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Introduction

® Pick-and-place task

® Robots moving from controlled settings to unstructured environments

® Robust object perception is crucial



Problem Formulation

3D
Object Models

IR Pose Estimation ™ Object
g & Tracking ID & Pose

Camera




Early Object Perception

Convert 2D photo to 3D model Categorical 3D shape models: GC, geon  Exact 3D shape models: polyhedron or CAD

perspective projection viewpoint invar ant viewpoint invariant
edge detection, line fitting . textureless ObJe.CtS textureless objects
6-DOF trar’wsform [Binford 71, Brooks 83, Biederman 85, [Lowe 8/, Thompson and Mundy 87,
Dickinson et al. 92, ...] Huttenlocher and Ullman 90, , ...]

[Roberts 65]

Categorical 2D appearance model:
spatial models with local appearance features
viewpoint dependent

Exemplar 2D appearance model: 2D templates
viewpoint dependent

textured objects
[Murase and Nayar 95, Ohba and lkeuchi 97,
Black and Jepson 98, ...]

textured objects with clutter and occlusion
[Lowe 99, Mikolajczyk and Schmid 04,
Fei Fel et al. 06, Fergus et al. 07/, ...]



State of the Art

[Collet et al., [|RR| ] [Hinterstoisser et al.,, PAMI'| | ]
SIftGPU feature Template Matching

Sparse 3D keypoint models Combine image gradients and surface normals
Can handle untextured objects

lterative Clusterin
5 ® Require large amount of templates

® Require well textured objects (e.g. 2000)

® Coarse pose estimation
® Cannot handle textureless

. ® Produce jitter noises in pose estimates
objects

[Aldoma et al.,, ICCV workshop’l |]

[Lai et al, AAAI'l I] [Klem et al, BMVC’06]

Table-top assumption Particle Filter

Object segmentation

Arbitrary shaped object
+ CVFH/kernel descriptors

® Require a given starting pose
® Require planar background

| | ® Do not address challenging cases
® Hard in cluttered environment




Remained Challenges

|, Object with and without Textures
2. Background Clutter

3. Object Discontinurties

4. Real-time Constraints




Challenge 1: Texture

Handling both textured and textureless objects

® [extured objects

® Photometric: color, keypoints, edges or textures from surfaces

® [extureless objects

® Geometric; point coordinates, surface normals, depth discontinurties



Challenge 2: Clutter

4 ‘ BRE
Controlled environments Unstructured environments

® False measurements
® False pose estimates
Difficulties = Degree of Clutter . -
® Stuck In local minima

® No table-top assumption



Challenge 3: Discontinuities

Occlusions OJt of FOV

® Ideal vs Reality
® Occluded by other objects, human, or robots
® Object goes out of the camera’s field of view
® Blurred in images

® Re-initialization problem



Challenge 4: Real-time

4

ol
e

® Constrained by timing limitations

® Scarcely see real-time state-of-the-art



Definition and Scope 1

object Instance recognition
monocular

or RGB-D

6-DOF pee.
and tracking

Model-based Visual Object Perception

N Unstructured Environments

3D mesh models cluttered &
ob). discontinurties



Definition and Scope 2

photometric image intensity, color, edges from
formation in 2D texture, keypoint descriptors, ...

& Visual features: Photometric & Geometric

3D geometric shapes

depth points, edges from geometric shapes,
iIne segments, planes, normals, ...
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Motivations

Known 3D object model was strong assumption

3D object models have been accumulated on the Internet!

| 4
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sbireconstruction’ 3d reconstructi
surface normals) (L.N shaded)

3D modeling will be a task with Kinect!



Motivations

? 24 million Kinects sold

Depth sensors are cverywherel

'.

Occiprtal, Inc .’ Google Project Tango Apple + PrimeSense




AUTODESK
123D CATCH

/\ AUTODESK.

[ AUTODESK 123D CATCH ]

3D modeling will be a trivial task even with a mobile phone!
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Motivations

Promising in Robotics
exist in 3D space

iNnteract with 3D world

3D data is significant information for robots

Advantages

Foreground object segmentation is trivial

Employ various features from
(3D models and 3D scene depth)



Thesis Statement

»
»*
-
5
To close the loop between the of early computer vision
and the currently dominating , both and
features need to be considered.
The of these features enables object perception
algorithms not only to be but also to handle an
using based on
combined features are contributed In this thesis.
These new frameworks are to significant and ,
and are therefore solutions for visual object perception in

environments.
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Approaches

photometric geometric
® )D Visual Informaticn (Monocular Camera)

® Combining Keypoint and Edge Features
(CRAO, ICRAT L IJRRTT2]

® bxtending to Textureless Objects
IROS2]

® 3D Visual Information (RGB-D Camera)

® \/oting-based Pose Estimation using Pair Features
[ICRA'I 2, IROS'[ 2]

® Object Pose Tracking
[IROS| 3]
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2D Monocular > Combining Keypoint and Edge Features [I[CRA'IO, ICRA'I || I[RR" 2]

Related Work

Edge-based approaches
Cheap to extract edges (real-time)
Applicable to textureless objects
¢ Not distinctive enough

® Might be stuck in local minima

Keypoint-based approaches
Good for inrtialization

Invariant to scale and rotation

® Only applicable to textured objects

[Lowe, JCV'04] [Gordon, 06] [Collet, [RR"[ 1] ° Computationally expensive

Complementary === Combining
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2D Monocular > Combining Keypoint and Edge Features [ICRA' (0]

Overview

Monocular Camera —>

Image
Acquisition ~TTTTTTTTTTTTTOOC :
]
\/
Edge Model ---p Keypoint
Detection Rendering --. CAD Model E Matching
l i
l +_l i i i
! : v
Pose :
Error | Pose
Calculation deate : Keyframes Estimation
with IRLS |
]
]

Local Pose Estimation Global Pose Estimation
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2D Monocular > Combining Keypoint and Edge Features [ICRA' 0]

Simplifying CAD Model

Simplifying
(@/2\D)

® Original CAD models are too complex.

® Most edges in CAD do not appear in the real edge image.

® \We should simplify in some way.
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2D Monocular > Combining Keypoint and Edge Features [ICRA' 0]

Salient Edges

Sharp Edge Dull Edge

B 1 if ]nil-niZISTs
I(edge;) = { 0 otherwise

® [Jse face normal vectors

® Automatically determine salient edges which are more likely to be visible in images

25



model rendering

.Our approach keypoint only




2D Monocular > Combining Keypoint and Edge Features [I[CRA'IO, ICRA'I || I[RR" 2]

Limitation

® Single pose hypothesis

® Wrong prior pose = not converging
to global optimum

® Ambiguous edges
® Stuck in local minima
® Highly cluttered environment

® Occlusions

Multiple pose hypotheses

Particle Filtering

27



2D Monocular > Combining Keypoint and Edge Features [ICRA'I [, []RR"[ 2]

Related Work

Particle Filtering using Edges

| sard, lJCV'98] Condensation in 2D Pupilli, ICPR706] PF for 3D edge-based tracking

7
€.
Z,le
i’

[Klein, BMVC’06] PF for complex object tracking | leuliere, ICRAI0] Multiple edge correspondences
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2D Monocular > Combining Keypoint and Edge Features [ICRA'| || [JRR"| 2]

Contributions
-
Gliven starting pose Initialization
Gausslan random walk AR(1) state dynamics

No re-initialization Auto re-inrtialization
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2D Monocular > Combining Keypoint and Edge Features [ICRA'I [, []RR"[ 2]

Initialization

A4 ' / . 7
R G A S P
4 - s .

Keyframe (image, 2D & 3D keypoints) Input imaéé”
Initialize the particle filter using keypoints

® Given /[D-3D) keypoints correspondences

® andomly choose a set of minimum correspondences

® Solve PnP” problem to estimate candidate poses

® \/\eiohts proportional to inlier ratio of remaining correspondences

® |mportance sampling
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2D Monocular > Combining Keypoint and Edge Features [ICRA'| || [JRR"| 2]

AR Dynamics

Xy = Xi1 -exp(Ai—1 + dW VAL,
At—l — CLlOg(Xt__12Xt_1)

® |nstead of Gaussian random walk models
® | inear based on previous states

o particles more
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2D Monocular > Combining Keypoint and Edge Features [ICRA'I [, []RR"[ 2]

Re- 1n1tlahzat10n

— 1

Nefr = =N

> imy (V)2

Fffective number of particle size

100

eff
|

WWMM

400 600 800 1 OOO 1 200 1400
Frame number
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2D Monocular > Combining Keypoint and Edge Features [||RR'[ 2]

Experiments

The synthetic image sequence of the The synthetic image sequence of the “Car The “Book” obiect
e “Book” objec
“Book” object: complex background case door” object: complex background case .

The real image sequence of the “Teabox” The real image sequence of the “Car door”

The “Car door” object
object object

Single vs. Multiple pose hypotheses with vs. without AR state dynamics Reinrtialization exp.




2D Monocular > Combining Keypoint and Edge Features [||RR'[ 2]

Ours vs. BLORT

l_
L1
1 The synthetic image sequence of the The synthetic image sequence of the
— “Book” object: simple background case “Teabox” object: complex background case
e
Book Teabox
—
< The real image sequence of the “Book™
& object

Book
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Robotic Assembly
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Approaches

® /D Visual Information (Monocular Camera)

® Combining Keypoint and Edge Features
[ICRA'IO, ICRA'I [, I]RR" 2]

® Extending to Textureless Objects
[IROS' 2]

geometric
® 3D Visual Information (RGB-D Camera)

® \/oting-based Pose Estimation using Pair Features
[ICRA'I 2, IROS'[ 2]

® Object Pose Tracking
[IROS| 3]
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2D Monocular > Extending to Textureless Objects [IROS | 2]

Textureless Objects

C D

T
\\\_,

Textureless object Edge template

-

e
- -
- — =

° (or boundaries) are preferred for textureless objects.

® From CAD model to Edge templates
® Cfficient [Liu, CVPR'O]

° from 2D chamfer matching results

® Annealing Process after Initialization
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2D Monocular > Extending to Textureless Objects [IROS | 2]

Edge T[emplates

ul
_y

Cf”

N
T

-y
{

OCNC T
0aDcC

QO

CAD model

U
«@
«0
U

QOIS
QOO

©
©

N

39 Edge Templates



suruwreyy © 4
Results off€ hamtemmMaldelbbnG algor}ﬂﬁa

e

40







Approaches

® )D Visual Information (Monocular Camera)

® Combining Keypoint and Edge Features
(CRAO, ICRA L IJRRT2]

® Fxtending to Textureless Objects
IROS'2]

® 3D Visual Information (RGB-D Camera)

® Voting-based Pose Estimation using Pair Features
[ICRA' 2, IROS' 2]

e Cpject Pose Tracking -
c [IROST3] geometric

photometric

geometrli
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3D RGB-D > Voting-based Pose Estimation using Pair Features [ICRA'| 2]

Lo, (verview

. . N " a J ) i ) ‘ ) -
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3D RGB-D > Voting-based Pose Estimation using Pair Features [ICRA'| 2]

Contributions

® Explorting objects’ boundary information

® B2B,52B,and L2L features
® Better for planar objects
Ll ® Sparser primitives

® More efficient
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3D RGB-D > Voting-based Pose Estimation using Pair Features [ICRA' 2, IROS' 2]

Flowchart

Object Model Pair Feature
CAD Model Point Clouds Extraction

Scene " Pair Feature ™
3D Sensor -ﬁ% B

Point Clouds ks Extraction

Offline
= Online
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3D RGB-D > Voting-based Pose Estimation using Pair Features [ICRA"| 2]

(zeometric Primitives

SIUIO4 92BJING
SIUIO4 AJepunog

SoUIT

AJBPUNOG % 90BLING
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3D RGB-D > Voting-based Pose Estimation using Pair Features [ICRA'| 2]

Pair Features
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3D RGB-D > Voting-based Pose Estimation using Pair Features [ICRA"| 2]

Object Learning

S .
/ ¢
o,

CAD model
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3D RGB-D > Voting-based Pose Estimation using Pair Features [ICRA' 2, IROS' 2]

Flowchart

Object Model Pair Feature
CAD Model Point Clouds Extraction

Scene " Pair Feature ™
3D Sensor -ﬁ% B

Point Clouds ks Extraction

Offline
= Online
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3D RGB-D > Voting-based Pose Estimation using Pair Features [ICRA' 2, IROS' 2]

Why Voting?

o Low dimensional palir features: 510 or 40D

¢ One scene pair feature = [Many model pair
features

® Self symmetric regions
® Noise

® Background clutter

® Voling procedure to overcome the ambiguities

¢ Maximum votes = the most likely pose hypothesis
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3D RGB-D > Voting-based Pose Estimation using Pair Features [ICRA"| 2] True Positives

Re al SC an ) False Positives

S2S B2B S2B L2L
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3D RGB-D > Voting-based Pose Estimation using Pair Features [ICRA"| 2]

Processing 11me

TABLE 1
AVERAGE NUMBERS OF PAIR FEATURES IN THE SYNTHETIC SCENE
DATASET AND RELATIVE PROCESS TIME.

Feature Number of Features Relative Process Time'
P \ S2S [23] 23040000 (= 4800 x 4800) 3.21
4 N B2B 2616953 (~ 1618 x 1618) 1.00
n S2B 7689280 (~ 4800 x 1602) 1.20
2L 121058 (= 348 x 348) 1.03

" The fastest method, B2B, 1s shown as one.

® Qur palr features are and
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3D RGB-D > Voting-based Pose Estimation using Pair Features [IROS'| 2]

Exploiting Color Info.

1 o Industrial parts

o | ow texture or textureless

® Boundary information is useful

® Dally objects
® Rich color and texture information

® Explort both color and depth
information
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3D RGB-D > Voting-based Pose Estimation using Pair Features [IROS' | 2]

Color Point Pair Feature

n;
L;
Ja
. k
1P, Cj} d {pi.c;}
f8:10 — Cj f1 — sz — ijQ f5:7 — G
= [|d||2

® PPF (Drost et al.): 4 dmensional

® CPPF (proposed): |0 dimensional
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3D RGB-D > Voting-based Pose Estimation using Pair Features [IROS' | 2]

Why Color Points?

Ly B~ g

Model Point Pair

To unnecessary feature matching

® Point Pair Feature ® Color Point Pair Feature

® Objects having rich variations in

® Prune potentially false matches
surface normals

pbased on color similarity

® Inefficient for planar or self- o LSV co
symmetric objects COIOr space

® False matching from background ® More efficient because
clutter unnecessary votes are skipped
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3D RGB-D > Voting-based Pose Estimation using Pair Features [IROS'| 2]

Parallel Implementation

® parallel NVIDIA Thrust lib

® reduction
® counting

® partrtion

® binary search

® sorting

57



3D RGB-D > Voting-based Pose Estimation using Pair Features [IROS'| 2]

Test Ob]ects

¥ !

Clorox Flash

MVG Book

Orange Juice Pringles  Starbucks Mug Tide Wrench
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3D RGB-D > Voting-based Pose Estimation using Pair Features [IROS' | 2]

Performance Evaluation

Dataset

(Gaussian noise

Compared Approaches

Hinterstoisser et al., PAMI'| |
with/without ICP

Papazov et al,, |RR"[2 Drost et al., CVPR'IO
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3D RGB-D > Voting-based Pose Estimation using Pair Features [IROS™ 2]

Dataset: (Gaussian noise




3D RGB-D > Voting-based Pose Estimation using Pair Features [IROS'| 2]

Results: (Gaussian nois
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3D RGB-D > Voting-based Pose Estimation using Pair Features [IROS'| 2]

Cluttered Scenes




3D RGB-D > Voting-based Pose Estimation using Pair Features [IROS'| 2]

Estimation Results

B i % - — X : e
a, Ra Q e R Y AN e e
- ¢ Bz 1 | \és‘ 2 A oy ’ { | : A RN i :

Hinterstoisser et al. without [ |] and with ICP [2], Papazov et al. [3], Drost et al. [4], and ours [5]
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Approaches

® /D Visual Information (Monocular Camera)

® Combining Keypoint and Edge Features
(CRAO, ICRA L IJRRT2]

® xtending to Textureless Objects
1ROS' 2]

® 3D Visual Information (RGB-D Camera)

® \/oting-based Pose Estimation using Pair Features
[ICRA'I 2, IROS' 2]

® Object Pose Tracking
[IROS™| 5]
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3D RGB-D > Object Pose Tracking [IROS'| 3]

Motivations

® Posterior p.d.. as a set of weighted particles
® 50w frame rate due to a serial likelihood evaluation of particles
® |nherently parallel algorithm

® cach particle weight update I1s Independent of other updates

lo parallelize the time-consuming likelihood evaluation
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3D RGB-D > Object Pose Tracking [IROS'| 3]

Contributions

® Rich features from RGB-D channels
(colors, points, normals)

) ® Frame Buffer Object (FBO) in OpenGL
‘ & CUDA OpenGL interoperability

® Multiple object rendering
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3D RGB-D > Opbject Pose Tracking [IROS'| 3]

Related Work

7))
QO
oY1)
O
LI
Condensation in 2D
Frame 1 Frame 2
>
+
7))
-
5 (g
_|_)
<

Simple PF on GPU Fast PF using CUDA

Employ features: depth, normals, and color
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3D RGB-D > Opbject Pose Tracking [IROS'| 3]

Likelihood Evaluation
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3D RGB-D > Object Pose Tracking [IROS'| 3]

L1kel1hood Evaluation

RGB-D scene | | rendered object a point in My

p(ZdX" M) = [ ple” 1% my?)
(2,5)€A
n-th pose a point in Z;

A = {(i,§)| proj(x(z")) = proj(X{™ - x(m{’)))}
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3D RGB-D > Object Pose Tracking [IROS'| 3]

Distance functions

fxexel il <7
de(X1,X2) = { 1 otherwise

Euclidean distance

cos”t(n{ny — 1)

dn(n17n2) — o

Normal distance

dc(ChCz) — HC1 — CQH
Color distance
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3D RGB-D > Opbject Pose Tracking [IROS'| 3]

Likelihood Evaluation

p(ZX{" M) = [] p”1X{"”, my”)
(4,7)€A

1 n ' X d (x(z () o (1 (9)
p(Z§)|X§ )7m§3)) — €XP Aede(x(2zy "), X4 (m;""))

Cexp~Andn(n(z;), X" on(mi?))

expAerde(e(@”), cmi”)
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3D models on the Web
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Conclusions

® (Contributed toward robust object perception in unstructured environments

Four challenges

object perception regardless of the combined photometric and geometric
degree of texture features

highly cluttered backgrounds multiple pose hypotheses frameworks
object discontinurties combined pose estimation and tracking

real-time constraints parallelized on GPU
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To close the loop betweer the ccometric era of early computer vision
and the currently dominit'ng appearance age, both photometric and
ocometric features n=ed to be considered.

The combination of *nese features enables object perception
algorithms not on!y to be more effective but also to handle an
increased spectim of objects.

Two theoretical frameworks using multiple pose hypotheses based on
combined features are contributed in this thesis.

These new frameworks are robust to significant clutter and occlusions,
and are therefore efficacious solutions for visual object perception in
unstructured environments.
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Future Work

® Object model adaptation
® Object modeling

® Multi-object tracking

® Scalable object perception

® Object categorization
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3D RGB-D > Voting-based Pose Estimation using Pair Features [ICRA'| 2, IROS™ 2]

Voting Scheme I

_Ts—>gR ( )Tmﬁgm@

® 2D accumulator space: (m,., «)

e §$/§,B2B, and $/B share the same transform
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3D RGB-D > Voting-based Pose Estimation using Pair Features [ICRA"| 2]

Voting Scheme 11

LB
o
c, .
o’ L
l

* 3D accumulator space: (0™, ar, T)
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3D RGB-D > Voting-based Pose Estimation using Pair Features [ICRA"| 2]

Real Scan: $2B feature




3D RGB-D > Voting-based Pose Estimation using Pair Features [IROS™ 2]

Dataset: MOS
o

49&5&
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3D RGB-D > Voting-based Pose Estimation using Pair Features [IROS'| 2]

Result

L or 14 wé
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[1]
2] -ef >
[3]
[4]
[5]

Hinterstoisser et al. without [ |] and with ICP [2], Papazov et al. [3], Drost et al. [4], and ours [5]



3D RGB-D > Voting-based Pose Estimation using Pair Features [IROS'| 2]

Dataset: SOMI
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3D RGB-D > Voting-based Pose Estimation using Pair Features [IROS'| 2]

sults

i |\|

\I l“ I ' ‘\II lI

Hinterstoisser et al. without [ |] and with ICP [2], Papazov et al. [3], Drost et al. [4], and ours [5]



