ec
tio

n
R

at
e

Logo

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

Occlusion Rate

D
et

ec
tio

n
R

at
e

Weld Nuts

S2S
B2B
S2B
L2L

Figure 5.24. Detection rates against occlusion rates for the synthetic dataset. Performance of the four meth-
ods decreases as occlusion rate increases. Although the performance depends on objects, B2B and S2B features
generally outperform the other features.

89

Figure 5.25. Two example scenes from the 500 synthetic scenes. From le to right: Results using S2S, B2B,
S2B, and L2L features. Correct and incorrect poses are depicted as green and red renderings respectively.

5.9.1 Synthetic Data

To compare the performance of the four pair features, we generated 500 synthetic scenes in which six objects

(Fig. 5.23) were drawn with randomly selected poses. We ensured that these random poses do not lead to physi-

cally infeasible overlapping objects by checking the intersection of their bounding boxes. We rendered the scenes

with OpenGL by seing the parameters of the rendering camera based on the calibration parameters of our 3D sen-

sor. For every object the correct pose is stored in a ground truth database for experimental validation. Note that we

identify and account for the object symmetries during our experiments.

As shown in Fig. 5.25, objects in the synthetic scene severely occlude each other and the degree of occlusion is

various over the 500 test scenes. We quantify the occlusion rate and study the detection performance for different

occlusion rates. We follow the occlusion definition of Johnson and Hebert (1999):

occlusion = 1− model surface area in the scene
total model surface area . (5.17)

We performed the voting-based pose estimation using each pair feature and considered only the pose that got the

maximum number of votes. e estimated pose was then compared with the ground truth. If the errors in translation

and rotation were within 5mm and 5◦, we counted it as a true positive; otherwise it was regarded as a false positive.

Fig. 5.24 shows the detection rate at different occlusion rates for each of the six objects. For Wheel and Weld

Nuts objects, the B2B feature outperforms the other pair features, while the S2B feature shows beer results for other

objects. Since each object possesses different geometric characteristics, the performance of the four pair features on

different objects slightly varies; nevertheless, our boundary-based pair features (B2B, S2B, and L2L) show beer

performance than the S2S feature. e reason why the S2S feature reports inferior results is that pairs of surface

points in the same planar region of the object can correspond to any planar region in the scene. As shown in the

lemost column of Fig. 5.25, planar surfaces of several objects are fied to the background plane in the scene.

e boundary-based pair features are not only more discriminative, but also more efficient. Table 5.2 shows

90

Table 5.2. Average numbers of pair features in the synthetic scene dataset and relative processing time.

Feature Number of Features Relative Proc. Time†
S2S (Drost et al. 2010) 23040000 (= 4800× 4800) 3.21

B2B 2616953 (≈ 1618× 1618) 1.00
S2B 7689280 (≈ 4800× 1602) 1.20
L2L 121058 (≈ 348× 348) 1.03

†e fastest method, B2B, is shown as one.

average numbers of pair features in the synthetic scenes and relative processing times where the time of the fastest

method, B2B, is shown as one. Voting using the S2S feature requires amuch larger number of pair features than voting

using boundary-based pair features. Although the number of the L2L features is the smallest, average processing

time per a line pair takes more because of the higher-dimensional voting space and more complex transformation

via the intermediate coordinate system.

Figure 5.26. Two example scenes from the real scans. From le to right: Results using S2S, B2B, S2B, and L2L
features. e scene on the upper row includes multiple instances of our test objects. e scene on the lower row
contains multiple instances of Circuit Breaker object. Our algorithm can reliably estimate poses of the object even
when there are multiple objects and the scene is highly cluered.

5.9.2 Real Data

We tested the voting-based pose estimation for real 3D data scanned with our 3D sensor. e ground truth poses of

the objects are manually identified. Fig. 5.26 shows results for each of the four pair features. e scene on the upper

row contains multiple instances of four of our test objects. e objects occlude each other and make the scene highly

cluered. e displayed pose corresponds to the best pose hypothesis computed for each of the four objects. In the

result of using the S2S feature, two estimated poses are false positives. Similar to the results for synthetic data, the

planar area of Clamp object caused several false pose estimates. As shown in the lower row, we also tested the four

pair features in the scene which has multiple instances of Circuit Breaker object. For comparison, we rendered top

six pose hypotheses obtained using each pair feature. Although in general all pair features provide good performance

for this object as shown in the synthetic experiments, the L2L feature has three false positives in this case, which are

91

0 0.5 1
0

20

40

60

X [mm]
0 0.5 1

0

20

40

60

Y [mm]
0 0.5 1

0

20

40

60

Z [mm]

0 0.5 1 1.5
0

20

40

60

A [°]
0 0.5 1 1.5

0

20

40

60

B [°]
0 0.5 1 1.5

0

20

40

60

C [°]

Figure 5.27. Histograms of pose estimation errors for each translation (X , Y , Z) and rotation around each axis
(A, B, C). e errors are computed as absolute differences from their median.

the flipped poses of the ground truth poses. ese poses have high similarities except the small differences inside

the object. e L2L feature is not very robust to such small differences, since the directions of line segments become

unstable for short line segments.

5.9.3 Bin-Picking System Performance

Pose Estimation Accuracy: To quantitatively estimate the accuracy of our bin-picking system, we used a single

Circuit Breaker object placed on a plane. We scanned it from different locations by moving the robot arm, estimated

at each location the pose of the object in the robot coordinate system, and computed pose estimation errors as

absolute differences from their median. We selected 100 random sensor locations such that the object is centered in

the field of view of the 3D sensor. e locations were within 20◦ from the z-axis of the robot coordinate system with

a distance to the object of 330mm. For pose estimation, we used the voting algorithm with the L2L feature followed

by ICP-based pose refinement.

Fig. 5.27 shows the histograms of pose estimation errors. Table 5.3 describes their average for each translation

and rotation around each axis. ey demonstrate the consistent pose estimation results of our system with average

absolute errors of less than 0.3 mm for all (X , Y , Z) translations and less than 0.3◦ for all (A, B, C) rotations.

Pickup Success Rate: Wemeasured the pickup success rate of our system by placing 36 Circuit Breaker objects

randomly in a bin as shown in Fig. 5.19. We used the B2B feature and used 20% of the total number of boundary points

for voting (each 3D scan included ∼ 3000 boundary points). e system performed ICP-based pose refinement for

the best 5 poses computed with the voting algorithm, and picked up a single object as described in Section 5.8.1 for

each cycle. We refilled the bin when the system detected no pickable objects or the system continuously picked up

a predefined number (15) of objects. e system picked up 10.2 objects on average in a continuous process.

92

Table 5.3. Average absolute pose estimation errors.

X [mm] Y [mm] Z [mm] A [◦] B [◦] C [◦]
0.22 0.24 0.09 0.09 0.27 0.30

Table 5.4. Pickup success rate.

Total Trial Success Failure Success Rate
344 338 6 98.3%

As shown in Table 5.4, our system achieved a success rate of more than 98% over 344 trials. All 6 failures were

due to occlusion of the gripping location of the object. e estimated object poses were correct even in these failure

cases.

Processing Time: In the above bin-picking experiments, the voting-based pose estimation algorithm using the

B2B feature (including 3D line fiing, voting, and pose clustering) took around 500 msec. e refinement process

using ICP required around 100msec for each pose hypothesis. e systemwas implemented on an Intel Core i7-2600

PC with C++. As shown in the accompanying video, the entire pose estimation process can be performed during

robot motion, avoiding the wait time for the robot.

5.10 Summary

We developed a family of pair features using oriented surface points, oriented boundary points, and boundary line

segments to model a wide variety of objects. We used the pair features in a voting framework for robust and efficient

pose estimation. We showed that the pair features based on the object boundary are more compact and informative,

thereby leading to higher accuracy and faster computation. We demonstrated a bin-picking system with pickup

success rate of more than 98% and pose estimation error less than 0.3 mm and 0.3◦ for translations and rotations.

93

CHAPTER VI

OBJECT POSE TRACKING (3D)

is chapter presents a particle filtering approach for 6-DOF object pose tracking using an RGB-D camera. Our

particle filter is massively parallelized in a modern GPU so that it exhibits real-time performance even with several

thousand particles. Given an a priori 3D mesh model, the proposed approach renders the object model onto texture

buffers in the GPU, and the rendered results are directly used by our parallelized likelihood evaluation. Both pho-

tometric (colors) and geometric (3D points and surface normals) features are employed to determine the likelihood

of each particle with respect to a given RGB-D scene. Our approach is compared with a tracker in the PCL both

quantitatively and qualitatively in synthetic and real RGB-D sequences, respectively.

Figure 6.1. A tracking example. An object is tracked via our particle filter parallelized on a GPU. e object
rendering represents the mean of the particles.

6.1 Contributions

We propose a robust particle filter parallelized on a GPU, which can track a known 3D object model over a sequence

of RGB-D images. Unlike the PCL tracking (Bersch et al. 2012), we render the 3D object model to be used in the likeli-

hood evaluation so that our approach can track the object despite significant pose variations. Our key contributions

are as follows:

• We employ extended features to evaluate the likelihood of each particle state. While most of the previous

work has mainly relied on 2D edges (Klein and Murray 2006, Azad et al. 2011) or intensity differences (Mon-

temayor et al. 2004, Mateo Lozano and Otsuka 2009) to calculate the importance weights of particles, we use

94

Figure 6.2. Multiple renderings for the likelihood evaluation. e object of interest is rendered with the first
V particle states and the likelihoods of the V particles are evaluated from the rendering results. For the rest particles,
each particle finds the closest rendering and use the rendering result to evaluate its likelihood. Le and right images
represent the color and normal renderings in the GPU. (Best viewed in color)

both photometric (colors) and geometric features (3D points and surface normals) available from both RGB-D

images and OpenGL rendering.

• We use the framebuffer object extension (FBO) in OpenGL and the CUDA OpenGL interoperability to reduce

the mapping time of the rendering result to CUDA’s memory space. As Azad et al. (2011) mentioned, the

mapping between OpenGL framebuffer and thememory space of CUDA takes as much as copying the rendered

result to the memory space of CPU. To avoid this problem, our rendering is performed in the FBO so that the

mapping time is nearly negligible.

• We devised a hierarchical approach to considermultiple renderings of the object. While the PCL tracking (Rusu

and Cousins 2011) maintains only one reference object cloud, we render the object to multiple viewports

with different poses. It would be ideal if we draw all particle poses to the render buffers in the GPU, but

it is not possible due to the memory limitation of the buffers. Instead, our approach renders the object to V

viewports, and each particle searches the closest rendering fromV viewports so that each likelihood evaluation

is performed by transforming the closest rendered result with the current particle state (see Figure 6.2).

To the best of our knowledge, our proposed solution is the first real-time particle filter for 6-DOF object pose

tracking using rich visual features from the RGB-D sensor. Figure 6.1 shows an example frame of our tracking where

a target object is tracked in background cluer. e rendered 3D mesh model represents the mean of the particles

for visualization purpose.

is chapter is organized as follows. A particle filter for 6-DOF object pose tracking is briefly mentioned in

Section 3.3.2, and the likelihood function employing points, colors, and normals is introduced in Section 6.2. Aer

the further explanation on the OpenGL and the CUDA implementation in Section 6.3, our approach is compared

with a baseline in both synthetic and real RGB-D image sequences in Section 6.4.

95

6.2 Likelihood Evaluation

Designing an efficient and robust likelihood function is crucial, since it directly determines the overall performance

of the particle filtering in terms of both time and accuracy. When an RGB-D camera is considered, there are various

measurements we can employ: 3D point coordinates, colors of points, surface normals, curvature, edges from depth

discontinuities or surface textures, etc. In this work, we choose the point coordinates x ∈ R3 and their associated

colors c ∈ R3 and normals n ∈ R3. us, a measurement point p is defined as

p = (xT,nT, cT)T ∈ R9. (6.1)

For clear notation, let us define accessing operators for p such that

x(p) = (xT 1)T ∈ R4 (6.2)

n(p) = (nT 1)T ∈ R4 (6.3)

c(p) = c ∈ R3. (6.4)

e reason we choose the three measurements is that this combination allows us to perform direct comparisons

between the given RGB-D scene and the rendering results from the computer graphics pipeline. Hence, we can

efficiently calculate the likelihood for a large number of particles.

Given the current pose hypothesis X(n)
t and the rendered object model Mt, the likelihood of the scene Zt is

defined as

p(Zt|X(n)
t ,Mt) =

∏
(i,j)∈Ap

p(z(i)t |X
(n)
t ,m(j)

t) (6.5)

where Ap = {(i, j)| proj(x(z(i)t)) = proj(X(n)
t · x(m(j)

t))} is the set of point associations between the scene Zt

and the object model Mt, and z(i)t ,m(j)
t ∈ R9 are corresponding points in the scene and model, respectively. e

operator proj(·) calculates 2D image coordinates of given 3D homogeneous point coordinates by projecting the point

with the known camera intrinsic parameters K ∈ R3×3. With the proj operator, the point associations Ap can be

efficiently determined. e likelihood of each association (i, j) is then defined as

p(z(i)t |X
(n)
t ,m(j)

t) = exp−λe·de(x(z(i)t), X(n)
t ·x(m(j)

t))

· exp−λn·dn(n(z(i)t), X(n)
t ·n(m(j)

t))

· exp−λc·dc(c(z(i)t), c(m(j)
t)) (6.6)

where de(x1,x2), dn(n1,n2), and dc(c1, c2) are Euclidean, normal, and color distances as shown below

de(x1,x2) =

 ∥x1 − x2∥ if ∥x1 − x2∥ ≤ τ

1 otherwise
(6.7)

dn(n1,n2) =
cos−1(nT

1n2 − 1)

π
(6.8)

96

dc(c1, c2) = ∥c1 − c2∥ (6.9)

and λe, λn, λc are the parameters that determine the sensitivity of the distances to the likelihood. e τ in (6.7) is a

threshold value for the Euclidean distance between the two points. Note that n1,n2 ∈ R4 in (6.8) are homogeneous

point coordinates, so 1 need to be subtracted from the inner product. For the color distance in (6.9), any kind of

color space can be considered as long as 0 ≤ dc(c1, c2) ≤ 1, but we adopted the HSV color space due mainly to its

invariance to illumination changes. Please note that the point and normal coordinates of object model pointm(j)
t are

in the object coordinate frame, so the transformed point by the current pose X(n)
t should be considered to calculate

the distances.

6.3 Implementation Details

As we already mentioned in Section 6.1, we render our object of interest onto V viewports in the render buffers

with the first V particle poses. For the rest of the particles, each particle finds a closest rendering with respect to

the pose hypothesis and transforms the closet rendering result with the current pose. For this calculation, we need

to access the color, vertex (i.e. 3D point), and normal information for all visible points in the rendered result. It is

relatively straightforward to get color information via accessing the render buffer, but it is tricky to access 3D point

and 3D normal data from the buffer. To tackle this problem, we employ the OpenGL Shading Language (GLSL) to

directly access the point and normal data in the middle of the graphics pipeline. For point information, we designed

a set of simple vertex and fragment shaders so that the 3D coordinates of visible points gl_Vertex are saved to color

texture points gl_FragColor. Similarly, for normal data another set of vertex and fragment shaders is used so that

the surface normals of the object gl_Normal are saved in color texture points. Note that these points and normals

are in the object coordinate frame, so we do not need to perform an inverse transform on the rendering result before

transforming them with respect to the current particle pose.

e main purpose of the multiple viewports rendering is not for visualization but for the likelihood evaluation

of each particle. us using the Frame Buer Object (FBO, GL_ARB_framebuffer_object) is a good choice for our

rendering purpose. e FBO is an OpenGL extension for off-screen framebuffers. Unlike the default framebuffer of

OpenGL provided by window systems, the FBO is more flexible and efficient since all resources bound in the FBO

are shared within the same context. e FBO allows users to aach multiple texture images to color aachments.

For our purpose, we aach three texture images to the three color aachments: GL_COLOR_ATTACHMENT0 for color

data, GL_COLOR_ATTACHMENT1 for point data, and GL_COLOR_ATTACHMENT2 for normal data. In the rendering phase, our

object of interest is drawn onto each color aachment. While the color texture is drawn using the usual OpenGL

rendering, the point and normal textures are rendered via the aforementioned shader programs. For each rendering,

the object is rendered to V viewports by calling glViewport().

Aer rendering the object with shader programs, we evaluate the likelihood function on the GPU. To utilize the

texture images aached to the FBO in our likelihood evaluation kernel, we use the CUDA OpenGL interoperability

97

Figure 6.3. Mesh models for objects and kitchen. Object models were generated by fusing multiple RGB-D
views, followed by running the Poisson reconstruction algorithm (Kazhdan et al. 2006). To generate a set of synthetic
sequences, a kitchen model was download from the Google 3D warehouse. From le to right, “Tide”, “Milk”, “Orange
Juice”, “Kinect Box”, and “Kitchen”.

Figure 6.4. Camera trajectories in synthetic sequences. Synthetic RGB-D sequences were generated with their
corresponding ground truth trajectories of the objects. Please note the significant variations in translation, rotation,
and velocity. From le to right, trajectories of “Tide”, “Milk”, “Orange Juice”, and “Kinect Box”.

that allows to map/unmap OpenGL buffers to CUDA’s memory space. So our CUDA kernel can access the rendered

buffers very efficiently.

6.4 Experiments

In this section, we present a set of comparative experiments between the PCL tracking and our proposed approach.

e performance of the two approaches is quantitatively evaluated using a set of synthetic RGB-D sequences with the

ground truth object trajectories in Section 6.4.2, followed by the qualitative evaluation using real RGB-D sequences in

Section 6.4.3. For the evaluations, both trackers are initialized with the known ground truth in synthetic sequences

and with the converged pose estimates aer running our tracker from a sufficiently close initial pose. e PCL

tracking provides an option for adaptive particle size based on Fox (2003), but here the fixed particle size is considered

for fair comparisons with our approach and for the performance evaluation with respect to different particle sizes.

All experiments were performed using a standard desktop computer (Intel Core2 ad CPU Q9300, 8G RAM) with

an off-the-shelf GPU (NVIDIA GeForce GTX 590, CUDA 4.1) and an RGB-D camera (ASUS Xtion Pro Live).

6.4.1 Object Models

For the experiments, four objects were chosen, and the 3D mesh models of the objects (Figure 6.3) were generated by

using an RGB-D sensor. To generate the mesh model, we first obtained multiple RGB-D views and registered them.

We could use one of the RGB-D SLAM approaches (Henry et al. 2010, Newcombe et al. 2011, Sturm et al. 2012) to

98

Figure 6.5. Tracking results on the “Orange Juice” and the “Kinect Box” synthetic sequences. For both
sequences, the upper rows show the tracking results of our approach, while the lower rows present the results of
the PCL tracking (N = 6400 for the “Orange Juice” sequence and N = 12800 for the “Kinect Box” sequence). In
both sequences, our approach tracks the true object trajectories well, but the PCL tracking is oen lost due to the
limitation of the object model. (Best viewed in color)

register the multiple views, but we employed several ARTags for simplicity. Once the multiple views were fused, the

object cloud was segmented from the background clouds and was reconstructed to result in a mesh model via the

Poisson reconstruction algorithm (Kazhdan et al. 2006). As the PCL tracking can not use the 3D mesh models, the

object point clouds which were obtained by rendering with the initial poses were fed to be used as reference models.

6.4.2 Synthetic Sequences

For a quantitative analyses, we generated a set of synthetic RGB-D sequences. To simulate a realistic environment, a

virtual kitchen model (see Figure 6.3) was downloaded from the Google 3D warehouse (Google 2013)¹. Aer placing

each object model in the kitchen model, a set of synthetic sequences was generated by moving the virtual camera

around the object. Figure 6.4 shows the camera trajectories of the synthetic data which exhibit high variations in

translation, rotation, and velocity of the camera. e object trajectories were saved to be used as ground truth poses

of the objects with respect to the camera coordinate frame.

To compare our approach with the PCL tracking, we calculated the root mean square (RMS) errors and aver-

age computation time per frame over the four synthetic RGB-D sequences as shown in Table 6.1. For the sake of

comparison, beer results are indicated in bold type. e RMS errors vary depending on both the object type and

¹Kitchen: http://sketchup.google.com/3dwarehouse/details?mid=25e8368f5b81a1312ed4225c1c283c73

99

http://sketchup.google.com/3dwarehouse/details?mid=25e8368f5b81a1312ed4225c1c283c73

Table 6.1. RMS errors and computation time in synthetic RGB-D sequences (PCL vs. Our tracking).

Objects Tracker N RMS Errors† Time (ms)†
X (mm) Y (mm) Z (mm) Roll (deg) Pitch (deg) Yaw (deg)

Tide

PCL

100 3.43 4.96 3.09 9.10 4.05 5.85 81.46
200 2.45 3.66 2.38 6.96 2.88 4.34 106.50
400 2.13 3.00 1.89 5.85 2.53 3.50 152.57
800 1.74 2.79 1.59 5.43 2.35 3.20 253.33
1600 1.69 2.61 1.51 5.58 2.23 3.39 430.15
3200 1.49 2.50 1.11 5.26 2.17 3.00 744.50
6400 1.34 2.11 0.95 5.02 2.15 2.93 1376.92
12800 1.46 2.25 0.92 5.15 2.13 2.98 2762.73

Ours (τ = 0.01)

100 3.47 6.55 4.30 7.58 5.14 4.96 41.48
200 3.51 4.16 2.71 8.17 3.12 4.55 41.55
400 2.33 3.25 2.53 5.19 2.26 2.86 42.00
800 1.88 2.96 2.24 3.79 1.93 2.32 42.37
1600 1.66 2.42 1.91 3.48 1.71 2.21 44.60
3200 1.27 1.87 1.54 2.43 1.36 1.58 48.93
6400 1.14 1.54 1.42 2.25 1.13 1.39 77.88
12800 0.83 1.37 1.20 1.78 1.09 1.13 111.48

Milk

PCL

100 3.04 7.91 3.60 62.43 37.62 50.76 74.09
200 2.48 6.65 3.33 62.37 37.76 50.82 91.37
400 2.37 4.89 2.35 50.49 33.71 41.33 130.47
800 2.36 4.81 2.03 52.23 33.78 42.89 208.83
1600 1.78 3.99 1.69 49.27 33.65 40.22 351.83
3200 13.68 43.72 24.92 64.45 21.52 74.78 585.79
6400 2.03 4.24 1.57 55.55 34.51 45.67 1126.65
12800 13.38 31.45 26.09 59.37 19.58 75.03 2205.18

Ours (τ = 0.01)

100 3.51 5.96 2.95 12.18 3.36 11.19 49.14
200 2.42 4.79 2.52 14.06 2.97 12.55 50.21
400 1.99 4.00 2.21 10.50 2.57 9.29 50.28
800 1.79 3.16 1.97 7.77 2.03 6.96 51.32
1600 1.28 2.55 1.74 4.35 1.68 3.90 52.95
3200 1.20 2.37 1.41 6.22 1.74 5.49 60.55
6400 1.05 2.07 1.21 4.00 1.44 3.47 94.55
12800 0.93 1.94 1.09 3.83 1.41 3.26 133.95

Orange Juice

PCL

100 4.83 4.95 3.18 84.38 41.50 46.51 74.15
200 3.58 3.47 2.99 84.12 44.11 44.76 88.67
400 3.21 2.83 2.49 86.48 44.67 45.26 114.36
800 3.06 2.54 2.44 84.76 42.36 45.87 182.19
1600 2.61 2.39 2.11 84.42 41.65 46.37 295.26
3200 26.76 5.18 10.83 97.34 51.81 50.67 487.15
6400 26.86 5.30 11.19 92.67 53.43 65.90 896.85
12800 2.53 2.20 1.91 85.81 42.12 46.37 1637.13

Ours (τ = 0.01)

100 3.49 4.19 2.70 6.82 2.86 6.55 50.39
200 3.39 4.05 2.41 5.02 2.23 5.81 50.19
400 2.86 3.64 2.14 3.88 1.77 4.68 50.54
800 2.18 2.53 1.94 2.55 1.44 2.80 50.64
1600 1.86 2.39 1.79 2.36 1.29 2.76 52.58
3200 1.56 2.17 1.50 1.54 1.09 2.09 56.74
6400 1.12 1.61 1.45 1.54 0.84 1.61 80.22
12800 0.96 1.44 1.17 1.32 0.75 1.39 117.08

Kinect Box

PCL

100 50.02 48.08 54.28 12.78 2.98 19.77 96.23
200 44.45 71.22 53.61 86.93 34.92 64.54 146.30
400 32.62 51.28 51.01 12.46 2.43 12.56 238.51
800 44.83 43.50 56.51 10.23 2.31 10.63 395.86
1600 43.93 42.70 55.70 9.80 2.33 10.58 666.85
3200 44.59 42.93 55.78 11.82 1.94 11.33 1218.44
6400 43.43 41.92 55.78 7.21 2.08 7.74 2377.42
12800 43.99 42.51 55.89 7.62 1.87 8.31 4539.42

Ours (τ = 0.01)

100 11.26 30.02 19.66 15.86 3.75 14.51 50.07
200 7.67 18.51 12.02 11.27 2.18 11.15 49.74
400 5.61 13.86 9.24 10.12 1.71 10.16 52.21
800 3.67 5.28 2.60 8.40 1.58 8.43 51.87
1600 3.37 4.13 2.15 7.86 1.17 7.86 56.33
3200 6.11 9.16 7.51 7.63 1.03 7.51 64.00
6400 2.38 3.28 1.52 8.14 1.42 7.52 116.17
12800 1.84 2.23 1.36 6.41 0.76 6.32 166.14

† For the sake of comparison, beer results are indicated in bold type.

100

0 200 400 600 800 1000
−400

−200

0

200

400
x Translation

Frame number

(m
m

)

0 200 400 600 800 1000
−200

−100

0

100

200
Roll (α) Angle

Frame number

(d
eg

re
e)

0 200 400 600 800 1000
−200

0

200

400
y Translation

Frame number

(m
m

)

0 200 400 600 800 1000
−100

−50

0

50
Pitch (β) Angle

Frame number

(d
eg

re
e)

0 200 400 600 800 1000
800

1000

1200

1400
z Translation

Frame number

(m
m

)

0 200 400 600 800 1000
−50

0

50

100

150
Yaw (γ) Angle

Frame number

(d
eg

re
e)

Ground Truth
PCL tracking
Ours (τ = 0.01)

Figure 6.6. e 6-DOF pose plots of the “Kinect Box” results in Figure 6.5. While our approach well follows
the ground truth, the PCL tracking suffers from wrong tracking due to the limitation of the object model.

the difficulty of the sequences. But the overall trend here is that as the number of the particles N increases the

translational and rotational errors are decreased. In the “Tide” sequence which is rather simple compared to the

other sequences, for example, the PCL tracking reports slightly beer results when N ≤ 800. But as N increases,

our tracker shows more accurate results. An interesting fact in the “Tide” sequence is that the PCL tracking shows

slightly beer result in z translation. is may be due to the fact that the PCL tracking has only one reference object

point cloud as an object model so that it does result in smaller error in that direction. However, the limited number

of the reference cloud is geing problematic when it runs on more challenging sequences. Please note that big errors

in both translation and rotations in the “Milk”, “Orange Juice”, and “Kinect Box” sequences. Since the objects are

self-symmetric themselves, the one reference view of each object is not enough to track the objects over the entire

sequences. As shown in Figure 6.5 and Figure 6.6, the PCL tracking is oen stuck in local minima during the tracking,

while our approach robustly tracks the objects in the sequences.

For robotic applications, the computation time is really important since it directly determines the performance

and the reliability of the robotic systems. As we can see in both Table 6.1 and Figure 6.8, the computation time of both

approaches increases linearly asN increases. However, our tracking only takes about 50 ms per frame (i.e. 20 frames

per second) with several thousands particles, whereas the PCL tracking suffers from low frame rates. Although the

PCL tracking shows comparable performance in the “Tide” sequence, if we consider the real frame rates the PCL

101

Figure 6.7. Tracking results on the “Tide” and “Milk” real sequences. For both sequences, the upper rows
show the tracking results of our approach, while the lower rows present the results of the PCL tracking (N = 1600).
As the objects undergo significant variations in rotations, the PCL tracking suffered from false pose estimates. anks
to multiple model renderings every time, our tracking reliably tracks the true poses of the objects. (Best viewed in
color)

tracking would have much higher errors due to the lost frames.

6.4.3 Real Sequences

We ran both tracking approaches in a set of real image sequences which exhibits significant noise and more variable

object motions compared to the synthetic sequences. Figure 6.7 shows the pose tracking results on the “Tide” and

“Milk” sequences. For clear visualization, the RGB channels from the RGB-D sequences were converted to gray

scale, and each rendered object model was drawn on top of them. Invalid depth points (also known as Nan points)

were shown as black points. For both sequences, N = 1600 particles were employed. As the objects experience

significant variations in rotations, the PCL tracking (lower rows in each sequence) oen loses its tracking. anks

to employing the 3D object model and rendering it in multiple views, our tracking dependably tracks the object in

spite of the challenging rotational motions.

6.5 Summary

We presented an approach for RGB-D object tracking which is based on a particle filter on a GPU. Rich visual features

were employed to evaluate the likelihood of each particle, and this process, which is a typical boleneck in most

particle filters, was parallelized on the GPU so that our proposed solution achieves real-time performance. rough

102

50

100

150

200

250

 1
00

 2
00

 4
00

 8
00

 1
60

0

 3
20

0

 6
40

0

12
80

0

Number of paprticles

Computation Time

T
im

e
(m

s)

0

1000

2000

3000

4000

 1
00

 2
00

 4
00

 8
00

 1
60

0

 3
20

0

 6
40

0

12
80

0

Number of paprticles

Computation Time

T
im

e
(m

s)

Figure 6.8. Boxplots showing computation time of our tracking (le) and the PCL tracking (right) on
the “Tide” synthetic sequence. For both approaches, time linearly increases as the number of the particles N
increases, but our increasing rate is much smaller. Note that the computation time of our approach is less than 50
ms until N ≤ 3200.

a set of extensive experiments with both synthetic and real RGB-D sequences, we verified that our approach is not

only faster but also more accurate than the PCL tracking.

103

CHAPTER VII

CONCLUSIONS

In this chapter, we first summarize the objectives and contributions of this thesis in Section 7.1, and then important

conclusions are highlighted in detail in Section 7.2. To guide readers to possible future directions, we discuss possible

extensions of the presented approaches as well as several future directions in Section 7.3. Finally, we finish this thesis

with concluding remarks in Section 7.4.

7.1 Summary

In this thesis, we have contributed toward robust object perception capable of running in unstructured environments.

More specifically, four critical challenges in visual object perception have been explicitly addressed. To perceive

objects regardless of the degree of texture, we combined photometric and geometric features available from 3D

object prior knowledge, and this combination also makes our approach more effective by reducing search space. In

addition, object perception in highly cluered backgrounds was addressed by employing robust multiple hypotheses

frameworks: a particle filtering framework for robust object pose tracking and a voting framework using pair features

for effective pose estimation. Several object discontinuities during tracking were taken into account to enable our

tracking approach to be fully automatic in the presence of the discontinuities. Lastly, we accelerated repetitive

computations of our frameworks in a modern parallel computation architecture so that our pose estimation and

tracking approaches comply with real-time constraints. Our approaches were compared with other state-of-the-art

work in various synthetic and real datasets, and advantages and limitations of the proposed systems were discussed

both qualitatively and quantitatively.

7.2 Conclusions

Important conclusions drawn from the thesis are highlighted as follows:

• Combining photometric and geometric features enables object perception to be more efficient and

to increase the scope of objects. While some photometric features representing texture of objects are well

suited for well-textured objects, geometric features are more effective for textureless objects. As these two sets

of features complementary each other, we considered several combinations of those and verified that fusing

photometric and geometric features enables perception system to handle both well-textured and textureless

objects. In addition, we further learned that a well-designed combination of these features helps to reduce

search space of perception problems. In Section 3, a photometric feature (SURF keypoints) was employed

to hypothesize initial particles instead of searching for the initial pose from scratch, and a geometric feature

104

(edges from geometric shapes) was considered to calculate inter-frame motions as a local search scheme. In

Section 5.1, the color point pair feature (CPPF) was defined by combining photometric (colors) and geometric

(3D points associated with 3D normals) features. Since the more descriptive CPPF helps the voting framework

to prune out possibly wrong feature matchings, it reported much beer pose estimation results than the one

without color information in terms of both precision and recall. ese features were further utilized in our

object pose tracking approach using an RGB-D sensor in Section 6, where 3D points along with their colors

and surface normals were used to calculate the likelihood of each particle pose given an RGB-D scene. We

noticed that these three features (3D points, normals, and colors) are general aributes in the sense that they

can be applied to either well-textured or textureless objects.

• Multiple hypotheses frameworks are effective in heavy background clutter. e multiple pose hy-

potheses frameworks for pose estimation in Section 5 and tracking in Section 3, 4, and 6 show that maintain-

ing multiple pose hypotheses makes object perception more robust in significant cluer. As shown in Section

3.4.2, the particle filter tracker reports reliable tracking despite cluered backgrounds, while the single hy-

pothesis tracker gets stuck in local minima led by false edge associations from cluer. For pose estimation,

the voting framework is indeed robust in cluered environments by aggregating pose hypotheses determined

from a large set of pair feature matching. In Section 5.1, we showed that the voting approach reports bet-

ter recognition performance than the template matching and the sampling approach especially in cluered

backgrounds.

• Integrating pose estimation and tracking drives a fully automatic pose tracking system capable of

handling object discontinuous cases. Most of the existing tracking approaches did not address object dis-

continuities, such as significant occlusions or disappearing. As a way of addressing these cases, we presented

a systematic combination of pose estimation and tracking for which a re-initialization method using the ef-

fective number of particles as a likelihood of sounding tracking was proposed (Section 3 and 4). is scheme

turned out to be an effective way to overcome the tracking discontinuities.

• Object perception algorithms can be beneficiaries of modern parallel computing architecture. As

explained in both Section 5.1 and 6, the proposed frameworks in this thesis are composed of a significant

amount of repetitive computations. anks to the independence of each computation, it is possible to perform

the computation in parallel. By parallelizing on GPU, we achieved significant computational performance

enhancement so that our framework can comply with the constraints of time. So one conclusion is that heavy

computations in perception algorithms can take advantage of parallel computing power. Computer vision and

robotic perception require a large number of computations, and we believe that designing parallel algorithms

will be an important effort.

• Depth information enables us to consider many rich visual features. e RGB-D sensor is promising

105

in that reasonable depth information is available with reasonable price. Reliable depth information provides

various geometric features, such as depth points, surface normal, object boundaries, 3D line segments, and

principal curvatures, which are beyond currently dominant photometric features in computer vision. It also

makes object segmentation trivial by looking at depth discontinuities. Due to these advantages, active adop-

tion of geometric features along with photometric features is highly anticipated in the future robotics and

perception research.

7.3 Future Directions

Despite our endeavors toward robust object perception, numerous challenges are still remained. is section de-

scribes several of these to guide readers to possible future directions.

Object model adaptation. As more 3D models are available on web databases, exploring how to take the

discrepancy between the 3D models and the real objects into account will be an interesting topic. It would be an

ideal case if a perfect 3D model of an object of interest is available, but it is neither practically possible nor seemingly

necessary. ough an exact model may not always be available, we can still access to various shape prior and utilize

the prior knowledge to generate a model matched to our object via a geometric deformation or adaptation. Klank

et al. (2009) showed an initial effort morphing exemplar models into more accurate models, but it only focused on

geometric adaptation. Updating photometric aributes as well as geometric deformation would be beneficial to lots

of appearance-based approaches.

Active object modeling. As an alternative to the model adaptation, 3D object modeling from an RGB-D sensor

would be a good research direction. Autonomous object modeling (Krainin et al. 2011) is preferred in service robotics

where the number of objects robots needed to handle is reasonably limited. Dense environment reconstruction

using the RGB-D sensor has been shown (Newcombe et al. 2011), and hence it would be straightforward to extend to

object modeling. Whereas these approaches rely only on visual sensor modalities, robots can exploit other sensing

modalities as they are embodied systems. Tactile sensing provides another sensory information which complements

the visual sensory data. us, it is of interest to model 3D shape with a manipulation interaction (Allen 1985, 1988,

Ilonen et al. 2013), and it would be possible to model very challenging objects, such as articulated objects (Katz et al.

2013) or transparent objects (Section 4) that are very hard to build 3D models only with visual sensory input.

Multi-object tracking. In visual object tracking, it would be of interest to work on tracking multiple objects.

As robotic tasks are geing complex in various robotic applications, such as flexible factory assembly and human-

robot collaboration, robots are required to reason beyond a single object. In this thesis, we have addressed single

object instance tracking where any visual regions other than the target object’s region are regarded as background

cluer or occlusions. If there are multiple objects and they interact each other, we may take advantage of impor-

tant information from the interaction. More importantly, estimating multiple poses would help occlusion reasoning.

When robots perform manipulation tasks, it is quite oen to face occlusions by other entities, such as robots them-

selves, objects, or humans. Multi-object tracking might be helpful in this case since we can rule out some possibly

106

occluded regions in the stage of measurement data association. A preliminary idea was shown in the 2D people

detection problem (Shu et al. 2012), and applying this to 3D object tracking would be highly expected. is explicit

occlusion reasoning may significantly increase the accuracy of pose estimate for each object and consequently result

in a robust tracking solution even with severe occlusions.

Scalable object perception. As robotic systems are deployed in real environments for practical tasks, scalable

object perception will be an important topic. e time complexity of most approaches in object perception linearly

increases as the number of learned objects increases. Since robots are expected to deal with hundreds or thousands

of objects within a time constraint, research efforts on devising scalable algorithms would be highly anticipated.

Computer vision literature has started to address the scalable recognition (Nister and Stewenius 2006, Deng et al.

2009), but scalable object perception on 6-DOF space is still lile explored.

3D object categorization. Lastly, utilizing 3D prior knowledge of objects for object category recognitionwould

be a promising topic. In this thesis, we have focused on object instance recognition in which the primary goal is to

find the exact object rather than generalizing objects at categorical levels. However, inferring categories of unknown

objects may be an interesting research topic as functional prediction of the objects is oen associated with the object

categories. In computer vision community, preliminary results have been shown (Savarese and Fei-Fei 2007, Stark

et al. 2010, Liebelt and Schmid 2010, Pepik et al. 2012). Dominant philosophy is to adopt the well-known deformable

part model (Felzenszwalb et al. 2009) along with the histogram of oriented gradients (HOG) feature (Dalal et al. 2005)

for addressing intra-class variations and to learn a model from multiple 3D CADmodels. s ough these approaches

have shown great potential, recognition rate is far less than our expectation and employed features are still limited

to photometric features. Given the prevalence of depth sensors, it is of interest to exploit geometric features for

predicting categories of 3D objects.

7.4 Concluding Remarks

is thesis has explored how to enhance object perception algorithms so that they can dependably execute in highly

cluered and dynamic environments. Among many remained challenges in object perception, the four challenges in

unstructured scenes were addressed in order for robotic systems to efficiently recognize objects and estimate their

poses regardless of the degree of object texture, background cluer, and object discontinuous cases.

Despite the prolonged efforts, object perception is certainly not solved yet, and significant amount of work

should thus follow in the future. We believe that exploiting 3D prior of objects would be crucial for visual object

perception. e prevalent RGB-D cameras and various depth sensors might enable to revisit the geometric era of

the early machine perception and to combined geometric information with photometric observations. Imagine that

future perception systems are actively learning new objects along with their strategies for behavior in the lifelong

scale and that the revolutionized robotic systems will perform tasks that are seemingly impossible missions for now.

We hope that our efforts in this thesis would be a step forward toward reliable and dependable object perception.

107

APPENDIX A

IRLS AND ITS JACOBIAN DERIVATION

Given the current pose hypothesis Xt, the residual vector r̂ ∈ RNẑ which represents Euclidean distances between

the 2D projected sampled points p and their corresponding nearest edge points q, we would like to find µ̂ ∈ R6

which minimizes the residual r̂ as follows:

µ̂ = argmin
µ

Nẑ∑
i=1

∥r̂i∥2 (A.1)

= argmin
µ

Nẑ∑
i=1

∥qi − pi∥2. (A.2)

Note that each element of µ is the coefficient of each basis of the Lie algebra se(3) in (3.6). us, the optimized pose

hypothesis X́t can be presented as:

X́t = Xt · exp(
6∑

i=1

µ̂iEi) (A.3)

where exp : se(3) 7→ SE(3) is the exponential map. From the camera model in (3.1), the projected point pi in (A.2)

of the ith 3D sampled point in object coordinates PO
i = (xO

i , y
O
i , zOi , 1)T is presented by

pi =

ui

vi

 = Project(K, X́t,PO
i) (A.4)

where K is the intrinsic parameter matrix (3.3).

Given pi and its unit normal vector ni, we can build a Jacobian matrix J ∈ RNẑ×6 by computing the partial

derivative of nT
i pi in the direction µj at µ = 0:

Jij =
∂nT

i pi

∂µj

∣∣∣∣
µ=0

(A.5)

= nT
i

∂

∂µj

ui

vi

∣∣∣∣
µ=0

(A.6)

= nT
i

∂

∂µj

(
Project(K, X́t,PO

i)
)∣∣∣∣

µ=0
(A.7)

in order to find µ̂ which minimizes the residual r̂ by solving the following equation:

Jµ̂ = r̂. (A.8)

108

For convenience, we can split Project() in the camera model (3.1) into two parts as follows:

ui

vi

 =

fu 0 u0

0 fv v0



ũi

ṽi

1

 (A.9)

ũi

ṽi

 =

xC
i

zC
i

yC
i

zC
i

 . (A.10)

eir corresponding Jacobian matrices are then obtained as:

JK =

∂ui

∂ũi

∂ui

∂ṽi

∂vi

∂ũi

∂vi

∂ṽi

 =

fu 0

0 fv

 (A.11)

JP =

 ∂ũi

∂xC
i

∂ũi

∂yC
i

∂ũi

∂zC
i

∂ṽi

∂xC
i

∂ṽi

∂yC
i

∂ṽi
∂zC

i

 =

 1
zC
i

0 − xC
i

(zC
i)

2

0 1
zC
i
− yC

i

(zC
i)

2

 . (A.12)

If we calculate the partial derivative of the X́t in the direction µj at µ = 0, we have the following from the equation

of optimized pose in (A.3):

∂X́t

∂µj

∣∣∣∣
µ=0

= Xt
∂

∂µj
exp(Σ6

i=1µiEi)

∣∣∣∣
µ=0

(A.13)

= XtEj . (A.14)

We then obtain the partial derivative of the PC
i in the direction µj at µ = 0 via the transformation (3.2) from object

to camera coordinate frames:

∂PC
i

∂µj

∣∣∣∣
µ=0

=
∂X́tPO

i

∂µj

∣∣∣∣
µ=0

=
∂X́t

∂µj

∣∣∣∣
µ=0

PO
i

= XtEjPO
i . (A.15)

With the two Jacobian matrices in (A.11), (A.12) and the partial derivative of the PC
i in (A.15), we finally obtain the

Jacobian matrix J from the intermediate result in (A.7) as

Jij = nT
i

∂

∂µj

(
Project(K, X́t,PO

i)
)∣∣∣∣

µ=0
(A.16)

= nT
i JK

JP
0

0

 ∂PC
i

∂µj

∣∣∣∣
µ=0

(A.17)

= nT
i JK

JP
0

0

XtEjPO
i . (A.18)

109

We could solve the equation (A.8) using the general pseudo-inverse of J:

µ̂ = (JTJ)−1JTr̂. (A.19)

Above equation, however, tends to be sensitive to erroneous measurements. As alternatives, M-estimators (Huber

1981) or RANSAC (Fischler and Bolles 1981) are preferable. Especially, M-estimator, in which a robust penalty

function to the residuals is applied, is preferred to RANSAC when the majority of measurements is inliers. For a

M-estimator, it is common to define a function Ψ(r) = 1
λw+|r| which penalizes for the residual errors r and λw is a

parameter which is usually set to one standard deviation of the inliers. With this function, we can have a diagonal

matrixW = diag[Ψ(r1),Ψ(r2), · · · ,Ψ(rNẑ
)] ∈ RNẑ×Nẑ . en µ̂ can be estimated via weighted least squares as:

µ̂ = (JTWJ)−1JTWr̂. (A.20)

Drummond and Cipolla (2002) introduced this as Iteratively Reweighted Least Squares (IRLS) in which the penalty

function is recursively updated by computing the weighted least squares problem. ey mentioned performing a

single iteration for each image frame was enough to converge to the true pose.

110

BIBLIOGRAPHY

Agin, G. J. (1972). Representation and description of curved objects. Technical report, DTIC Document.

Agrawal, A., Yu, S., Barnwell, J., and Raskar, R. (2010). Vision-guided robot system for picking objects by casting

shadows. International Journal of Robotics Research (IJRR), 29(2–3):155–173.

Aldoma, A., Vincze, M., Blodow, N., Gossow, D., Gedikli, S., Rusu, R., and Bradski, G. (2011). CAD-model recognition

and 6DOF pose estimation using 3D cues. In IEEE International Conference on Computer Vision Workshops (ICCV

Workshops), pages 585–592.

Allen, P. K. (1985). Object recognition using vision and touch. PhD thesis, University of Pennsylvania.

Allen, P. K. (1988). Integrating vision and touch for object recognition tasks. International Journal of Robotics Research

(IJRR), 7(6):15–33.

AMD (2012). Bolt C++ template library. http://developer.amd.com/tools-and-sdks/

heterogeneous-computing/bolt-c-template-library/.

Amit, Y. and Geman, D. (1997). Shape quantization and recognition with randomized trees. Neural computation,

9(7):1545–1588.

Armstrong, M. and Zisserman, A. (1995). Robust object tracking. In Proceedings of Asian Conference on Computer

Vision (ACCV), volume 1, pages 58–61.

Azad, P., Munch, D., Asfour, T., and Dillmann, R. (2011). 6-DoFmodel-based tracking of arbitrarily shaped 3D objects.

In Proceedings of IEEE International Conference on Robotics and Automation (ICRA), pages 5204–5209.

Ballard, D. (1981). Generalizing the hough transform to detect arbitrary shapes. Paern Recognition, 13(2):111–122.

Barrow, H. G., Tenenbaum, J. M., Bolles, R. C., and Wolf, H. C. (1977). Parametric correspondence and chamfer

matching: Two new techniques for image matching. In Proceedings of International Joint Conference on Artificial

Intelligence (IJCAI), volume 2, pages 659–663.

Bay, H., Ess, A., Tuytelaars, T., and Gool, L. V. (2008). Speeded-up robust features (SURF). Computer Vision and Image

Understanding (CVIU), 110(3):346–359.

Beis, J. and Lowe, D. (1997). Shape indexing using approximate nearest-neighbour search in high-dimensional spaces.

In Proceedings of IEEE Conference on Computer Vision and Paern Recognition (CVPR), pages 1000–1006.

Bersch, C., Pangercic, D., Osentoski, S., Hausman, K., Marton, Z.-C., Ueda, R., Okada, K., and Beetz, M. (2012).

Segmentation of textured and textureless objects through interactive perception. In RSS Workshop on Robots in

Cluer: Manipulation, Perception and Navigation in Human Environments.

111

http://developer.amd.com/tools-and-sdks/heterogeneous-computing/bolt-c-template-library/
http://developer.amd.com/tools-and-sdks/heterogeneous-computing/bolt-c-template-library/

Besl, P. J. and McKay, N. D. (1992). A method for registration of 3-D shapes. IEEE Transactions on Paern Analysis

and Machine Intelligence (PAMI), pages 239–256.

Bibby, C. and Reid, I. (2008). Robust real-time visual tracking using pixel-wise posteriors. In Proceedings of European

Conference on Computer Vision (ECCV), pages 831–844. Springer.

Biederman, I. (1985). Human image understanding: Recent research and a theory. Computer Vision, Graphics, and

Image Processing, 32(1):29–73.

Binford, T. O. (1971). Visual perception by computer. In IEEE conference on Systems and Control, volume 261, page

262.

Bradski, G. and Kaehler, A. (2008). Learning OpenCV: Computer vision with the OpenCV library. O’Reilly Media.

Bray, M., Koller-Meier, E., and Gool, L. V. (2004). Smart particle filtering for 3D hand tracking. In Sixth IEEE Inter-

national Conference on Automatic Face and Gesture Recognition, 2004. Proceedings, pages 675–680.

Breiman, L. (2001). Random forests. Machine learning, 45(1):5––32.

Brooks, R. (1982). Symbolic reasoning among 3D models and 2D images. Artificial Intelligence, 17:285–348.

Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on Paern Analysis and Machine

Intelligence (PAMI), 8(6):679–698.

Chen, B. X. (2014). For hints at Apple’s plans, read its shopping list.eNew York Times. http://nyti.ms/1pgvPRT.

Chiuso, A. and Soao, S. (2000). Monte Carlo filtering on Lie groups. In IEEE Conference on Decision and Control,

volume 1, pages 304–309.

Choi, C. and Christensen, H. (2012a). 3D pose estimation of daily objects using an RGB-D camera. In Proceedings of

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

Choi, C. and Christensen, H. (2012b). 3D textureless object detection and tracking: An edge-based approach. In

Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

Choi, C. and Christensen, H. I. (2010). Real-time 3D model-based tracking using edge and keypoint features for

robotic manipulation. In Proceedings of IEEE International Conference on Robotics and Automation (ICRA), pages

4048–4055.

Choi, C. and Christensen, H. I. (2011). Robust 3D visual tracking using particle filtering on the SE(3) group. In

Proceedings of IEEE International Conference on Robotics and Automation (ICRA).

Choi, C. and Christensen, H. I. (2012c). Robust 3D visual tracking using particle filtering on the special Euclidean

group: A combined approach of keypoint and edge features. International Journal of Robotics Research (IJRR),

31(4):498–519.

112

http://nyti.ms/1pgvPRT

Choi, C. and Christensen, H. I. (2013). RGB-D object tracking: A particle filter approach on GPU. In Proceedings of

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 1084–1091.

Choi, C. and Christensen, H. I. (2014). RGB-D object pose estimation in unstructured environments. International

Journal of Robotics Research (IJRR), (Under review).

Choi, C., Taguchi, Y., Tuzel, O., Liu, M., and Ramalingam, S. (2012). Voting-Based pose estimation for robotic assembly

using a 3D sensor. In Proceedings of IEEE International Conference on Robotics and Automation (ICRA).

Choi, W., Pantofaru, C., and Savarese, S. (2011). Detecting and tracking people using an RGB-D camera via multiple

detector fusion. In IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pages 1076–

1083.

Collet, A., Berenson, D., Srinivasa, S. S., and Ferguson, D. (2009). Object recognition and full pose registration from a

single image for robotic manipulation. In Proceedings of IEEE International Conference on Robotics and Automation

(ICRA), pages 48–55.

Collet, A., Martinez, M., and Srinivasa, S. (2011). e MOPED framework: Object recognition and pose estimation

for manipulation. International Journal of Robotics Research (IJRR), 30(10):1284–1306.

Comport, A. I., Marchand, E., and Chaumee, F. (2004). Robust model-based tracking for robot vision. In Proceedings

of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), volume 1.

Criminisi, A. and Shoon, J. (2013). Decision Forests for Computer Vision and Medical Image Analysis. Springer

Publishing Company, Incorporated.

Dalal, N., Triggs, B., Rhone-Alps, I., andMontbonnot, F. (2005). Histograms of oriented gradients for human detection.

In Proceedings of IEEE Conference on Computer Vision and Paern Recognition (CVPR), volume 1.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). Imagenet: A large-scale hierarchical image

database. In Proceedings of IEEE Conference on Computer Vision and Paern Recognition (CVPR), pages 248–255.

IEEE.

Deutscher, J., Blake, A., and Reid, I. (2000). Articulated body motion capture by annealed particle filtering. In

Proceedings of IEEE Conference on Computer Vision and Paern Recognition (CVPR), volume 2, pages 126–133 vol.2.

Dickinson, S. (2009). e evolution of object categorization and the challenge of image abstraction. Object Catego-

rization: Computer and Human Vision Perspectives, 7.

Dickinson, S. J., Pentland, A., and Rosenfeld, A. (1992). 3-d shape recovery using distributed aspect matching. IEEE

Transactions on Paern Analysis and Machine Intelligence (PAMI), 14(2):174–198.

113

Dorai, C. and Jain, A. (1997). COSMOS-A representation scheme for 3D free-form objects. IEEE Transactions on

Paern Analysis and Machine Intelligence (PAMI), 19(10):1115–1130.

Doucet, A., De Freitas, N., and Gordon, N. (2001). Sequential Monte Carlo methods in practice, volume 1. Springer

New York.

Doucet, A., Godsill, S., and Andrieu, C. (2000). On sequential Monte Carlo sampling methods for Bayesian filtering.

Statistics and computing, 10(3):197–208.

Drost, B., Ulrich, M., Navab, N., and Ilic, S. (2010). Model globally, match locally: Efficient and robust 3D object

recognition. In Proceedings of IEEE Conference on Computer Vision and Paern Recognition (CVPR).

Drummond, T. and Cipolla, R. (2002). Real-time visual tracking of complex structures. IEEE Transactions on Paern

Analysis and Machine Intelligence (PAMI), 24(7):932–946.

Epstein, Z. (2013). Microso says Xbox 360 sales have surpassed 76 million units, Kinect sales top 24 million. BGR.

http://bgr.com/2013/02/12/microsoft-xbox-360-sales-2013-325481/.

Fanelli, G., Gall, J., and Van Gool, L. (2011). Real time head pose estimation with random regression forests. In

Proceedings of IEEE Conference on Computer Vision and Paern Recognition (CVPR), pages 617–624.

Felzenszwalb, P. F., Girshick, R. B., McAllester, D., and Ramanan, D. (2009). Object detection with discriminatively

trained part based models. IEEE Transactions on Paern Analysis and Machine Intelligence (PAMI).

Fiala, M. (2005). ARTag, a fiducial marker system using digital techniques. In Proceedings of IEEE Conference on

Computer Vision and Paern Recognition (CVPR), volume 2, pages 590–596.

Fischler, M. A. and Bolles, R. C. (1981). Random sample consensus: a paradigm for model fiing with applications to

image analysis and automated cartography. Communications of the ACM, 24(6):381–395.

Fox, D. (2003). Adapting the sample size in particle filters through KLD-sampling. International Journal of Robotics

Research (IJRR), 22(12):985–1003.

Google (2013). Google 3D warehouse. http://sketchup.google.com/3dwarehouse/.

Google (2014). Project Tango. https://www.google.com/atap/projecttango/.

Gordon, N. J., Salmond, D. J., and Smith, A. F. (1993). Novel approach to nonlinear/non-Gaussian Bayesian state

estimation. In IEE Proceedings F Radar and Signal Processing, volume 140, pages 107–113.

Guzman, A. (1971). Analysis of curved line drawings using context and global information. Machine intelligence,

6:325–375.

Harris, C. (1992). Tracking with Rigid Objects. MIT Press.

114

http://bgr.com/2013/02/12/microsoft-xbox-360-sales-2013-325481/
http://sketchup.google.com/3dwarehouse/
https://www.google.com/atap/projecttango/

Henry, P., Krainin, M., Herbst, E., Ren, X., and Fox, D. (2010). RGB-D mapping: Using depth cameras for dense 3D

modeling of indoor environments. In Proceedings of International Symposium on Experimental Robotics (ISER).

Herbst, E., Henry, P., Ren, X., and Fox, D. (2011). Toward object discovery and modeling via 3-d scene comparison.

In Proceedings of IEEE International Conference on Robotics and Automation (ICRA), pages 2623–2629.

Hinterstoisser, S., Cagniart, C., Ilic, S., Sturm, P., Navab, N., Fua, P., and Lepetit, V. (2012a). Gradient response maps

for Real-Time detection of Texture-Less objects. IEEE Transactions on Paern Analysis and Machine Intelligence

(PAMI), 34(5):876–888.

Hinterstoisser, S., Lepetit, V., Ilic, S., Holzer, S., Bradski, G., Konolige, K., and Navab, N. (2012b). Model based

training, detection and pose estimation of texture-less 3D objects in heavily cluered scenes. In Proceedings of

Asian Conference on Computer Vision (ACCV).

Hoberock, J. and Bell, N. (2010). rust: A parallel template library. http://thrust.github.io/.

Huber, P. J. (1981). Robust Statistics. Wiley-Interscience.

Huenlocher, D. P., Klanderman, G. A., and Rucklidge, W. A. (1993). Comparing images using the Hausdorff distance.

IEEE Transactions on Paern Analysis and Machine Intelligence (PAMI), pages 850–863.

Huenlocher, D. P. and Ullman, S. (1987). Object recognition using alignment. In Proceedings of IEEE International

Conference on Computer Vision (ICCV), pages 102–111.

Ikeuchi, K. and Kanade, T. (1988). Applying sensor models to automatic generation of object recognition programs.

In Proceedings of IEEE International Conference on Computer Vision (ICCV), volume 88, pages 228–237.

Ilonen, J., Bohg, J., and Kyrki, V. (2013). Fusing visual and tactile sensing for 3-D object reconstruction while grasping.

In Proceedings of IEEE International Conference on Robotics and Automation (ICRA), pages 3547–3554.

Internet.org (2013). A focus on efficiency: A whitepaper from Facebook, Ericsson and alcomm. http:

//internet.org/efficiencypaper.

Isard, M. and Blake, A. (1998). Condensation–conditional density propagation for visual tracking. International

Journal of Computer Vision (IJCV), 29(1):5–28.

Johnson, A. E. and Hebert, M. (1999). Using spin images for efficient object recognition in cluered 3D scenes. IEEE

Transactions on Paern Analysis and Machine Intelligence (PAMI), 21(5):433–449.

Kasper, A., Xue, Z., and Dillmann, R. (2012). e KIT object models database: An object model database for object

recognition, localization and manipulation in service robotics. International Journal of Robotics Research (IJRR),

31(8):927–934.

115

http://thrust.github.io/
http://internet.org/efficiencypaper
http://internet.org/efficiencypaper

Katz, D., Kazemi, M., Begnell, J. A., and Stentz, A. (2013). Interactive segmentation, tracking, and kinematic modeling

of unknown 3D articulated objects. In Proceedings of IEEE International Conference on Robotics and Automation

(ICRA).

Kazhdan, M., Bolitho, M., and Hoppe, H. (2006). Poisson surface reconstruction. In Proceedings of Eurographics

Symposium on Geometry processing.

Kemp, C. and Drummond, T. (2005). Dynamic measurement clustering to aid real time tracking. In Proceedings of

IEEE International Conference on Computer Vision (ICCV), pages 1500–1507.

Kim, E. and Medioni, G. (2011). 3D object recognition in range images using visibility context. In Proceedings of

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 3800–3807.

Klank, U., Zia, M. Z., and Beetz, M. (2009). 3D model selection from an internet database for robotic vision. In

Proceedings of IEEE International Conference on Robotics and Automation (ICRA).

Klein, G. and Drummond, T. (2004). Tightly integrated sensor fusion for robust visual tracking. Image and Vision

Computing, 22(10):769–776.

Klein, G. and Murray, D. (2006). Full-3d edge tracking with a particle filter. Proceedings of British Machine Vision

Conference (BMVC).

Krainin, M., Henry, P., Ren, X., and Fox, D. (2011). Manipulator and object tracking for in-hand 3D object modeling.

International Journal of Robotics Research (IJRR), 30(11):1311–1327.

Krainin, M., Konolige, K., and Fox, D. (2012). Exploiting segmentation for robust 3D object matching. In Proceedings

of IEEE International Conference on Robotics and Automation (ICRA).

Kratochvil, B. E., Dong, L., and Nelson, B. J. (2009). Real-time rigid-body visual tracking in a scanning electron

microscope. International Journal of Robotics Research (IJRR), 28(4):498–511.

Kwon, J., Choi, M., Park, F. C., and Chun, C. (2007). Particle filtering on the Euclidean group: framework and

applications. Robotica, 25(06):725–737.

Kwon, J. and Park, F. C. (2010). Visual tracking via particle filtering on the affine group. International Journal of

Robotics Research (IJRR), 29(2-3):198.

Kyrki, V. and Kragic, D. (2005). Integration of model-based and model-free cues for visual object tracking in 3d. In

Proceedings of IEEE International Conference on Robotics and Automation (ICRA), volume 2, pages 1566–1572.

Lai, K., Bo, L., Ren, X., and Fox, D. (2011). A scalable tree-based approach for joint object and pose recognition. In

AAAI Conference on Artificial Intelligence.

116

Lamdan, Y. and Wolfson, H. J. (1988). Geometric hashing: A general and efficient model-based recognition scheme.

In Proceedings of IEEE International Conference on Computer Vision (ICCV), pages 238–249.

Lepetit, V. and Fua, P. (2006). Keypoint recognition using randomized trees. IEEE Transactions on Paern Analysis

and Machine Intelligence (PAMI), 28(9):1465–1479.

Lepetit, V., Moreno-Noguer, F., and Fua, P. (2009). EPnP: An accurate O(n) solution to the PnP problem. International

Journal of Computer Vision (IJCV), 81(2):155–166.

Liebelt, J. and Schmid, C. (2010). Multi-view object class detection with a 3d geometric model. In Proceedings of IEEE

Conference on Computer Vision and Paern Recognition (CVPR), pages 1688–1695. IEEE.

Liu, M.-Y., Tuzel, O., Veeraraghavan, A., and Chellappa, R. (2010a). Fast directional chamfer matching. In Proceedings

of IEEE Conference on Computer Vision and Paern Recognition (CVPR), pages 1696–1703.

Liu, M.-Y., Tuzel, O., Veeraraghavan, A., Chellappa, R., Agrawal, A., and Okuda, H. (2010b). Pose estimation in heavy

cluer using a multi-flash camera. In Proceedings of IEEE International Conference on Robotics and Automation

(ICRA), pages 2028–2035.

Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer

Vision (IJCV), 60(2):91–110.

Ma, Y., Soao, S., Kosecká, J., and Sastry, S. S. (2004). An invitation to 3-D vision: From images to geometric models.

Springer, New York.

Mateo Lozano, O. and Otsuka, K. (2009). Real-time visual tracker by stream processing. Journal of Signal Processing

Systems, 57(2):285–295.

Mian, A. S., Bennamoun, M., and Owens, R. (2006). ree-dimensional model-based object recognition and segmen-

tation in cluered scenes. IEEE Transactions on Paern Analysis and Machine Intelligence (PAMI), pages 1584–1601.

Moakher, M. (2003). Means and averaging in the group of rotations. SIAM Journal onMatrix Analysis and Applications,

24(1):1–16.

Montemayor, A. S., Pantrigo, J. J., Sánchez, A., and Fernández, F. (2004). Particle filter on GPUs for real-time tracking.

In ACM SIGGRAPH 2004 Posters, page 94.

Mörwald, T., Prankl, J., Richtsfeld, A., Zillich, M., and Vincze, M. (2010). BLORT - the blocks world robotic vision

toolbox. In In Best Practice in 3D Perception and Modeling for Mobile Manipulation (in conjunction with ICRA 2010).

Mörwald, T., Zillich, M., and Vincze, M. (2009). Edge tracking of textured objects with a recursive particle filter. In

Proceedings of International Conference on Computer Graphics and Vision (Graphicon), pages 96–103.

117

Mundy, J. (2006). Object recognition in the geometric era: A retrospective. Toward category-level object recognition,

pages 3–28.

Murase, H. and Nayar, S. K. (1995). Visual learning and recognition of 3-d objects from appearance. International

Journal of Computer Vision (IJCV), 14(1):5–24.

Nevatia, R. and Binford, T. O. (1973). Structured descriptions of complex objects. In Proceedings of International Joint

Conference on Artificial Intelligence (IJCAI), pages 641–647.

Nevatia, R. and Binford, T. O. (1977). Description and recognition of curved objects. Artificial Intelligence, 8(1):77–98.

Newcombe, R., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A., Kohli, P., Shoon, J., Hodges, S., and

Fitzgibbon, A. (2011). KinectFusion: real-time dense surface mapping and tracking. In Proceedings of International

Symposium on Mixed and Augmented Reality (ISMAR), pages 127–136.

Nister, D. and Stewenius, H. (2006). Scalable recognition with a vocabulary tree. In Proceedings of IEEE Conference

on Computer Vision and Paern Recognition (CVPR), volume 2, pages 2161–2168. IEEE.

Olson, C. and Huenlocher, D. (1997). Automatic target recognition by matching oriented edge pixels. IEEE Trans-

actions on Image Processing, 6(1):103–113.

Papazov, C., Haddadin, S., Parusel, S., Krieger, K., and Burschka, D. (2012). Rigid 3D geometry matching for grasping

of known objects in cluered scenes. International Journal of Robotics Research (IJRR), 31(4):538–553.

Park, I. K., Germann, M., Breitenstein, M. D., and Pfister, H. (2010). Fast and automatic object pose estimation for

range images on the GPU. Machine Vision and Applications, 21(5):749–766.

Park, W., Liu, Y., Zhou, Y., Moses, M., and Chirikjian, G. S. (2008). Kinematic state estimation and motion planning

for stochastic nonholonomic systems using the exponential map. Robotica, 26(4):419–434.

Pauwels, K., Rubio, L., Diaz, J., and Ros, E. (2013). Real-time model-based rigid object pose estimation and tracking

combining dense and sparse visual cues. In Computer Vision and Paern Recognition (CVPR), 2013 IEEE Conference

on, pages 2347–2354.

Pepik, B., Gehler, P., Stark, M., and Schiele, B. (2012). 3D2PM–3D deformable part models. In Proceedings of European

Conference on Computer Vision (ECCV), pages 356–370. Springer.

Perkins, W. A. (1978). Amodel-based vision system for industrial parts. IEEE Transactions on Computers, C-27(2):126–

143.

Pham, M., Woodford, O., Perbet, F., Maki, A., Stenger, B., and Cipolla, R. (2011). A new distance for scale-invariant

3D shape recognition and registration. In Proceedings of IEEE International Conference on Computer Vision (ICCV).

118

Pinz, A. (2005). Object categorization. Foundations and Trends® in Computer Graphics and Vision, 1(4):255––353.

Pressigout, M. and Marchand, E. (2006). Real-time 3d model-based tracking: Combining edge and texture informa-

tion. In Proceedings of IEEE International Conference on Robotics and Automation (ICRA), pages 2726–2731.

Prisacariu, V. A. and Reid, I. D. (2012). PWP3D: real-time segmentation and tracking of 3D objects. International

Journal of Computer Vision (IJCV), 98(3):335–354.

Pupilli, M. and Calway, A. (2006). Real-time camera tracking using known 3D models and a particle filter. In

Proceedings of IEEE International Conference on Paern Recognition (ICPR), volume 1.

Raskar, R., Tan, K., Feris, R., Yu, J., and Turk, M. (2004). Non-photorealistic camera: Depth edge detection and stylized

rendering using multi-flash imaging. ACM Transactions on Graphics, 23:679–688.

Roberts, L. G. (1965). Machine perception of three-dimensional solids. In Optical and Electrooptical Information

Processing. MIT Press.

Rodrigues, J. J., Kim, J.-S., Furukawa, M., Xavier, J., Aguiar, P., and Kanade, T. (2012). 6D pose estimation of textureless

shiny objects using random ferns for bin-picking. In Proceedings of IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pages 3334–3341. IEEE.

Ross, D. A., Lim, J., Lin, R. S., and Yang, M. H. (2008). Incremental learning for robust visual tracking. International

Journal of Computer Vision (IJCV), 77(1):125–141.

Rosten, E. and Drummond, T. (2005). Fusing points and lines for high performance tracking. In Proceedings of IEEE

International Conference on Computer Vision (ICCV), volume 2.

Rothganger, F., Lazebnik, S., Schmid, C., and Ponce, J. (2006). 3d object modeling and recognition using local affine-

invariant image descriptors and multi-view spatial constraints. International Journal of Computer Vision (IJCV),

66(3):231–259.

Rusu, R. B., Blodow, N., and Beetz, M. (2009). Fast point feature histograms (FPFH) for 3D registration. In Proceedings

of IEEE International Conference on Robotics and Automation (ICRA), pages 3212–3217.

Rusu, R. B., Bradski, G., ibaux, R., and Hsu, J. (2010). Fast 3D recognition and pose using the viewpoint feature

histogram. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

Rusu, R. B. and Cousins, S. (2011). 3D is here: Point Cloud Library (PCL). In Proceedings of IEEE International

Conference on Robotics and Automation (ICRA), pages 1–4.

Salas-Moreno, R., Newcombe, R., Strasdat, H., Kelly, P., and Davison, A. (2013). SLAM++: simultaneous localisation

and mapping at the level of objects. In Proceedings of IEEE Conference on Computer Vision and Paern Recognition

(CVPR).

119

Savarese, S. and Fei-Fei, L. (2007). 3D generic object categorization, localization and pose estimation. In Proceedings

of IEEE International Conference on Computer Vision (ICCV), pages 1–8. IEEE.

Shoon, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A., and Blake, A. (2011). Real-time

human pose recognition in parts from single depth images. In Proceedings of IEEE Conference on Computer Vision

and Paern Recognition (CVPR).

Shu, G., Dehghan, A., Oreifej, O., Hand, E., and Shah, M. (2012). Part-based multiple-person tracking with partial

occlusion handling. In Proceedings of IEEE Conference on Computer Vision and Paern Recognition (CVPR), pages

1815––1821. IEEE.

Stark, M., Goesele, M., and Schiele, B. (2010). Back to the future: Learning shape models from 3D CAD data. In

Proceedings of British Machine Vision Conference (BMVC), volume 2, page 5.

Steder, B., Rusu, R., Konolige, K., and Burgard, W. (2011). Point feature extraction on 3d range scans taking into

account object boundaries. In Proceedings of IEEE International Conference on Robotics and Automation (ICRA),

pages 2601–2608.

Stein, F. and Medioni, G. (1992). Structural indexing: Efficient 3-D object recognition. IEEE Transactions on Paern

Analysis and Machine Intelligence (PAMI), 14(2):125–145.

Sturm, J., Engelhard, N., Endres, F., Burgard, W., and Cremers, D. (2012). A benchmark for the evaluation of RGB-D

SLAM systems. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

Tamadazte, B., Marchand, E., Dembélé, S., and Fort-Piat, N. L. (2010). CADmodel-based tracking and 3D visual-based

control for MEMS microassembly. International Journal of Robotics Research (IJRR), 29(11):1416–1434.

Teulière, C., Marchand, E., and Eck, L. (2010). Using multiple hypothesis in model-based tracking. In ICRA.

run, S., Burgard, W., and Fox, D. (2005). Probabilistic Robotics. e MIT Press.

TurboSquid (2014). Turbosquid. http://www.turbosquid.com/.

Tuzel, O., Subbarao, R., and Meer, P. (2005). Simultaneous multiple 3D motion estimation via mode finding on lie

groups. In Proceedings of IEEE International Conference on Computer Vision (ICCV), pages 18–25.

Underwood, S. A. and Coates Jr, C. L. (1975). Visual learning from multiple views. IEEE Transactions on Computers,

100(6):651–661.

Vacchei, L., Lepetit, V., and Fua, P. (2004). Combining edge and texture information for real-time accurate 3d camera

tracking. In Proceedings of International Symposium on Mixed and Augmented Reality (ISMAR), pages 48–56.

120

http://www.turbosquid.com/

Wahl, E., Hillenbrand, U., and Hirzinger, G. (2003). Surflet-pair-relation histograms: A statistical 3D-shape repre-

sentation for rapid classification. In Proceedings of International Conference on 3-D Digital Imaging and Modeling

(3DIM), pages 474–481.

Wang, Y. and Chirikjian, G. S. (2006). Error propagation on the euclidean group with applications to manipulator

kinematics. IEEE Transactions on Robotics, 22(4):591–602.

Wang, Y. and Chirikjian, G. S. (2008). Nonparametric second-order theory of error propagation on motion groups.

International Journal of Robotics Research (IJRR), 27(11-12):1258–1273.

Woodford, O., Pham, M., Maki, A., Perbet, F., and Stenger, B. (2011). Demisting the hough transform for 3D shape

recognition and registration. In Proceedings of British Machine Vision Conference (BMVC).

Woodham, R. J. (1980). Photometric method for determining surface orientation from multiple images. Optical

engineering, 19(1).

Xavier, J. and Manton, J. H. (2006). On the generalization of AR processes to Riemannian manifolds. Proceedings of

IEEE International Conference on Acoustics, Speech, and Signal Processing.

Yesin, K. B. and Nelson, B. J. (2005). A CADmodel based tracking system for visually guidedmicroassembly. Robotica,

23(04):409–418.

121

