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Introduction

• Pick-and-place task	



• Robots moving from controlled settings to unstructured environments	



• Robust object perception is crucial



3D  
Object Models

Pose Estimation 
& Tracking

Object  
ID & PoseImageCamera

Problem Formulation
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14 Murase and Nayar 

(a) 

(b) 

Fig. 5. (a) An input image. (b) The image is mapped to a point in object eigenspace. The location of the point on the 
parametric curve determines the pose of the object in the image. 

was shown in Figure 4. The pose of the object in 
this image lies in between two consecutive poses 
used in the learning stage. In Figure 5(b), the 
input image is mapped to the object eigenspace 
and is seen to lie close to the parametric curve 
of the object. 

Mapping an input image to universal and ob- 
ject eigenspaces is computationalty simple. As 
mentioned earlier, the eigenspaces are typically 
less than 20 in dimensions. The projection of an 
input image to a 20-dimensional space requires 
20 dot products of the input image with the or- 
thogonal eigenvectors that constitute the space. 
This procedure can easily be done in real-time 
(frame rate of a typical image digitizer) using 
simple and inexpensive hardware. 

Once the image has been projected to an 
eigenspace, we need to find the manifold point 
that is closest to it. One approach is to use 
an exhaustive search algorithm that computes 
the distance of the input point from a large 
number of points uniformly sampled from the 
parametrized manifolds. This is clearly ineffi- 
cient both in memory and time; all the sampled 
manifold points need to be stored, and the Eu- 
clidean distance of the input point with respect 
to each manifold point must be computed. The 

computational complexity is O(kn) where n is 
the number of manifold points and k is the di- 
mensionality of the eigenspace. 

We have implemented two alternative schemes. 
The first is an efficient technique for binary 
search in multiple dimensions (Nene and Nayar 
1994). This algorithm uses a carefully designed 
data structure to facilitate quick search through 
the multi-dimensional eigenspace in O(k log 2 n). 
This approach is particularly effective when the 
number of manifold points is relatively small. 
The second approach (Mukherjee and Nayar 
1990) uses three-layered radial basis function 
(RBF) networks proposed by Poggio and Girosi 
(Poggio and Girosi 1991) to learn the mapping 
between input points and manifold parameters 
(object number and pose). The complexity of 
this method depends on the number of networks 
used and their sizes, and is in practice compara- 
ble to that of the binary search approach. Such a 
network implicitly interpolates, or reconstructs, 
manifolds from the discrete eigenspace points 
gO,) and f(P) and therefore does not require r,l Ar, l 
the use of cubic spline interpolation followed 
by the resampling of manifolds. This advantage 
however comes with a slight sacrifice in pose 
estimation accuracy. 

(a) (b)

(c) (d)

Figure 6: Murase and Nayar’s appearance-based (view-based) recognition
system [166]: (a) a database of objects; (b) a dense set of views is acquired
for each object; (c) the views trace out a manifold in low-dimensional space,
with each view lying on the manifold; (d) recognizing a query object (im-
ages reproduced from [166] with permission of the International Journal of
Computer Vision, Springer).

selves. The resulting systems could therefore recognize only exemplar ob-
jects – specific objects that had been seen at training time. Despite a number
of serious initial limitations of this approach, including difficulties in dealing
with background clutter, illumination change, occlusion, translation, rota-
tion, and scaling, the approach gained tremendous popularity, and some of
these obstacles were overcome [142, 49, 21, 141, 19]. But the templates were
still global, and invariance to scale and viewpoint could not be achieved.

To cope with these problems, the current decade (2000’s) has seen the
appearance model community turn to the same principles adopted by their
shape-based predecessors: a move from global to local representations (parts),
and the use of part representations that are invariant to changes in trans-
lation, scale, image rotation, illumination, articulation, and viewpoint, e.g.,
[154, 155, 261, 262, 50, 1, 53, 52, 161, 137, 130, 210]. While early systems
characterized collections of such features either as overly rigid geometric
configurations or, at the opposite extreme, as unstructured “bags”, later
systems, e.g., [209, 256, 51, 52, 89, 90, 82, 87, 189], added pairwise spatial
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6 Mundy

Fig. 1. A system for recognizing 3-d polyhedral scenes. a) L.G. Roberts. b)A blocks
world scene. c)Detected edges using a 2x2 gradient operator. d) A 3-d polyhedral
description of the scene, formed automatically from the single image. e) The 3-d scene
displayed with a viewpoint different from the original image to demonstrate its accuracy
and completeness. (b) - e) are taken from [64] with permission MIT Press.)

and then recreating a copy of the structure from a pile of unordered blocks.
This task required recognition as well as an analysis of stability and hand-eye
coordination. A similar achievement for a recognition system of the modern era
does not come readily to mind.

What the blocks world didn’t confront The blocks world avoided numerous
difficulties such as:

– curved surfaces and boundaries;
– articulated and moving objects;
– occlusion by unknown shapes;
– complex background and 3-d texture such as foliage;
– specular or mutually illuminating surfaces;
– multiple light sources and remote shadowing;
– transparent or translucent surfaces.

The blocks world was extended in various ways to begin coping with these con-
ditions. An early exploration of the issues that arise in the recognition of generic
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Categorical 3D shape models: GC, geon  
viewpoint invariant 
textureless objects 

[Binford 71, Brooks 83, Biederman 85,  
Dickinson et al. 92, …]

Exemplar 2D appearance model: 2D templates 
viewpoint dependent 

textured objects 
[Murase and Nayar 95, Ohba and Ikeuchi 97,  

Black and Jepson 98, …]

Object Recognition Retrospective 9

Fig. 4. Recognition by generalized cylinder parts. a) Ram Nevatia. b) An intensity
image of a coffee pot. c) Automatically grouped and classified GC parts. (b) and c) are
taken from [85] with permision.)

tem could essentially prove theorems concerning the existence of a parameterized
GC configuration with associated tolerances. The system was called ACRONYM
to avoid deriving a contrived name for the system, since ACRONYM is cleverly
self-referential 2. The Defense Advanced Projects Agency (DARPA) and the Cen-

Fig. 5. The SCORPIUS project. a) A submarine at dock. b)An ACRONYM generalized
cylinder model for the scene in a).

tral Intelligence Agency (CIA) established a classified project to use ACRONYM
to recognize targets such as submarines as illustrated in Figure 5. The goal was
to assist strategic intelligence analysts that monitor military installations using
aerial photography. The project, called SCORPIUS, was designed to exploit var-

2 Binford’s next generation system was called SUCCESSOR [9], thus eliminating the
need for any future acronyms.

Exact 3D shape models: polyhedron or CAD  
viewpoint invariant 
textureless objects 

[Lowe 87, Thompson and Mundy 87,  
Huttenlocher and Ullman 90, , …]

Categorical 2D appearance model: 
spatial models with local appearance features 

viewpoint dependent 
textured objects with clutter and occlusion  

[Lowe 99, Mikolajczyk and Schmid 04,  
Fei Fei et al. 06, Fergus et al. 07, …]

Weakly Supervised Scale-Invariant Learning of Models for Visual Recognition 281

Figure 2. Six typical motorbikes images with the output of the Kadir-Brady operator overlaid. The +’s illustrate the centre of the salient region,
while the circles show the scale of the region. Notice how the operator fires more frequently on more salient regions, ignoring the uniform
background present in some of the images.

discussed above. The goal is to find the parameters
θ̂M L which best explain the data X, S, A from all
the training images, that is maximize the likelihood:
θ̂M L =arg maxθ p(X, S, A| θ f g). Note that the param-
eters of the background, θbg , are constant during learn-
ing.

Learning is carried out using the expectation-
maximization (EM) algorithm Dempster et al. (1976)
which iteratively converges, from some random initial
value of θ f g to a maximum (which might be a local
one).

We now look at each stage in the learning procedure,
giving practical details of its implementation and per-
formance, using the motorbike dataset as an example.
We assume that X, S, A have already been extracted
from the images, examples of which are shown in Fig.
2. In this example, we are using the gradient based PCA
representation, with k = 11 and l = 15.

3.1. Initialization

Initially we have no knowledge about the structure of
the object to be learnt so we are forced to initialize
the model parameters randomly. However, the model
which has a large number of parameters, must be ini-
tialized sensibly to ensure that the parameters will con-
verge to a reasonable maximum. For shape, the means
are set randomly over the area of the image and the co-
variances to be large enough so that all hypotheses have

a roughly equal weighting, so avoiding a bias toward
nearby points. The appearance densities are initialised
to zero mean, plus a small random perturbation, while
the variances are set to be large. The same initializa-
tion settings are used in all experiments. In Fig. 3 we
show three typical model initializations of the shape
term (the appearance term is hard to visualize due to
the large number of dimensions).

3.2. EM Update Equations

The algorithm has two stages: (i) the E-step in which,
given the current value of θ f g at iteration k, θ k

f g , some
sufficient statistics are computed and (ii) the M-step
where we compute the parameters for the next iteration,
θ k+1

f g using these sufficient statistics.
We now give the equations for both the E-step and

M-step. The E-step requires us to compute the pos-
terior density of the hidden variables, which in our
case are the hypotheses. This is calculated using the
joint:

p
(
h|X, S, A, θ k

f g

)
=

p
(
X, S, A, h| θ k

f g

)
∑

h∈H p
(
X, S, A, h| θ k

f g

)

=
p(X,S,A,h| θ k

f g)
p(X,S,A,h0| θbg)

∑
h∈H

p(X,S,A,h| θ k
f g)

p(X,S,A,h0| θbg)

(17)

Convert 2D photo to 3D model 
perspective projection  

edge detection, line fitting 
6-DOF transform  

[Roberts 65]



State of the Art

[Klein et al., BMVC’06]

• SiftGPU feature	



• Sparse 3D keypoint models	



• Iterative Clustering	



• Require well textured objects	



• Cannot handle textureless 
objects

• Template Matching	



• Combine image gradients and surface normals	



• Can handle untextured objects	



• Require large amount of templates 
(e.g. 2000)	



• Coarse pose estimation	



• Produce jitter noises in pose estimates

[Collet et al., IJRR’11] [Hinterstoisser et al., PAMI’11]

• Table-top assumption	


• Object segmentation  

+ CVFH/kernel descriptors	



• Require planar background	



• Hard in cluttered environment

[Aldoma et al., ICCV workshop’11]

• Particle Filter	



• Arbitrary shaped object	



• Require a given starting pose	



• Do not address challenging cases
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Fig. 1. Recognition of real-world scenes. (Top) High-complexity
scene. MOPED finds 27 objects, including partially occluded,
repeated and non-planar objects. Using a database of 91 models
and an image resolution of 1,600 × 1,200, MOPED processes
this image in 2.1 seconds. (Bottom) Medium complexity scene.
MOPED processes this 640 × 360 image in 87 ms and finds
all known objects (the undetected green soup can is not in the
database).

rate. Related is the issue of repeated objects: the match-
ing ambiguity introduced by repeated instances of an object
presents an enormous challenge for robust estimators, as the
matched features might belong to different object instances
despite being correct. Solutions such as grouping (Lowe
1987), interpretation trees (Grimson 1991) or image space
clustering (Collet et al. 2009) are often used, but false pos-
itives often arise from algorithms not being able to handle
unexpected scene complexity. Figure 1 shows an example of
an image of high complexity and multiple repeated objects
correctly processed by MOPED.

The second problem is that of scalability and system
latency. In systems that operate online, a trade-off between
recognition performance and latency must be reached,
depending on the requirements for each specific task. In
robotics, the reaction time of robots operating in dynamic
environments is often limited by the latency of their
perception (see, e.g., Srinivasa et al. 2010; WillowGarage
2008). Increasing the volume of input data to process (e.g.
increasing the image resolution, using multiple cameras)
usually results in a severe penalty in terms of processing
time. Yet, with cameras getting better, cheaper, and smaller,

Fig. 2. Object grasping in a cluttered scene using MOPED. (Top)
Scene observed by a set of three cameras. (Bottom) Our robotic
platform HERB (Srinivasa et al. 2010) in the process of grasping
an object, using only the pose information from MOPED.

multiple high-resolution views of a scene are often easily
available. For example, our robot HERB has, at various
times, been outfitted with cameras on its shoulder, in the
palm, on its ankle-high laser, as well as with a stereo pair.
Multiple views of a scene are often desirable, because they
provide depth estimation, robustness against line-of-sight
occlusions, and an increased effective field of view. Figure
2 shows MOPED applied on a set of three images for grasp-
ing. Also, the higher resolution can potentially improve the
recognition of complicated objects and the accuracy of pose
estimation algorithms, but often at a steep penalty cost, as
the extra resolution often causes an increase in the number
of false positives as well as severe degradation in terms of
latency and throughput.

In this paper, we address these two problems in model-
based 3D object recognition through multiple novel con-
tributions, both algorithmic and architectural. We provide
a scalable framework for object recognition specifically
designed to address increased scene complexity, limit false
positives, and utilize all computing resources to provide
low-latency processing for one or multiple simultaneous
high-resolution images. The Iterative Clustering Estimation
(ICE) algorithm is our most important contribution to han-
dling scenes with high complexity while keeping latency
low. In essence, ICE jointly solves the correspondence and
pose estimation problems through an iterative procedure.
ICE estimates groups of features that are likely to belong
to the same object through clustering, and then searches for
object hypotheses within each of the groups. Each hypoth-
esis found is used to refine the feature groups that are likely
to belong to the same object, which in turn helps in finding
more accurate hypotheses. The iteration of this procedure
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Gradient Response Maps for Real-Time
Detection of Texture-Less Objects

Stefan Hinterstoisser, Cedric Cagniart, Student Members, IEEE, Slobodan Ilic, Peter Sturm,
Nassir Navab, Pascal Fua, Members, IEEE, and Vincent Lepetit

Abstract—We present a method for real-time 3D object instance detection that does not require a time consuming training stage,
and can handle untextured objects. At its core, our approach is a novel image representation for template matching designed
to be robust to small image transformations. This robustness is based on spread image gradient orientations and allows us to
test only a small subset of all possible pixel locations when parsing the image, and to represent a 3D object with a limited set of
templates. In addition, we demonstrate that if a dense depth sensor is available we can extend our approach for an even better
performance taking also 3D surface normal orientations into account. We show how to take advantage of the architecture of
modern computers to build an efficient but very discriminant representation of the input images that can be used to consider
thousands of templates in real-time. We demonstrate in many experiments on real data that our method is much faster and more
robust with respect to background clutter than current state-of-the-art methods.

Index Terms—Computer Vision, Real-Time Detection and Object Recognition, Tracking, Multi-Modality Template Matching
!

REAL-TIME object instance detection and learning
are two important and challenging tasks in Com-

puter Vision. Among the application fields that drive
development in this area, robotics especially has a
strong need for computationally efficient approaches,
as autonomous systems continuously have to adapt to
a changing and unknown environment, and to learn
and recognize new objects.
For such time-critical applications, real-time tem-

plate matching is an attractive solution because new
objects can be easily learned and matched online, in
contrast to statistical-learning techniques that require
many training samples and are often too computation-
ally intensive for real-time performance [1], [2], [3],
[4], [5]. The reason for this inefficiency is that those
learning approaches aim at detecting unseen objects
from certain object classes instead of detecting a priori
known object instances from multiple viewpoints. The
latter is tried to be achieved in classical template
matching where generalization is not performed on
the object class but on the viewpoint sampling. While
this is considered as an easier task, it does not make
the problem trivial, as the data still exhibit significant
changes in viewpoint, in illumination and in occlusion
between the training and the runtime sequence.
When the object is textured enough for keypoints to

be found and recognized on the basis of their appear-

• S. Hinterstoisser, C. Cagniart, S. Ilic and N. Navab are with the De-
partment of Computer Aided Medical Procedures (CAMP), Technische
Universität München, Garching bei München, Germany, 85478.
E-mail: {hinterst,cagniart,Slobodan.Ilic,navab}@in.tum.de

• V. Lepetit and P. Fua are with the Computer Vision Lab (CVLAB),
Ecole Polytechnique Fédérale de Lausane, 1015 Lausanne, Switzerland.
E-mail: {vincent.lepetit,pascal.fua}@epfl.ch

• P. Sturm is with the STEEP Team, INRIA Grenoble–Rhône-Alpes,
38334 Saint-Ismier Cedex, France
E-mail: Peter.Sturm@inrialpes.fr

Fig. 1: Our method can detect texture-less 3D objects in
real-time under different poses over heavily cluttered back-
ground using gradient orientation.

ance, this difficulty has been successfully addressed
by defining patch descriptors that can be computed
quickly and used to characterize the object [6]. How-
ever, this kind of approach will fail on texture-less
objects such as those of Fig. 1, whose appearance is
often dominated by their projected contours.
To overcome this problem, we propose a novel

approach based on real-time template recognition for
rigid 3D object instances, where the templates can
both be built and matched very quickly. We will show
that this makes it very easy and virtually instanta-
neous to learn new incoming objects by simply adding
new templates to the database while maintaining
reliable real-time recognition.
However, we also wish to keep the efficiency and

robustness of statistical methods, as they learn how to
reject unpromising image locations very quickly and

Figure 3: Selected frames from tracked sequences with rendered posterior distributions;
the first iteration is shaded gray to green, the second red. On the left, a single correctly-
aligned particle allows the filter to converge on the correct pose. Center, the posterior
diverges along the direction of motion blur as the camera pans rapidly. The filter re-
converges when the blur eases. Right, the filter recovers from a misaligned pose.

in any way. Since the rotation estimates produced by the visual gyroscope are sometimes
erroneous, a single-hypothesis system fails to track this sequence.

A further comparative test was performed on a sequence of the maze model tracked
successfully in [6]. This difficult sequence in a highly textured environment with many
parallel edges was not trackable at 30Hz. Even if the number of particles is raised to 500,
tracking remains fragile and tends to fail. The poor performance is presumably partially
due to the camera motion, which is smooth but rapid (and thus suited for a constant
velocity model rather than the one used here); further, [6] uses a texture change-point
edge detector rather than the high intensity gradient model used here.

5 Conclusions
This paper has demonstrated a particle-filter-based edge tracker capable of tracking com-
plex 3D objects with self-occlusions. Tracking can be performed at video rate by exploit-
ing hardware acceleration to perform hidden line removal and likelihood calculations.

The particle filter has robustness advantages over previous systems, particularly when
exposed to rapid, unpredictable accelerations. Further, the flexibility of the particle filter
allows the integration of a wide range of motion models, which is exploited here by utilis-
ing a fast but noisy visual gyroscope. A disadvantage of the proposed system is increased
jitter in stationary scenes. Further, the simple likelihood model dictated by real-time con-
straints makes the integration of more advanced edge detection [16, 6] difficult.

Future work will attempt to improve the pose estimates selected for rendering, since
neither mean nor mode of the posterior are satisfactory. Further, accuracy improvements
could be likely obtained by performing per-particle optimisation (cf. FastSLAM 2.0 [10])
with the edge models. This is unlikely to be possible in real-time on current hardware but
may well be feasible in the near future.
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1. Object with and without Textures	


2. Background Clutter	


3. Object Discontinuities	


4. Real-time Constraints



Challenge 1: Texture

8

•Textured objects	



• Photometric: color, keypoints, edges or textures from surfaces	



•Textureless objects	



• Geometric: point coordinates, surface normals, depth discontinuities

Handling both textured and textureless objects



Challenge 2: Clutter
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•False measurements	



•False pose estimates	



•Stuck in local minima	



•No table-top assumption

Controlled environments Unstructured environments

Difficulties = Degree of Clutter



Challenge 3: Discontinuities
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• Ideal vs Reality	



•Occluded by other objects, human, or robots	



•Object goes out of the camera’s field of view	



•Blurred in images	



•Re-initialization problem

BlurOut of FOVOcclusions



Challenge 4: Real-time
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•Constrained by timing limitations	



•Scarcely see real-time state-of-the-art



Definition and Scope 1
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3D mesh models

Model-based Visual Object Perception	



in Unstructured Environments

object instance recognition

6-DOF p.e.  
and tracking

monocular 
or RGB-D

cluttered &  
obj. discontinuities



Definition and Scope 2

13

3D geometric shapes

Visual features: Photometric & Geometric

intensity, color, edges from 
texture, keypoint descriptors, …

photometric image 
formation in 2D

depth points, edges from geometric shapes, 
line segments, planes, normals, …



Motivations
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3D object models have been accumulated on the Internet!

Known 3D object model was strong assumption



Google 3D warehouse	



(about 2.5 million models)

Motivations



Motivations
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3D modeling will be a trivial task with Kinect!

[Izadi et al., SIGGRAPH Talks 2011]



Motivations
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Depth sensors are everywhere!

24 million Kinects sold

Google Project Tango Apple + PrimeSenseOccipital, Inc



Motivations

18

3D modeling will be a trivial task even with a mobile phone!

[ AUTODESK 123D CATCH ]



Motivations
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• Promising in Robotics	



• exist in 3D space	



• interact with 3D world	



• 3D data is significant information for robots	



• Advantages	



• Foreground object segmentation is trivial	



• Employ various geometric features from 
(3D models and 3D scene depth)



Thesis Statement

• To close the loop between the geometric era of early computer vision 
and the currently dominating appearance age, both photometric and 
geometric features need to be considered. 	



• The combination of these features enables object perception 
algorithms not only to be more effective but also to handle an 
increased spectrum of objects. 	



• Two theoretical frameworks using multiple pose hypotheses based on 
combined features are contributed in this thesis. 	



• These new frameworks are robust to significant clutter and occlusions, 
and are therefore efficacious solutions for visual object perception in 
unstructured environments.

20



Approaches

•2D Visual Information (Monocular Camera)	



•Combining Keypoint and Edge Features 
[ICRA’10, ICRA’11, IJRR’12]	



•Extending to Textureless Objects 
[IROS’12]	


!

•3D Visual Information (RGB-D Camera)	



•Voting-based Pose Estimation using Pair Features 
[ICRA’12, IROS’12]	



•Object Pose Tracking 
[IROS’13]
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Related Work
• Edge-based approaches	



• Cheap to extract edges (real-time)	



• Applicable to textureless objects	



• Not distinctive enough	



• Might be stuck in local minima	


!

• Keypoint-based approaches	



• Good for initialization	



• Invariant to scale and rotation	



• Only applicable to textured objects	



• Computationally expensive

[Harris, 92] [Drummond, PAMI’02]

[Lowe, IJCV’04] [Gordon, 06] [Collet, IJRR’11]
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Overview

Real-time 3D Model-based Tracking Using Edge and Keypoint Features
for Robotic Manipulation

Changhyun Choi and Henrik I. Christensen
Robotics & Intelligent Machines, College of Computing

Georgia Institute of Technology
Atlanta, GA 30332, USA

{cchoi,hic}@cc.gatech.edu

Abstract— We propose a combined approach for 3D real-time
object recognition and tracking, which is directly applicable to
robotic manipulation. We use keypoints features for the initial
pose estimation. This pose estimate serves as an initial estimate
for edge-based tracking. The combination of these two comple-
mentary methods provides an efficient and robust tracking so-
lution. The main contributions of this paper includes: 1) While
most of the RAPiD style tracking methods have used simplified
CAD models or at least manually well designed models, our
system can handle any form of polygon mesh model. To achieve
the generality of object shapes, salient edges are automatically
identified during an offline stage. Dull edges usually invisible in
images are maintained as well for the cases when they constitute
the object boundaries. 2) Our system provides a fully automatic
recognition and tracking solution, unlike most of the previous
edge-based tracking that require a manual pose initialization
scheme. Since the edge-based tracking sometimes drift because
of edge ambiguity, the proposed system monitors the tracking
results and occasionally re-initialize when the tracking results
are inconsistent. Experimental results demonstrate our system’s
efficiency as well as robustness.

I. INTRODUCTION

As robots moves from industrial to daily environments, the
most important problem robots face is to recognize objects
and estimate 6-DOF pose parameters in less constrained
environments. For the last decade, computer vision, robotics,
and augmented reality have all addressed this as a model-
based tracking issue. Most of the work has been based on 3D
CAD models or keypoint metric models. The former models
correspond to edges in an image, which can be efficiently
computed, while the latter models match with keypoints in an
image which are suitable for robust wide baseline matching.
A strategy for using keypoint for pose initialization and
differential methods for pose tracking is presented.

II. RELATED WORK

For the 6-DOF pose tracking, robotics and augmented re-
ality areas have employed a number of different approaches.
One of the easiest way is through use of fiducial markers.
Artificial markers are attached to the object or environment
as camera targets. Although the method provides an easy
and robust solution for real-time pose estimation, attaching
markers has been regarded as a major limitation. Hence,
researchers have focused on tracking using natural features.
For several decades methods, which employ natural fea-
tures, have been proposed: edge-based, optical flow-based,

Image
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Model
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Edge
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Pose 
Update

with IRLS

Error 
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Keyframes
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Pose 
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Fig. 1: Overall system flow. We use a monocular camera. The
initial pose of the object is estimated by using the SURF keypoint
matching in the Global Pose Estimation (GPE). Using the initial
pose, the Local Pose Estimation (LPE) consecutively estimates
poses of the object utilizing RAPiD style tracking. keyframes
and CAD model are employed as models by the GPE and LPE,
respectively. The model are generated offline.

template-based, and keypoint-based. Each method has its
own pros and cons, but surveying every methods in this
paper is out of scope. For an in-depth study of the different
methods, we refer the interested reader to the survey [1].

Among the various methods, we focus on two methods:
edge-based and keypoint-based. The edge features are easy to
compute and computationally cheap. Since the edge is usu-
ally computed by image gradients, it is moderately invariant
to illumination and viewpoint. The keypoint features are also
capable of being invariant to illumination, orientation, scale,
and partially viewpoint. But the keypoints requires relatively
computationally expensive descriptors which maintain local
texture or orientation information around stable points to be
distinctive.

In edge-based methods, a 3D CAD model is usually
employed to estimate the full pose using a monocular cam-
era. Harris [2] established RAPiD (Real-time Attitude and
Position Determination) which was one of the first marker-
less 3D model-based real-time tracking system. It tracks an
object by comparing projected CAD model edges to edges
detected in a gray-scale image. To project the model close
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Simplifying CAD Model

• Original CAD models are too complex.	



• Most edges in CAD do not appear in the real edge image.	



• We should simplify in some way.
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Simplifying 
CAD
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• Use face normal vectors	



• Automatically determine salient edges which are more likely to be visible in images

!"#$%& '%%(

)*+ )#,-.%%,

Fig. 3: Original and simplified CAD models. By using the salient edges selection, we can get a set of good model edges to track.

the corresponding facet of the CAD model. For fast facet
identification, we use ‘Facet-ID’ trick which encodes i-th
facet of the target object’s model in an unique color in order
to identify the membership of each 2D keypoints by looking
up the image buffer that OpenGL renders [11]. The 3D
coordinates of the keypoints are then saved into a file for
later use in keypoint matching.

B. Matching keypoints

After obtaining keyframes offline, keypoint matching is
performed between an input frame and keyframes. A simple
strategy for the matching might use naı̈ve exhaustive search.
However, such a search has O(n2) complexity. Using an
approximate method the complexity can be reduced. As an
approximated search, we use the Best-Bin-First (BBF) algo-
rithm [17] which can be performed in O(n log n). While [18]
and [8] used a fixed number of nearest-neighbors, we set the
number of nearest-neighbors as the number of keyframe + 1.
We use the ratio test described by [8], and the ratio threshold
we used was 0.7. Once the putative correspondences has been
determined, they are further refined using RANSAC [10]. In
each RANSAC iteration, we estimate a homography matrix
and eliminate outliers from the homography matrix. Since
general objects have multiple faces or even curved surface,
using the homography matrix might not be an optimal
solution. It is here assumed that correspondences can be
approximated by a plane to plane transformation. In addition,
the size of objects is relatively small in images, so this
approximation does not limit the number of correspondences.
Another solution would be estimating a camera projection
matrix directly as part of the RANSAC as we know 3D
coordinates of each 2D keypoint, an option that may be
considered in future work. After removing outliers, we then
calculate the 6-DOF pose parameters by using standard least
square estimation. This pose estimate is provided to the LPE
as an initial value.

IV. LOCAL POSE ESTIMATION USING EDGES

In this section, we explain the Local Pose Estimation
(LPE) in which edges are utilized for object tracking.

A. Automatic Salient Model Edges Selection

!"#$%&'()* +,--&'()*

.
!.

" .
"

.
!

Fig. 5: Determining salient edges. We use the face normal vectors
available in the model.

Since most of objects which exist in our daily environment
are manufactured, their CAD models might be available,
and such models provide helpful information for robotic
manipulation. Although there are various formats in CAD
models, most of them can be represented in a polygon
mesh. A polygon mesh is usually composed of vertices,
edges, faces, polygons and surfaces. In the LPE, we use
edge features in images coming from a monocular camera to
estimate the pose difference between two consecutive frames.
So we should determine which edges in the model of a
targeted object would be visible in images. Here we make an
assumption that sharp edges are more likely to be salient. To
identify sharp edges, we use the face normal vectors from the
model. As illustrated in Fig. 5, if the face normal vectors of
two adjacent faces are close to perpendicular, the edge shared
by the two faces is regarded a sharp edge. If two face normal
vectors are close to parallel, the edge is regarded a dull edge.
For the decision, we use a simple thresholding scheme with
the value of the inner product of two normal vectors. More
formally, we can define an indicator function with respect to

Salient Edges
Fig. 4: The flow of the LPE. From the input image, an edge image is obtained using the Canny edge detector, and the CAD model is
rendered with the prior pose. After calculate the error between the projected model and edge image, Iterative Re-weighted Least Square
estimates the posterior pose. The estimated pose is shown in the last image.

the edges in the model by:

I(edgei) =
⇤

1 if |n1
i · n2

i | � �s

0 otherwise

where n1
i and n2

i are the face normal unit vectors of the two
adjacent faces which share the i-th edge, edgei. We found the
threshold �s = 0.3 is a reasonable value. This salient edge
selection is performed fully automatically offline. In general,
the salient edges are only considered in edge-based tracking,
but when the dull edges constitute the object’s boundary they
are also considered. Testing boundary of the dull edges are
performed at run-time using back-face culling.

B. Mathematical and Camera Projection Model
Since our approach is based on the formulation from

Drummond and Cipolla [3], we adopt the Lie Algebra
formulation. In the LPE, our goal is to estimate the posterior
pose Et+1 from the prior pose Et given the inter-frame
motion M :

Et+1 = EtM

where Et+1, Et, and M are 6-dimensional Lie Group of
rigid body motion in SE(3). At time t + 1, we know the
prior pose Et from the GPE or the previous LPE. Hence we
are interested in determining the motion M to estimate the
posterior pose. M can be represented in the exponential map
of generators Gi as follows:

M = exp(µ) = e
�6

i=1 µiGi (1)

where µ ⇥ R6 is the motion velocities corresponding to the
6-DOF instantaneous displacement and the Gi are the group
generator matrices:

G1 =

⌅
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

⇧
, G2 =

⌅
0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

⇧
, G3 =

⌅
0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⇧
,

G4 =

⌅
0 0 0 0
0 0 �1 0
0 1 0 0
0 0 0 0

⇧
, G5 =

⌅
0 0 1 0
0 0 0 0
�1 0 0 0
0 0 0 0

⇧
, G6 =

⌅
0 �1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⇧
.

As a camera model, we use the standard pin-hole model
given by:

p = Proj(PM;E,K) = K

⌃

⌦�

xC

zC

yC

zC

1

⌥

↵ (2)

where p = (u v)T is 2D image coordinates corresponding
to the 3D model coordinates PM = (xM yM zM 1)T and
the matrix K represent the camera’s intrinsic parameters:

K =
�

fu 0 u0

0 fv v0

⇥

where fu and fv are the focal length in pixel dimensions, and
u0 and v0 represent the position of the principal point. The
3D coordinates in camera coordinates PC = (xC yC zC 1)T

can be calculated by:

PC = EPM

where E is the extrinsic matrix or camera’s pose. For sim-
plicity, we ignore the radial distortion as image rectification
is performed during the image acquisition phase.

C. Model Rendering and Error Calculation

Fig. 7: Error calculation between projected model (yellow lines)
and extracted edges (black tortuous lines) from the input image.
Sample points (green points) are generated along the model per
fixed distance, the error of each sampled point is calculated by the
1-D search along the direction orthogonal to the model edge.

To estimate the motion M , we need to measure errors
between the prior pose and the current pose. As a first step
to calculate errors, we project the CAD model to the image
plane using the prior pose Et. Instead of considering the
edge itself, we sample points along the projected edges. Since
some of sampled points are occluded by the object itself, a
visibility test is performed. While [3] used a BSP tree for
hidden line removal, OpenGL occlusion query is an easy and
efficient alternative. Each visible point is then matched to
the edges in the input image. The edge image is obtained by
using a Canny Edge Detector [19]. We find the nearest edge
by using a 1-D search along the direction perpendicular to
the projected edge. The error vector e is obtained by stacking
all of the errors of each sample point as follows:

e = (e1 e2 . . . eN )T
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26our approach keypoint only

edges model rendering



Limitation

• Single pose hypothesis	



• Wrong prior pose → not converging 
to global optimum	



• Ambiguous edges	



• Stuck in local minima	



• Highly cluttered environment	



• Occlusions	


!

• Multiple pose hypotheses	



• Particle Filtering
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Related Work

10 Isard and Blake

Figure 4. Sample-set representation of shape distributions: the sample-set representation of probability distributions, illustrated in one dimen-
sion in Fig. 3, is illustrated here (a) as it applies to the distribution of a multi-dimensional curve parameter x. Each sample s(n) is shown as a
curve (of varying position and shape) with a thickness proportional to the weight πn . The weighted mean of the sample set (b) serves as an
estimator of the distribution mean.

Figure 5. One time-step in the Condensation algorithm: Each of the three steps—drift-diffuse-measure—of the probabilistic propagation
process of Fig. 2 is represented by steps in the Condensation algorithm.

Real-Time Camera Tracking Using Known 3D Models and a Particle Filter

Mark Pupilli and Andrew Calway
Department of Computer Science, University of Bristol, United Kingdom

[pupilli,calway]@cs.bris.ac.uk

Abstract

We present an algorithm which can track the 3D pose of
a hand held camera in real-time using predefined models of
objects in the scene. The technique utilises and extends re-
cently developed techniques for 3D tracking with a particle
filter. The novelty is in the use of edge information for 3D
tracking which has not been achieved before within a real-
time Bayesian sampling framework. We develop a robust
tracker by carefully designing the particle filter observation
model: grouping line segments from a known model into 3D
junctions and performing fast inlier/outlier counts on pro-
jected junction branches. Results demonstrate the ability to
track full 3D pose in dense clutter whilst using a minimal
number of junctions.

1 Introduction

Since the introduction of a particle filter algorithm for
2D visual tracking with contours by Isard and Blake [4]
there has been little progress on extending the use of par-
ticle filters to 3D camera tracking using edge information.
In part, this is due to misconceptions. First, that the ex-
tra degrees of freedom in 3D camera pose require filtering
with a large number of particles. Second, that this in turn
leads to computational costs which prohibit real-time track-
ing. As a consequence, current edge-based trackers tend to
use either robust non-linear optimisation [2, 5, 7] or Kalman
filtering [8]. The key benefit of a particle filter solution is
that it deals with multiple hypotheses, which are inherent in
edge tracking, in a completely natural way. It is also sim-
ple to implement. This paper presents proof of concept that
tracking using edge information and particle filtering can
be achieved in real-time. To achieve this care must be taken
when defining the measurement model: a naive translation
of measurement models used in existing algorithms will fail
due to a form of sample impoverishment. By grouping line
segments into junctions within the real-time camera track-
ing framework developed by Pupilli and Calway [6] the al-
gorithm described here is able to track the 3D camera pose

Figure 1. Tracking 3D object pose against a
background cluttered with strong edges.

(or equivalently, object pose relative to the camera) through
dense clutter (Figure 1).

In related work, Drummond and Cipolla developed an
edge-based tracker using an M-estimator to compute the
motion between frames [2]. The estimator uses the dispar-
ity between the projection of the current configuration of
a known wire-frame model and edges observed in the cur-
rent frame. Edge matching is performed by 1-dimensional
searches along normals to the projected lines of the model.
The optimisation robustly minimises an accumulation of
the disparities along these normals. Special steps are taken
to negate the effect of multiple hypotheses; in particular,
normal searches resulting in multiple hypotheses are given
lower weight. The technique uses comprehensive models
and it is mentioned that a minimal model could lead to weak
conditioning of matrices. Conversely, the particle filter ap-
proach described here can deal with multiple hypotheses
despite using a minimal junction model and its Bayesian
nature is not susceptible to non-invertible matrices. For ex-
ample, it can track even when all edges are co-planar.

Vacchetti et al. develop a similar edge-based tracker
which again uses the idea of minimising disparities along
edge normals [7]. They aim to deal explicitly with multi-
ple hypotheses, extending a robust estimator to ensure that
only the hypothesis giving the lowest residual overall is
used in the final optimisation. This deterministic approach
to multiple hypotheses clearly has some advantages over a
sampling approach. In particular it is computationally ef-
ficient. Again however, the models used are considerably
more comprehensive than those used in our particle filter
framework. They also note that tracking with edges alone is

1

Figure 3: Selected frames from tracked sequences with rendered posterior distributions;
the first iteration is shaded gray to green, the second red. On the left, a single correctly-
aligned particle allows the filter to converge on the correct pose. Center, the posterior
diverges along the direction of motion blur as the camera pans rapidly. The filter re-
converges when the blur eases. Right, the filter recovers from a misaligned pose.

in any way. Since the rotation estimates produced by the visual gyroscope are sometimes
erroneous, a single-hypothesis system fails to track this sequence.

A further comparative test was performed on a sequence of the maze model tracked
successfully in [6]. This difficult sequence in a highly textured environment with many
parallel edges was not trackable at 30Hz. Even if the number of particles is raised to 500,
tracking remains fragile and tends to fail. The poor performance is presumably partially
due to the camera motion, which is smooth but rapid (and thus suited for a constant
velocity model rather than the one used here); further, [6] uses a texture change-point
edge detector rather than the high intensity gradient model used here.

5 Conclusions
This paper has demonstrated a particle-filter-based edge tracker capable of tracking com-
plex 3D objects with self-occlusions. Tracking can be performed at video rate by exploit-
ing hardware acceleration to perform hidden line removal and likelihood calculations.

The particle filter has robustness advantages over previous systems, particularly when
exposed to rapid, unpredictable accelerations. Further, the flexibility of the particle filter
allows the integration of a wide range of motion models, which is exploited here by utilis-
ing a fast but noisy visual gyroscope. A disadvantage of the proposed system is increased
jitter in stationary scenes. Further, the simple likelihood model dictated by real-time con-
straints makes the integration of more advanced edge detection [16, 6] difficult.

Future work will attempt to improve the pose estimates selected for rendering, since
neither mean nor mode of the posterior are satisfactory. Further, accuracy improvements
could be likely obtained by performing per-particle optimisation (cf. FastSLAM 2.0 [10])
with the edge models. This is unlikely to be possible in real-time on current hardware but
may well be feasible in the near future.
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known, the CAD model is first projected into the image
according to that pose, which can be the previous one or
a prediction obtained from a filter as presented in section
III. Each projected edge Ei is then sampled, giving a set of
points {ei,j} (see figure 1). From each sample point ei,j a
search is performed along the edge normal.
In [4] and [5], the point of maximum likelihood with

regard to the initial point ei,j is selected. It is denoted by
e′i,j in the following. An optimization method is then used
to find the camera pose which minimizes the errors between
the selected points and the projected edges [11], [4] and [5].
Formally, the quantity to minimize can be expressed by:

S =
1

Ne

∑

i

∑

j

ρ
(

∆Ei
(e′i,j)

)

(1)

where ∆Ei
(e′i,j) is the squared distance between e′i,j and the

projected edge Ei, Ne is the total number of sampled points,
and ρ is a robust estimator. However, as shown in figure 1,
ambiguities can occurr when several strong edges are found
along the normal to the contour, which can lead to tracking
failures. Examples of these situations in tracking sequences
are shown in figure 5 and 4.
To overcome this issue, the idea of keeping several low

level hypothesis has been proposed in [16]. Different hy-
pothesis {e′i,j,l} corresponding to local extrema of the image
gradient along the edge normal in ei,j are memorised (see
figure 1). They are included into the registration process by
introducing a multiple hypothesis estimator ρ∗ defined by:

ρ∗(x1, ..., xn) = min
i

ρ(xi) (2)

Equation (1) becomes:

S∗ =
1

Ne

∑

i

∑

j

ρ∗
(

∆Ei
(e′i,j,1), ...,∆Ei

(e′i,j,ni,j
)
)

(3)

where ni,j is the number of selected hypothesis for the
sample point ei,j . The multiple hypothesis robust estimator
ρ∗ determines the hypothesis to reject, allowing robustness
improvement.
In our approach, we also consider different hypothesis

{e′i,j,l} corresponding to potential edges. The main differ-
ence is that we go from these multiple low level hypothesis
to multiple hypothesis on the camera pose itself instead of
chosing between the hypothesis during the registration. The
next section will explain how this is achieved.

B. Segmenting the low level hypothesis into edge hypothesis
In order to get multiple hypothesis on the camera pose

corresponding to the detected low level hypothesis, several
minimizations can be performed, using different sets of
points in (1). Since considering all the possible combinations
of points is obviously not an option, our first step is to
determine the underlying lines of the set of points {e′i,j,l},
to group the points into different sets corresponding to
potential edges (see figure 2). This is achieved using a k-
mean classification algorithm [6]. For each projected edge
Ei, the algorithm segments the candidate points {e′i,j,l} into

Fig. 1. In classic edge based tracking, the model is projected into the image
plane and points are sampled on the projected edges. A search is performed
along the normal (top). When multiple strong edges are close in the image,
ambiguities can occur when searching along the normal (bottom). Multiple
low level hypothesis can be considered.

ki sets of points or classes (ci
1, ..., c

i
ki

). The mean of each
of the ki classes is in our case the line which best fits
the points of that class, obtained by a robust least square
minimization. To initialise the algorithm, the number ki of
classes for the edge Ei is set to the maximum number of
candidate points detected, that is: ki = maxj{ni,j}. The
classes (ci

1, ..., c
i
ki

) are initialised using the order in which
the hypothesis have been found on the normal. That is for
each class ci

m: ci
m = {e′i,j,m}j . This initialisation is often

close to the good segmentation, allowing the algorithm to
converge faster (see figure 2 (a)). At each iteration of the
algorithm, the mean of each class is computed (figure 2 (b)).
Each point is then assigned to the class with the nearest mean
line. The algorithm is deemed to have converged when the
assignments no longer change. Since the potential edges are
not supposed to be normal to the initial edge, we add the
constraint that two hypothesis e′i,j,l1 and e′i,j,l2 of a same
initial sample point ei,j cannot belong to the same class.
Finally, the k-mean algorithm corresponding to the ini-

tial edge Ei provides us with a set of classes ci
m =

({e′i,j,m}j , ri
m) where ri

m is the residue of the least square
minimization, and represents a likelihood criterium that will
be used in the next step. In practice, only lines with a
sufficient number of points are taken into account. Figure
2 shows a simple example of the process.
Although the contours considered have been restricted to

lines in this study, the approach can be easily adapted to
other kinds of contours.
In most cases ki does not exceed two or three. Figure

4 gives an example of the lines detected from the teabox
sequence.

C. From multiple edge hypothesis to multiple hypothesis on
the camera pose

Once candidates have been obtained for each edge in
the form of sets of points associated to a residue, random
weighted draws are performed. Weights wi

m considered for

[Isard, IJCV’98] Condensation in 2D [Pupilli, ICPR’06] PF for 3D edge-based tracking

[Klein, BMVC’06] PF for complex object tracking [Teuliere, ICRA’10] Multiple edge correspondences

Particle Filtering using Edges
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Contributions

• Given starting pose	



• Gaussian random walk	



• No re-initialization

• Initialization	



• AR(1) state dynamics	



• Auto re-initialization
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Initialization

• Given 2D-3D keypoints correspondences	



• Randomly choose a set of minimum correspondences	



• Solve PnP problem to estimate candidate poses	



• Weights proportional to inlier ratio of remaining correspondences	



• Importance sampling
30
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Initialize the particle filter using keypoints

Keyframe (image, 2D & 3D keypoints) Input image



• Instead of Gaussian random walk models	



• Linear prediction based on previous states	



• Propagate particles more effectively

AR Dynamics

highly probable states based on pose estimates calcu-
lated from keypoint correspondences. The initialized
particles tend to converge faster than the usual annealed
particle filtering.

• While previous edge-based trackers [15], [17] have
employed random walk models as a motion model, we
apply a first-order autoregressive (AR) state dynamics
on the SE(3) group to be more effective.

• To be fully automatic and reliable in practical settings,
our approach monitors the number of effective particles
and use the value to decide when the tracker requires
re-initialization.

This paper is organized as follows. In Section II, we intro-
duce a particle filtering framework with state and measure-
ment equations. The AR state dynamics is then represented
in Section II-B. After explaining how particles are initialized
and their likelihoods are evaluated in Section II-C and II-
D, respectively, the re-initialization scheme is represented in
II-E. Experimental results on various image sequences are
shown in Section III.

II. PARTICLE FILTER ON THE SE(3) GROUP

In 3D visual tracking, a state represents a 6-DOF pose of
a tracked object, and tracking estimates time-varying change
of coordinates. It is well known that the trajectory is not
on general vector space, rather it is on Lie groups – in
general, the Special Euclidean group SE(3) and the affine
group Aff(2) in 3D and 2D visual tracking, respectively. Since
the trajectory we want to estimate is on a Lie group, the
particle filter should be applied on Lie groups. Monte Carlo
filtering on Lie groups is explicitly addressed in [20], [19],
[13]. As argued in [19] and [13], filtering performance and
noise distribution of local coordinate-based particle filtering
approaches are dependent on the choice of the local coor-
dinates, while particle filtering on Lie groups is coordinate-
invariant.

A. State and Measurement Equations

From the continuous general state equations on the SE(3)
group, discrete system equations is acquired via the first-
order exponential Euler discretization [19]:

Xt = Xt�1 · exp(A(X, t)�t + dWt

⌅
�t), (1)

dWt =
6�

i=1

�t,iEi,

�t = (�t,1, . . . , �t,6)T � N (06⇥1,⇥w)

where Xt ⇤ SE(3) is the state at time t, A : SE(3)⇥ se(3)
is a possibly nonlinear map, dWt represents the Wiener
process noise on se(3) with a covariance ⇥w ⇤ R6⇥6,
Ei are the i-th basis elements of se(3). The corresponding
measurement equation is then:

yt = g(Xt) + nt, nt � N (0Ny⇥1,⇥n) (2)

where g : Xt ⇥ RNy is a nonlinear measurement function
and nt is a Gaussian noise with a covariance ⇥n ⇤ RNy⇥Ny .

B. AR State Dynamics
The dynamic model for state evolution is an essential

part that has a significant impact on tracker performance.
However, many particle filter-based trackers have been based
on a random walk model because of its simplicity [15], [17].
AR state dynamics is a good alternative since it is flexible,
yet simple to implement. In (1), the term A(X, t) determines
the state dynamics. A trivial case, A(X, t) = 0, is a random
walk model. [13] modeled this via the first-order AR process
on the Aff(2) as:

Xt = Xt�1 · exp(At�1 + dWt

⌅
�t), (3)

At�1 = a log(X�1
t�2Xt�1) (4)

where a is the AR process parameter. Since the SE(3) is a
compact connected Lie group, the AR process model also
holds on the SE(3) group [21].

C. Particle Initialization using keypoint Correspondences
Most of the particle filter-based trackers assume that initial

states are given. In practice, initial particles are crucial to
ensure convergence to a true state. Several trackers [15], [14]
search for the true state from scratch, but it is desirable to
initialize particle states by using other information. Using
keypoints allows for direct estimation of 3D pose, but due
to the need for a significant number of correspondences it is
either slow or inaccurate. As such, keypoint correspondences
are well suited for the filter initialization.

For initialization, we use so-called keyframes which are
composed of 2D images and keypoints coordinates (2D and
3D) that have been saved offline. An input image coming
from a monocular camera is matched with the keyframes by
extracting keypoints and comparing them. To find keypoint
correspondences efficiently, we employ the Best-Bin-First
(BBF) algorithm using kd-tree data structure [22] that allows
execution of the search in O(n log n). As described in [8],
the ratio test is then performed to find distinctive feature
matches. While we used RANSAC [23] after determining
putative correspondences in our previous work [24], we skip
this procedure because in the particle filter framework we can
initialize particles in an alternative way in which the basic
idea is similar to RANSAC. Instead of explicitly performing
RANSAC, we randomly select a set of correspondences
from the given putative correspondences and estimate a
possible set of poses calculated from them. Since we have
3D coordinates of keypoints in keyframes, we get 2D-3D
correspondences from the matching process described above.
So we can regard this problem as the Perspective-n-Point
(PnP) problem, in which the pose of a calibrated monocular
camera is estimated from n 2D-3D point correspondences,
on each set of correspondences. To find a pose from the
correspondences, we use the EPnP algorithm [25] that pro-
vide a O(n) time non-iterative solution for the PnP problem.
After all particle poses are initialized from randomly selected
minimum correspondences, weights of particles are assigned
from the number of remaining correspondences cr and the
number of inlier correspondences ci which coincide with
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Re-initialization

Fig. 1. Tracking results with (yellow wireframe) and without (red wireframe) our particle filter for the four targeted objects. From top to
bottom, teabox, book, cup and car door. From left to right, t < 10, t = 100, t = 200, t = 300, t = 400 and t = 500 where t is the frame
number. The very left images are results of the pose initialization. Note that yellow wireframes are well fitted to the tracking objects,
while red wireframes are frequently mislocalized. 100 particles are used for the particle filter. (i.e. N = 100)

Then the weight ��(i)
t is normalized to �̃(i)

t by:

�̃(i)
t =

��(i)
t�N

j=1 ��(j)
t

(12)

E. Re-initialization based on [Neff

Ideally a tracked object should be visible during an entire
tracking session. In reality, however, it is quite common
that the object goes out of frame or is occluded by other
objects. In these cases, the tracker is required to re-initialize
the tracking. In general sequential Monte Carlo methods, the
effective particle size Neff has been introduced as a suitable
measure of degeneracy [27]. Since it is hard to evaluate Neff

exactly, an alternative estimate [Neff is defined [27]:

[Neff =
1

�N
i=1(�̃(i))2

(13)

Often it has been used as a measure to execute the resampling
procedure. But, in our tracker we resample particles every
frame, and hence we use [Neff as a measure to do re-
initialization. When the number of effective particles is below
a fixed threshold Nthres, the re-initialization procedure is
performed. The overall algorithm is shown in Algorithm 1.

III. EXPERIMENTAL RESULTS

In this section, we validate our proposed particle filter-
based tracker via various experiments. First, we compare
the performance of our approach with the previous single
hypothesis tracker [24] which was based on IRLS. For
the comparison, we use new challenging image sequences

TABLE I
RMS ERRORS IN THE GENERAL TRACKING

RMS Errors�

x y z roll pitch yaw

Teabox 0.0033† 0.0018 0.0068 3.27 4.32 3.95
0.0027‡ 0.0020 0.0031 1.68 1.13 2.13

Book 0.0026 0.0021 0.0042 1.73 1.58 0.95
0.0016 0.0012 0.0055 0.87 0.82 1.11

Cup 0.0083 0.0092 0.0272 2.09 1.83 5.05
0.0078 0.0084 0.0216 1.20 1.00 3.57

Car door 0.0211 0.0122 0.0411 1.73 3.72 3.73
0.0104 0.0135 0.0352 0.89 3.16 1.96

� The error units of translation and rotation are meter and degree,
respectively.

† The upper rows are the results of the previous approach [24].
‡ The lower rows are the results of the proposed approach. In both

upper and lower rows, better results are indicated in bold numbers.

as well as image sequences used in [24]. To verify the
effectiveness of the AR state dynamics, we show the results
of our proposed tracker with and without the AR state
dynamics.

A. Experiment 1: Image Sequences from Choi and Chris-
tensen [24]

In [24], the sequences of images were captured from
a monocular camera in static object and moving camera
setting. A set of image sequences used in Section III-A.1
are acquired to test tracking performance in general setting,
i.e. no occlusion, relatively simple background, reasonable
clutter, and smooth movements of the camera. To test re-
initialization capability, a sequence of images is captured
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Approaches

•2D Visual Information (Monocular Camera)	



•Combining Keypoint and Edge Features 
[ICRA’10, ICRA’11, IJRR’12]	



•Extending to Textureless Objects 
[IROS’12]	


!

•3D Visual Information (RGB-D Camera)	



•Voting-based Pose Estimation using Pair Features 
[ICRA’12, IROS’12]	



•Object Pose Tracking 
[IROS’13]
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• Edges (or boundaries) are preferred for textureless objects.	



• From CAD model to Edge templates	



• Efficient chamfer matching [Liu, CVPR’10]	



• Coarse 3D pose estimation from 2D chamfer matching results	



• Annealing Process after Initialization

Textureless Objects
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•Noise	



•Occlusions	



•Clutter44



Contributions

• Exploiting objects’ boundary information	



• B2B, S2B, and L2L features	



• Better for planar objects	



• Sparser primitives	



• More efficient
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Fig. 1. Pair features for voting-based pose estimation. (a-c) Point pair feature descriptors, FS2S,FB2B, and FS2B, are defined by the
relative position f1 and orientations f2, f3, and f4 of a pair of oriented points (m,n) where blue points indicate surface points with
surface normal vectors and red points denote boundary points with directions. (d) The line pair feature descriptor FL2L is defined by the
minimum distance between two line segments f1, the acute angle between two line directions f2, and the maximum distance between the
two line segments f3.

Fig. 2. Geometric Primitives M for the pair features. From left to right, surface points and normals for S2S, boundary points and
directions for B2B, combination for S2B, and 3D line segments for L2L. While surface points are obtained by subsampling the original
scan, 3D lines are calculated via our RANSAC algorithm that estimates 3D line segments from the 3D scan, and the boundary points are
then obtained by subsampling along the line segments. (Best viewed in color.)

These line segments are further refined using least squares
on the inliers.

After line fitting, we uniformly sample boundary points
on the 3D line segments. In Fig. 1(b), the red points show
the boundary points on two 3D line segments. The boundary
pair feature descriptor, FB2B ⇤ R4, is then defined by

FB2B = (f1, f2, f3, f4)
T (3)

= (⌅d⌅2,\(n̄r,d),\(n̄i,d),\(n̄r, n̄i))
T. (4)

This feature is equivalent to FS2S except that n̄r and n̄i

are directions of the 3D lines. Note that the directions are
not uniquely determined, therefore we consider two possible
directions, n̄ and �n̄, when we use B2B feature.

Object boundaries are highly informative. Compared to
S2S, B2B provides more concise modeling since there are
much fewer boundary points compared to surface points.
Additionally, the orientations from local line segments are
more robust to noise compared to surface normals.

3) S2B – Surface-Boundary pair feature: Boundary pair
features are associated with the depth edges attached to the
object. A feature depending solely on boundary points might
not be the best choice for object with high curvatures. For
example, any point on the surface of a spherical object can
potentially become a depth edge based on the pose, whereas
depth edges on a polyhedral object is more stable and always
appear on plane intersections.

To jointly and efficiently model both planar and curved
objects, we propose a heterogeneous pair feature (S2B) using

a oriented surface point and a oriented boundary point. By
considering oriented points on the surface and the boundary,
this feature leads to reduced pose sampling compared to B2B.
As shown in Fig. 1(c), S2B feature, FS2B ⇤ R4, is defined
by

FS2B = (f1, f2, f3, f4)
T (5)

= (⌅d⌅2,\(nr,d),\(n̄i,d),\(nr, n̄i))
T. (6)

4) L2L – Line pair feature: We propose a pair feature
for 3D line segments which is denoted as L2L. Building
a feature two line segments is slightly more involved than
building one for point pairs. In our algorithm, we fit lines
using RANSAC and the line segments usually break in to
several smaller ones due to noise, randomized line fitting
algorithm and occlusion. As a result, the end points of line
segments, denoted as {l1r, l2r, l1i , l2i } in Fig. 1(d). Thus we
consider two points denoted by cr and ci to build our feature.
As shown in Fig. 1(d), cr and ci denote the closest points
on each line with respect to the other one. The acute angle
between the two line segments is given by:

\a(v1,v2) =

⇢
\(v1,v2) if \(v1,v2) ⇥ �

2
� � \(v1,v2) otherwise

(7)
where \a(v1,v2) ⇤ [0; �

2 ].
Our L2L feature, FL2L ⇤ R3, is as follows

FL2L = (f1, f2, f3)
T (8)

= (⌅d⌅2,\a(l
2
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Fig. 1. Pair features for voting-based pose estimation. (a-c) Point pair feature descriptors, FS2S,FB2B, and FS2B, are defined by the
relative position f1 and orientations f2, f3, and f4 of a pair of oriented points (m,n) where blue points indicate surface points with
surface normal vectors and red points denote boundary points with directions. (d) The line pair feature descriptor FL2L is defined by the
minimum distance between two line segments f1, the acute angle between two line directions f2, and the maximum distance between the
two line segments f3.

Fig. 2. Geometric Primitives M for the pair features. From left to right, surface points and normals for S2S, boundary points and
directions for B2B, combination for S2B, and 3D line segments for L2L. While surface points are obtained by subsampling the original
scan, 3D lines are calculated via our RANSAC algorithm that estimates 3D line segments from the 3D scan, and the boundary points are
then obtained by subsampling along the line segments. (Best viewed in color.)

These line segments are further refined using least squares
on the inliers.

After line fitting, we uniformly sample boundary points
on the 3D line segments. In Fig. 1(b), the red points show
the boundary points on two 3D line segments. The boundary
pair feature descriptor, FB2B ⇤ R4, is then defined by

FB2B = (f1, f2, f3, f4)
T (3)

= (⌅d⌅2,\(n̄r,d),\(n̄i,d),\(n̄r, n̄i))
T. (4)

This feature is equivalent to FS2S except that n̄r and n̄i

are directions of the 3D lines. Note that the directions are
not uniquely determined, therefore we consider two possible
directions, n̄ and �n̄, when we use B2B feature.

Object boundaries are highly informative. Compared to
S2S, B2B provides more concise modeling since there are
much fewer boundary points compared to surface points.
Additionally, the orientations from local line segments are
more robust to noise compared to surface normals.

3) S2B – Surface-Boundary pair feature: Boundary pair
features are associated with the depth edges attached to the
object. A feature depending solely on boundary points might
not be the best choice for object with high curvatures. For
example, any point on the surface of a spherical object can
potentially become a depth edge based on the pose, whereas
depth edges on a polyhedral object is more stable and always
appear on plane intersections.

To jointly and efficiently model both planar and curved
objects, we propose a heterogeneous pair feature (S2B) using

a oriented surface point and a oriented boundary point. By
considering oriented points on the surface and the boundary,
this feature leads to reduced pose sampling compared to B2B.
As shown in Fig. 1(c), S2B feature, FS2B ⇤ R4, is defined
by

FS2B = (f1, f2, f3, f4)
T (5)

= (⌅d⌅2,\(nr,d),\(n̄i,d),\(nr, n̄i))
T. (6)

4) L2L – Line pair feature: We propose a pair feature
for 3D line segments which is denoted as L2L. Building
a feature two line segments is slightly more involved than
building one for point pairs. In our algorithm, we fit lines
using RANSAC and the line segments usually break in to
several smaller ones due to noise, randomized line fitting
algorithm and occlusion. As a result, the end points of line
segments, denoted as {l1r, l2r, l1i , l2i } in Fig. 1(d). Thus we
consider two points denoted by cr and ci to build our feature.
As shown in Fig. 1(d), cr and ci denote the closest points
on each line with respect to the other one. The acute angle
between the two line segments is given by:

\a(v1,v2) =
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two line segments f3.
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directions for B2B, combination for S2B, and 3D line segments for L2L. While surface points are obtained by subsampling the original
scan, 3D lines are calculated via our RANSAC algorithm that estimates 3D line segments from the 3D scan, and the boundary points are
then obtained by subsampling along the line segments. (Best viewed in color.)

These line segments are further refined using least squares
on the inliers.

After line fitting, we uniformly sample boundary points
on the 3D line segments. In Fig. 1(b), the red points show
the boundary points on two 3D line segments. The boundary
pair feature descriptor, FB2B ⇤ R4, is then defined by

FB2B = (f1, f2, f3, f4)
T (3)

= (⌅d⌅2,\(n̄r,d),\(n̄i,d),\(n̄r, n̄i))
T. (4)

This feature is equivalent to FS2S except that n̄r and n̄i

are directions of the 3D lines. Note that the directions are
not uniquely determined, therefore we consider two possible
directions, n̄ and �n̄, when we use B2B feature.

Object boundaries are highly informative. Compared to
S2S, B2B provides more concise modeling since there are
much fewer boundary points compared to surface points.
Additionally, the orientations from local line segments are
more robust to noise compared to surface normals.

3) S2B – Surface-Boundary pair feature: Boundary pair
features are associated with the depth edges attached to the
object. A feature depending solely on boundary points might
not be the best choice for object with high curvatures. For
example, any point on the surface of a spherical object can
potentially become a depth edge based on the pose, whereas
depth edges on a polyhedral object is more stable and always
appear on plane intersections.

To jointly and efficiently model both planar and curved
objects, we propose a heterogeneous pair feature (S2B) using

a oriented surface point and a oriented boundary point. By
considering oriented points on the surface and the boundary,
this feature leads to reduced pose sampling compared to B2B.
As shown in Fig. 1(c), S2B feature, FS2B ⇤ R4, is defined
by

FS2B = (f1, f2, f3, f4)
T (5)

= (⌅d⌅2,\(nr,d),\(n̄i,d),\(nr, n̄i))
T. (6)

4) L2L – Line pair feature: We propose a pair feature
for 3D line segments which is denoted as L2L. Building
a feature two line segments is slightly more involved than
building one for point pairs. In our algorithm, we fit lines
using RANSAC and the line segments usually break in to
several smaller ones due to noise, randomized line fitting
algorithm and occlusion. As a result, the end points of line
segments, denoted as {l1r, l2r, l1i , l2i } in Fig. 1(d). Thus we
consider two points denoted by cr and ci to build our feature.
As shown in Fig. 1(d), cr and ci denote the closest points
on each line with respect to the other one. The acute angle
between the two line segments is given by:
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These line segments are further refined using least squares
on the inliers.

After line fitting, we uniformly sample boundary points
on the 3D line segments. In Fig. 1(b), the red points show
the boundary points on two 3D line segments. The boundary
pair feature descriptor, FB2B ⇤ R4, is then defined by

FB2B = (f1, f2, f3, f4)
T (3)

= (⌅d⌅2,\(n̄r,d),\(n̄i,d),\(n̄r, n̄i))
T. (4)

This feature is equivalent to FS2S except that n̄r and n̄i

are directions of the 3D lines. Note that the directions are
not uniquely determined, therefore we consider two possible
directions, n̄ and �n̄, when we use B2B feature.

Object boundaries are highly informative. Compared to
S2S, B2B provides more concise modeling since there are
much fewer boundary points compared to surface points.
Additionally, the orientations from local line segments are
more robust to noise compared to surface normals.

3) S2B – Surface-Boundary pair feature: Boundary pair
features are associated with the depth edges attached to the
object. A feature depending solely on boundary points might
not be the best choice for object with high curvatures. For
example, any point on the surface of a spherical object can
potentially become a depth edge based on the pose, whereas
depth edges on a polyhedral object is more stable and always
appear on plane intersections.

To jointly and efficiently model both planar and curved
objects, we propose a heterogeneous pair feature (S2B) using

a oriented surface point and a oriented boundary point. By
considering oriented points on the surface and the boundary,
this feature leads to reduced pose sampling compared to B2B.
As shown in Fig. 1(c), S2B feature, FS2B ⇤ R4, is defined
by

FS2B = (f1, f2, f3, f4)
T (5)

= (⌅d⌅2,\(nr,d),\(n̄i,d),\(nr, n̄i))
T. (6)

4) L2L – Line pair feature: We propose a pair feature
for 3D line segments which is denoted as L2L. Building
a feature two line segments is slightly more involved than
building one for point pairs. In our algorithm, we fit lines
using RANSAC and the line segments usually break in to
several smaller ones due to noise, randomized line fitting
algorithm and occlusion. As a result, the end points of line
segments, denoted as {l1r, l2r, l1i , l2i } in Fig. 1(d). Thus we
consider two points denoted by cr and ci to build our feature.
As shown in Fig. 1(d), cr and ci denote the closest points
on each line with respect to the other one. The acute angle
between the two line segments is given by:

\a(v1,v2) =

⇢
\(v1,v2) if \(v1,v2) ⇥ �

2
� � \(v1,v2) otherwise

(7)
where \a(v1,v2) ⇤ [0; �

2 ].
Our L2L feature, FL2L ⇤ R3, is as follows

FL2L = (f1, f2, f3)
T (8)

= (⌅d⌅2,\a(l
2
r � l1r, l

2
i � l1i ), f3)

T. (9)

Pair Features

S2S (Drost et al.) B2B

S2B L2L
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Object Learning

CAD model
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Why Voting?

• Low dimensional pair features: 3D or 4D	



• One scene pair feature → Many model pair 
features	



• Self symmetric regions	



• Noise	



• Background clutter	



• Voting procedure to overcome the ambiguities	



• Maximum votes → the most likely pose hypothesis
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Real Scan

Fig. 7. Two example scenes from the real scans. From left to right: Results using S2S, B2B, S2B, and L2L features. The scan of
the upper row has multiple objects sampled from our test objects. The scan of the lower row contains multiple Circuit Breaker objects.
The voting-based pose estimation can reliably estimate poses of the object when there are multiple objects and the background is highly
cluttered. (Best viewed in color.)

Fig. 8. Two example scenes from the Kinect scans. As shown in the lower row, our methods can detect objects on non planar background
surfaces, while [16] only works on a flat background surface. From left to right: Results using S2S, B2B, S2B, and L2L features. Both
rows have multiple objects. Our method using S2B feature outperforms other methods. (Best viewed in color.)

then refined the estimated poses via the ICP-based pose
refinement. Fig. 7 shows results using the four features. The
scan of the upper row contains multiple objects in which four
objects are chosen from our test objects. They occlude each
other and make the scene highly cluttered. The displayed
pose corresponds to the best pose hypothesis computed for
each object in the scan. In the result of using S2S feature,
two objects are false positives. Similarly to the results for
synthetic data, the planar area of Clamp object caused several
false pose estimates. As shown in the lower row, we also
tested the four features in the scan which has multiple Circuit
Breaker objects. For comparison, we rendered top six pose
hypotheses obtained for each feature. Although in general
all features provide good performance for this object as
shown in the synthetic experiments, L2L feature reported
three false positives in this case; these false positives are the
flipped poses of the ground truth poses. L2L feature might
not well capture small differences inside the object, since

the directions of line segments become unstable for short
line segments.

So far, all of the 3D data were obtained via the Mitsubishi
Micro 3D sensor. It is designed for short range scan, and
thus it is well suited for our small target objects in Fig. 4.
Recently, Microsoft released an infra red pattern-based stereo
camera, which is called Kinect, as a gaming interface. It
provides reliable 3D point clouds between 1 to 5 meters
because it is designed for activity recognition. Our algorithm
can be applied to this mid-range sensor. To verify that, we
need to choose new test objects since previous test objects are
too small to be scanned using Kinect. Thus we select three
daily objects as in Fig. 9. Two selected examples using the
four different features are presented in Fig. 8. Overall, S2B
feature significantly outperforms other features. B2B feature
well detects the Teabox object, but it fail to estimate the
pose of other objects. Since the Cup object exhibits various
normal on its surface, S2S can find the Cup object in a

Fig. 7. Two example scenes from the real scans. From left to right: Results using S2S, B2B, S2B, and L2L features. The scan of
the upper row has multiple objects sampled from our test objects. The scan of the lower row contains multiple Circuit Breaker objects.
The voting-based pose estimation can reliably estimate poses of the object when there are multiple objects and the background is highly
cluttered. (Best viewed in color.)

Fig. 8. Two example scenes from the Kinect scans. As shown in the lower row, our methods can detect objects on non planar background
surfaces, while [16] only works on a flat background surface. From left to right: Results using S2S, B2B, S2B, and L2L features. Both
rows have multiple objects. Our method using S2B feature outperforms other methods. (Best viewed in color.)

then refined the estimated poses via the ICP-based pose
refinement. Fig. 7 shows results using the four features. The
scan of the upper row contains multiple objects in which four
objects are chosen from our test objects. They occlude each
other and make the scene highly cluttered. The displayed
pose corresponds to the best pose hypothesis computed for
each object in the scan. In the result of using S2S feature,
two objects are false positives. Similarly to the results for
synthetic data, the planar area of Clamp object caused several
false pose estimates. As shown in the lower row, we also
tested the four features in the scan which has multiple Circuit
Breaker objects. For comparison, we rendered top six pose
hypotheses obtained for each feature. Although in general
all features provide good performance for this object as
shown in the synthetic experiments, L2L feature reported
three false positives in this case; these false positives are the
flipped poses of the ground truth poses. L2L feature might
not well capture small differences inside the object, since

the directions of line segments become unstable for short
line segments.

So far, all of the 3D data were obtained via the Mitsubishi
Micro 3D sensor. It is designed for short range scan, and
thus it is well suited for our small target objects in Fig. 4.
Recently, Microsoft released an infra red pattern-based stereo
camera, which is called Kinect, as a gaming interface. It
provides reliable 3D point clouds between 1 to 5 meters
because it is designed for activity recognition. Our algorithm
can be applied to this mid-range sensor. To verify that, we
need to choose new test objects since previous test objects are
too small to be scanned using Kinect. Thus we select three
daily objects as in Fig. 9. Two selected examples using the
four different features are presented in Fig. 8. Overall, S2B
feature significantly outperforms other features. B2B feature
well detects the Teabox object, but it fail to estimate the
pose of other objects. Since the Cup object exhibits various
normal on its surface, S2S can find the Cup object in a

S2S B2B S2B L2L

S2S B2B S2B L2L

➡  True Positives	


➡  False Positives
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• Our pair features are sparser and faster.

Processing Time
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Fig. 3. Transform between the line pair in scene and the line pair in model. To define the local coordinates, we transform the line
pairs to an intermediate coordinate system. By Ts�g , the reference line from scene lsr is aligned to x-axis, and the reference closest point
csr is moved to the origin. The lines and the closest point of model are also transformed by Tm�g . The referred lines lsi and lmi are then
aligned by rotating the angle � along x-axis. Since the middle points os and om are usually miss aligned, we translate from om to os

along x-axis with ⇥ . Therefore, the local coordinates for L2L voting scheme is (om,�, ⇥).

Next we determine the other dimension of the local
coordinate system. We consider the translation ⇥ from om

to os as an additional dimension of the local coordinates.
Note that the other choices of using closest points or the
middle points for this dimension do not lead to robust voting.
Therefore, we obtain the new local coordinates for the L2L
voting scheme as (om,�, ⇥) and the transform from (lmr , lmi )
to (lsr, l

s
i ) can be defined by

lsi = T�1
s!gTx

(⇥)R
x

(�)Tm!gl
m
i (11)

where T
x

(⇥) is the translation along the x-axis with ⇥ .

E. Pose Clustering
In the voting scheme explained in the previous sections,

raw pose hypotheses are obtained by thresholding in the
transform space. Since an object is modeled by multiple
pair features, it is expected to have multiple raw pose
hypotheses over different reference primitives, points mr or
lines lmr , supporting a consistent pose hypothesis. Thus, it
is required to aggregate similar poses from different model
primitives [23]. Although there are several methods for
clustering in 3D rigid body transformation space SE(3) such
as mean shift on Lie groups [21], these methods are usually
computationally prohibitive for time critical applications.
Here we adopt an agglomerative clustering approach which
is very efficient.

We first sort the raw pose hypotheses in decreasing order
of the number of votes. From the highest vote, we create a
new cluster. If the next pose hypothesis is close to one of
the existing clusters, the hypothesis is added to the cluster
and the cluster center is updated as the average of the pose
hypothesis within. If the next hypothesis is not close to
any of the clusters, it creates a new cluster. The proximity
testing is done with fixed thresholds in translation and
rotation. Distance computation and averaging are performed
using quaternion representation of rotation matrices. After
clustering, the clusters are sorted in decreasing order of the
total number of votes which determines confidence of the
estimated poses.

IV. EXPERIMENTAL RESULTS

In this section, we present an extensive evaluation of the
proposed methods on synthetic and real data.

TABLE I
AVERAGE NUMBERS OF PAIR FEATURES IN THE SYNTHETIC SCENE

DATASET AND RELATIVE PROCESS TIME.

Feature Number of Features Relative Process Time†

S2S [23] 23040000 (= 4800� 4800) 3.21
B2B 2616953 (⇥ 1618� 1618) 1.00
S2B 7689280 (⇥ 4800� 1602) 1.20
L2L 121058 (⇥ 348� 348) 1.03
† The fastest method, B2B, is shown as one.

A. Synthetic Data
To compare the performance of the four features, we

generated 500 synthetic scenes in which six objects (Fig. 4)
were drawn with randomly selected poses. We ensured that
these random poses do not lead to physically infeasible
overlapping objects by checking the intersection of their
bounding boxes. We rendered the scenes with OpenGL by
setting the parameters of the rendering camera based on the
calibration parameters of our 3D sensor. For every object
the correct pose is stored in a ground truth database for
experimental validation. For testing the symmetric objects,
we store additional poses as ground truth by rotating the
object around the axis of symmetry.

As displayed in Fig. 6, objects in the synthetic scene
severely occlude each other and the degree of occlusion is
various over the 500 test scenes. We quantify the occlusion
rate and study the detection performance for different occlu-
sion rates. We follow the occlusion definition of [14]:

occlusion = 1� model surface area in the scene
total model surface area

. (12)

We performed the voting-based pose estimation for each
feature and considered only the pose that got the maximum
number of votes. The estimated pose was then compared
with the ground truth. If the errors in translation and rotation
were within 5 mm and 5�, we counted it as a true positive;
otherwise it was regarded as a false positive.

Fig. 5 shows the detection rate at different occlusion
rates for each of the six objects. For Wheel and Weld Nuts
objects, B2B feature outperforms the other features, while
S2B feature shows better results for other objects. Since
each object possesses different geometric characteristics, the
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Exploiting Color Info.

• Industrial parts	



• Low texture or textureless	



• Boundary information is useful	


!

!

• Daily objects	



• Rich color and texture information	



• Exploit both color and depth 
information
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Color Point Pair Feature

ni

f3f2

f4

nj

d

= kdk2

f1 = kpi � pjk2

{pi, ci}{pj, cj}
f8:10 = cj f5:7 = ci
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• PPF (Drost et al.): 4 dimensional	



• CPPF (proposed): 10 dimensional
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Why Color Points?

• Color Point Pair Feature	



• Prune potentially false matches 
based on color similarity	



• HSV color space	



• More efficient because 
unnecessary votes are skipped
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• Point Pair Feature	



• Objects having rich variations in 
surface normals	



• Inefficient for planar or self-
symmetric objects	



• False matching from background 
clutter

Model Point Pair

To prune unnecessary feature matching



Parallel Implementation
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• parallel NVIDIA Thrust lib	



• reduction	



• counting	



• partition	



• binary search	



• sorting	



• …



Test Objects
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Clorox Flash Kuka Mug Milk MVG Book

Orange Juice Pringles Starbucks Mug Tide Wrench



Performance Evaluation
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Fig. 14. The setup of the vision-based grasping experiments. The
robot has grasped a green soda club bottle and is about to put it
in the further red bin. The Kinect sensor can be seen in the upper
right corner. In the lower left corner, the range image and the rec-
ognized models are shown (before the bottle has been taken away)
from a viewpoint close to that of the sensor.

(denoted by Kt,y) and its rotation stiffness in x-direction
(denoted by Kr,x). These directions are the lateral compli-
ance along the gripper motion and the rotation perpendic-
ular to this. Owing to the inherent structure of the gripper,
they are the significant parameters governing the grasping
process. The object involved in this test scenario was the
soda club bottle (Figure 8(b)). The object pose error was
simulated by translating the bottle by 1.5 cm in a random
direction parallel to the table in front of the robot. We per-
formed 10 grasping trials for each of the following stiffness
configurations: ‘soft’, ‘moderately stiff ’ and ‘rigid’. The
success rate is listed in Table 1. The optimal values (line 3)
correspond to a soft (very compliant) translation and a rigid
rotation behavior. A soft translation and a moderately stiff
rotation (line 2) as well as a moderate stiffness in both trans-
lation and rotation (line 5) led to good success rates too.

6.3. Vision-based impedance controlled grasping

In this section, we experimentally validate the overall
vision-based impedance controlled grasping system. The
models involved in these tests are shown in Figure 8(b).
We started with grasping single standing objects, moved
on to object grasping from an unsorted pile and fin-
ished with a more complex task of cleaning up a table.
We used the seven-degree-of-freedom Cartesian impedance
controlled DLR Lightweight robot III developed at the
German Aerospace Center (DLR). It was mounted on a

Fig. 15. (Left) The single standing object grasping scenario.
(Middle, right) two input range images (top) and the recognition
results (bottom) for the rusk and the Amicelli box, respectively.
The points off the plane (used for matching) are shown in light
blue.

Table 1. Grasping success with varying stiffness for a
translational object pose error of 1.5 cm.

Kt,y (N m−1) Kr,x (Nm rad−1) Success (%)

1 200 20 60
2 200 75 80
3 200 200 90

4 750 20 70
5 750 75 80
6 750 200 40

7 2,000 20 50
8 2,000 75 60
9 2,000 200 70

Table 2. Success rates in the grasping experiments.

Object

Test scenario Soda Club Amicelli Rusk

Single standing objects 100% 95% 95%
Object pile 95% 95% 90%

table and covered an area of approximately 2.5 m2. The
scene was digitized with a Kinect sensor.2 Since all objects
were standing on or above the table, its plane was detected
in each range image (using a simple RANSAC procedure)
and all points belonging to the plane or lying below were
removed. The setup is shown in Figure 14.

6.3.1. Grasping single standing objects In the first sce-
nario, multiple grasps were performed on single standing
objects (see Figure 15). We varied the pose of the objects
such that all pre-saved grasp poses were executed. A grasp
trial was considered successful if the object was correctly
recognized, grasped and carried to the right place (table cor-
ner for the rusk box or one of the red bins for the Amicelli
box/soda club bottle). We ran 10 trials for each object pose
and recorded the number of successful trials. The results are
summarized in the first row of Table 2. One grasp failed for
the Amicelli and the rusk box, respectively. This was due
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Abstract—We present a method for real-time 3D object instance detection that does not require a time consuming training stage,
and can handle untextured objects. At its core, our approach is a novel image representation for template matching designed
to be robust to small image transformations. This robustness is based on spread image gradient orientations and allows us to
test only a small subset of all possible pixel locations when parsing the image, and to represent a 3D object with a limited set of
templates. In addition, we demonstrate that if a dense depth sensor is available we can extend our approach for an even better
performance taking also 3D surface normal orientations into account. We show how to take advantage of the architecture of
modern computers to build an efficient but very discriminant representation of the input images that can be used to consider
thousands of templates in real-time. We demonstrate in many experiments on real data that our method is much faster and more
robust with respect to background clutter than current state-of-the-art methods.
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REAL-TIME object instance detection and learning
are two important and challenging tasks in Com-

puter Vision. Among the application fields that drive
development in this area, robotics especially has a
strong need for computationally efficient approaches,
as autonomous systems continuously have to adapt to
a changing and unknown environment, and to learn
and recognize new objects.
For such time-critical applications, real-time tem-

plate matching is an attractive solution because new
objects can be easily learned and matched online, in
contrast to statistical-learning techniques that require
many training samples and are often too computation-
ally intensive for real-time performance [1], [2], [3],
[4], [5]. The reason for this inefficiency is that those
learning approaches aim at detecting unseen objects
from certain object classes instead of detecting a priori
known object instances from multiple viewpoints. The
latter is tried to be achieved in classical template
matching where generalization is not performed on
the object class but on the viewpoint sampling. While
this is considered as an easier task, it does not make
the problem trivial, as the data still exhibit significant
changes in viewpoint, in illumination and in occlusion
between the training and the runtime sequence.
When the object is textured enough for keypoints to

be found and recognized on the basis of their appear-

• S. Hinterstoisser, C. Cagniart, S. Ilic and N. Navab are with the De-
partment of Computer Aided Medical Procedures (CAMP), Technische
Universität München, Garching bei München, Germany, 85478.
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Fig. 1: Our method can detect texture-less 3D objects in
real-time under different poses over heavily cluttered back-
ground using gradient orientation.

ance, this difficulty has been successfully addressed
by defining patch descriptors that can be computed
quickly and used to characterize the object [6]. How-
ever, this kind of approach will fail on texture-less
objects such as those of Fig. 1, whose appearance is
often dominated by their projected contours.
To overcome this problem, we propose a novel

approach based on real-time template recognition for
rigid 3D object instances, where the templates can
both be built and matched very quickly. We will show
that this makes it very easy and virtually instanta-
neous to learn new incoming objects by simply adding
new templates to the database while maintaining
reliable real-time recognition.
However, we also wish to keep the efficiency and

robustness of statistical methods, as they learn how to
reject unpromising image locations very quickly and
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Abstract

This paper addresses the problem of recognizing free-
form 3D objects in point clouds. Compared to traditional
approaches based on point descriptors, which depend on lo-
cal information around points, we propose a novel method
that creates a global model description based on oriented
point pair features and matches that model locally using a
fast voting scheme. The global model description consists
of all model point pair features and represents a mapping
from the point pair feature space to the model, where simi-
lar features on the model are grouped together. Such repre-
sentation allows using much sparser object and scene point
clouds, resulting in very fast performance. Recognition is
done locally using an efficient voting scheme on a reduced
two-dimensional search space.

We demonstrate the efficiency of our approach and show
its high recognition performance in the case of noise, clut-
ter and partial occlusions. Compared to state of the art ap-
proaches we achieve better recognition rates, and demon-
strate that with a slight or even no sacrifice of the recogni-
tion performance our method is much faster then the current
state of the art approaches.

1. Introduction
The recognition of free-form objects in 3D data obtained

by different sensors, such as laser scans, TOF cameras and
stereo systems, has been widely studied in computer vi-
sion [2, 9, 12]. Global approaches [8, 13, 14, 18, 23, 25]
are typically neither very precise nor fast, and are limited
mainly to the classification and recognition of objects of
certain type. By contrast, local approaches that are based
on local invariant features [1, 4, 5, 6, 7, 10, 15, 17, 19, 20,
21, 24] became extremely popular and proved to be quite
efficient. However, defining local invariant features heavily

Figure 1. Example of two partly occluded instances of an object
found in a noisy, cluttered scene. The matched objects are shown
as red and green wireframe and might not be recognizeable in B/W
copies.

depends on local surface information that is directly related
to the quality and resolution of the acquired and model data.

In contrast to the approaches outlined above we propose
a method that creates a global model description using an
oriented point pair feature and matches it by using a fast
voting scheme. The point pair feature describes the rela-
tive position and orientation of two oriented points as de-
scribed in Sec. 3.1. The global model description consists
of all model point pair features and represents a mapping
from the feature space to the model, where similar features
on the model are grouped together. Such a representation
provides a global distribution of all point pair features on
the model surface. Compared to the local methods, which
require dense local information, our approach allows the
model and the scene data to be represented only by a sparse
set of oriented points that can easily be computed from the
input data. Using sparse data also allows for an important
increase in the recognition speed, without significant de-
crease in the recognition rate. A fast voting scheme, similar

Gaussian noise



Figure 5.6. Adding Gaussian noise in the synthetic noise dataset. To simulate the noise of RGB-D cameras,
Gaussian noise is added in the direction of the camera ray. From left to right: � = 0, 2, 4, 6, 8, 10 mm.

0, 2, · · · , 10 mm, which are 6 different standard deviations. For statistically meaningful results, 50 different

test clouds were generated with random rotations for each object, as some of “Clorox” scenes are shown in

Figure 5.7. Thus the total number of tested point clouds for 10 test objects are 10 ⇥ 6 ⇥ 50 = 3000.

Figure 5.9 presents recognition rates with respect to the six different Gaussian noise. As we would

expect, the recognition rates of the five approaches decrease as the noise level � increases. Our approach

and Drost et al. (2010) report similar performance in “Clorox”, “Flash”, and “Starbucks Mug”, and Drost

et al. (2010) even shows slightly better recognition rate in “Flash”. In “Kuka Mug” and “Starbucks Mug”,

Hinterstoisser et al. (2012b) is better or at least comparable to both our approach and Drost et al. (2010).

Except these cases, our approach reports the best recognition performance in general, and slightly worse

performance is shown by Drost et al. (2010). Hinterstoisser et al. (2012b) shows moderate recognition rates,

while Papazov et al. (2012) reports the worst recognition performance overall. According to the results of

Hinterstoisser et al. (2012b) with and without the ICP, the ICP refinement helps to increase the recognition

rate, but only for smaller Gaussian noise levels. As the standard deviation � increases, the additional ICP

process even worsens due mainly to the false point data association on the noisy point cloud. It is worth

to notice that Hinterstoisser et al. (2012b) is relatively less affected by the Gaussian noise. It is because

Hinterstoisser et al. (2012b) relies on template matching in which 2D templates are matched against the

input scene image. Since the Gaussian noise is added only to the depth channel, the RGB channels are not

affected at all, and thus the approach relatively less degenerates. However, our approach still shows better

recognition rates than Hinterstoisser et al. (2012b) in most cases.

The results are also shown as precision-recall curves in Figure 5.8. The curves were generated by varying

the threshold value on the score of the pose estimates: the number of votes for both our approach and

Drost et al. (2010), the visibility term µ
V

which is the ratio of the model surface area matched to the scene

in Papazov et al. (2012), and the template matching score in Hinterstoisser et al. (2012b). According to

the precision-recall graphs, our approach outperforms other approaches in most cases with some minor

exceptions. In both mug objects, Hinterstoisser et al. (2012b) shows better or comparable precision and

recall to our approach. In “Orange Juice”, Hinterstoisser et al. (2012b) with the ICP shows slightly better

precision with yet less recall. In most cases, Papazov et al. (2012) shows poor recall, mostly lower than 30%,
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Results: Gaussian noise
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Figure 5.8. Precision-recall curves of the noise experiment. Our approach outperforms the other approaches in most cases. The performance of Drost et al.
(2010) is quite similar to ours in some cases, but in general our approach reports higher precision. According to the results of Hinterstoisser et al. (2012b)
with and without the ICP, the ICP algorithm generally enhances both precision and recall but not always. Note that Papazov et al. (2012) is suffered from
low recall; while Papazov et al. (2012) reports about 50% recall at best, our approach shows at least about 80% recall in every case.
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Figure 5.9. Recognition rates against Gaussian noise �. As � increases, the performance of the five approaches decrease. Though the performance of the
approaches slightly vary, overall our approach outperforms the four compared approaches in most objects.
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Figure 5.8. Precision-recall curves of the noise experiment. Our approach outperforms the other approaches in most cases. The performance of Drost et al.
(2010) is quite similar to ours in some cases, but in general our approach reports higher precision. According to the results of Hinterstoisser et al. (2012b)
with and without the ICP, the ICP algorithm generally enhances both precision and recall but not always. Note that Papazov et al. (2012) is suffered from
low recall; while Papazov et al. (2012) reports about 50% recall at best, our approach shows at least about 80% recall in every case.
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3D RGB-D > Voting-based Pose Estimation using Pair Features [IROS’12]



Pose Estimation Results
3D RGB-D > Voting-based Pose Estimation using Pair Features [IROS’12]

Figure 5.16. Selected pose estimation results of Hinterstoisser et al. (2012b) without the ICP (second row), Hinterstoisser et al. (2012b) with the ICP (third row), Papazov et al. (2012) (fourth
row), Drost et al. (2010) (fifth row), and our approach (sixth row) in the real cluttered dataset. The first row shows the color image of the scanned RGB-D scenes. In these cluttered scenes, neither
of approaches can recall more than half of the objects except our approach. Hinterstoisser et al. (2012b) without the ICP does not detect any objects, whereas it can recall one or two objects with the
help of the ICP algorithm. Papazov et al. (2012) is also suffered from low recall in the cluttered scenes, and hence it detects at best one object per scene. Drost et al. (2010) works poorly because the
low dimensional PPF feature does not give good matches between the model and the scene. Using the color information, CPPF is more discriminative so that pose results from the voting scheme
are more likely to be the true positive poses.
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Figure 5.16. Selected pose estimation results of Hinterstoisser et al. (2012b) without the ICP (second row), Hinterstoisser et al. (2012b) with the ICP (third row), Papazov et al. (2012) (fourth
row), Drost et al. (2010) (fifth row), and our approach (sixth row) in the real cluttered dataset. The first row shows the color image of the scanned RGB-D scenes. In these cluttered scenes, neither
of approaches can recall more than half of the objects except our approach. Hinterstoisser et al. (2012b) without the ICP does not detect any objects, whereas it can recall one or two objects with the
help of the ICP algorithm. Papazov et al. (2012) is also suffered from low recall in the cluttered scenes, and hence it detects at best one object per scene. Drost et al. (2010) works poorly because the
low dimensional PPF feature does not give good matches between the model and the scene. Using the color information, CPPF is more discriminative so that pose results from the voting scheme
are more likely to be the true positive poses.
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Approaches

•2D Visual Information (Monocular Camera)	



•Combining Keypoint and Edge Features 
[ICRA’10, ICRA’11, IJRR’12]	



•Extending to Textureless Objects 
[IROS’12]	


!

•3D Visual Information (RGB-D Camera)	



•Voting-based Pose Estimation using Pair Features 
[ICRA’12, IROS’12]	



• Object Pose Tracking 
[IROS’13]
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real-time



• Posterior p.d.f. as a set of weighted particles	



• Slow frame rate due to a serial likelihood evaluation of particles	



• Inherently parallel algorithm	



• each particle weight update is independent of other updates

Motivations

67

To parallelize the time-consuming likelihood evaluation

3D RGB-D > Object Pose Tracking [IROS’13]



• Rich features from RGB-D channels 
(colors, points, normals)	



• Frame Buffer Object (FBO) in OpenGL 
& CUDA OpenGL interoperability	



• Multiple object rendering

Contributions
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3D RGB-D > Object Pose Tracking [IROS’13]
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10 Isard and Blake

Figure 4. Sample-set representation of shape distributions: the sample-set representation of probability distributions, illustrated in one dimen-
sion in Fig. 3, is illustrated here (a) as it applies to the distribution of a multi-dimensional curve parameter x. Each sample s(n) is shown as a
curve (of varying position and shape) with a thickness proportional to the weight πn . The weighted mean of the sample set (b) serves as an
estimator of the distribution mean.

Figure 5. One time-step in the Condensation algorithm: Each of the three steps—drift-diffuse-measure—of the probabilistic propagation
process of Fig. 2 is represented by steps in the Condensation algorithm.

Figure 3: Selected frames from tracked sequences with rendered posterior distributions;
the first iteration is shaded gray to green, the second red. On the left, a single correctly-
aligned particle allows the filter to converge on the correct pose. Center, the posterior
diverges along the direction of motion blur as the camera pans rapidly. The filter re-
converges when the blur eases. Right, the filter recovers from a misaligned pose.

in any way. Since the rotation estimates produced by the visual gyroscope are sometimes
erroneous, a single-hypothesis system fails to track this sequence.

A further comparative test was performed on a sequence of the maze model tracked
successfully in [6]. This difficult sequence in a highly textured environment with many
parallel edges was not trackable at 30Hz. Even if the number of particles is raised to 500,
tracking remains fragile and tends to fail. The poor performance is presumably partially
due to the camera motion, which is smooth but rapid (and thus suited for a constant
velocity model rather than the one used here); further, [6] uses a texture change-point
edge detector rather than the high intensity gradient model used here.

5 Conclusions
This paper has demonstrated a particle-filter-based edge tracker capable of tracking com-
plex 3D objects with self-occlusions. Tracking can be performed at video rate by exploit-
ing hardware acceleration to perform hidden line removal and likelihood calculations.

The particle filter has robustness advantages over previous systems, particularly when
exposed to rapid, unpredictable accelerations. Further, the flexibility of the particle filter
allows the integration of a wide range of motion models, which is exploited here by utilis-
ing a fast but noisy visual gyroscope. A disadvantage of the proposed system is increased
jitter in stationary scenes. Further, the simple likelihood model dictated by real-time con-
straints makes the integration of more advanced edge detection [16, 6] difficult.

Future work will attempt to improve the pose estimates selected for rendering, since
neither mean nor mode of the posterior are satisfactory. Further, accuracy improvements
could be likely obtained by performing per-particle optimisation (cf. FastSLAM 2.0 [10])
with the edge models. This is unlikely to be possible in real-time on current hardware but
may well be feasible in the near future.

9

[Isard, IJCV’98]  
Condensation in 2D

[Klein, BMVC’06]  
Fast PF using GPU shader

[Azad, ICRA’11]  
Fast PF using CUDA

particle filter with an axis/angle representation, as explained
in Section III-A.
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Fig. 8. Errors for all 6-DoF. The x, y, z-errors are given in mm, the
�, ⇥, ⇤-errors in radians. Note that the angle ⇤ is not provided for the cup
and the plate, as it is the angle around their rotational symmetry axis.

B. Runtime – CPU vs. GPU
We have optimized our approach both for the CPU and

for the GPU and have performed comparative runtime ex-
periments; the results are provided in the following.

To achieve maximum speedups on the CPU, we used
the Keyetech Performance Primitives (KPP)3 for the image
processing routines. Although the KPP achieve a speedup for
the image processing by a factor of 5, the total speedup is at
most a factor of 2. The reason is that rendering and readback
to main memory require approx 2.5 ms whereas the image
processing with the KPP requires only approx. 0.5 ms.

Table I depicts the runtime for tracking the cup (see Fig.
9) for different numbers of evaluations. The processing times
were measured on a standard PC with an Intel Core 2 Duo
3.0 GHz and an NVIDIA Tesla C1060. In the case of the
CPU-version, the graphics card was used for rendering the
views only.

Evaluations CPU CPU optimized (KPP) GPU (CUDA)
[s] [s] [s]

100 0.5 0.30 0.24
500 2.4 1.5 1.1
750 3.6 2.2 1.7

1000 5.7 2.9 2.3

TABLE I
RUNTIME OF CPU VS. GPU FOR DIFFERENT NUMBERS OF

EVALUATIONS.

3www.keyetech.de

Fig. 9. Visualization of the tracking result of different tracked objects both
with real-world experiments and experiments in simulation.

As reading back the framebuffer to the main memory is the
bottleneck of the CPU implementation, the aim was to exploit
NVIDIA’s CUDA to avoid the transfer to main memory. All
image processing routines were implemented with CUDA,
as they are highly suitable for parallel processing. Since the
rendering result is already stored in the GPU memory, the
transfer from the framebuffer of the GPU to main memory
of the host can be skipped. Instead, the rendered view is
directly mapped into the memory space of CUDA on the
GPU.

Figure 10 depicts the optimization process. For the image
processing, the image is subdivided into tiles, and each part
is computed by a group of threads called a thread block. To
avoid concurrency errors, synchronization is required among
all the thread blocks. Finally, the rating calculated for each
pose is transferred back from the GPU to the CPU’s main
memory.

The image processing routines (edge detection, threshold
binarization, bitwise AND operation, and pixel sum compu-
tation) perform slightly better than the CPU implementations
offered by the KPP. However, our measurements have shown

particle filter with an axis/angle representation, as explained
in Section III-A.
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�, ⇥, ⇤-errors in radians. Note that the angle ⇤ is not provided for the cup
and the plate, as it is the angle around their rotational symmetry axis.

B. Runtime – CPU vs. GPU
We have optimized our approach both for the CPU and

for the GPU and have performed comparative runtime ex-
periments; the results are provided in the following.

To achieve maximum speedups on the CPU, we used
the Keyetech Performance Primitives (KPP)3 for the image
processing routines. Although the KPP achieve a speedup for
the image processing by a factor of 5, the total speedup is at
most a factor of 2. The reason is that rendering and readback
to main memory require approx 2.5 ms whereas the image
processing with the KPP requires only approx. 0.5 ms.

Table I depicts the runtime for tracking the cup (see Fig.
9) for different numbers of evaluations. The processing times
were measured on a standard PC with an Intel Core 2 Duo
3.0 GHz and an NVIDIA Tesla C1060. In the case of the
CPU-version, the graphics card was used for rendering the
views only.

Evaluations CPU CPU optimized (KPP) GPU (CUDA)
[s] [s] [s]

100 0.5 0.30 0.24
500 2.4 1.5 1.1
750 3.6 2.2 1.7

1000 5.7 2.9 2.3

TABLE I
RUNTIME OF CPU VS. GPU FOR DIFFERENT NUMBERS OF

EVALUATIONS.
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Fig. 9. Visualization of the tracking result of different tracked objects both
with real-world experiments and experiments in simulation.

As reading back the framebuffer to the main memory is the
bottleneck of the CPU implementation, the aim was to exploit
NVIDIA’s CUDA to avoid the transfer to main memory. All
image processing routines were implemented with CUDA,
as they are highly suitable for parallel processing. Since the
rendering result is already stored in the GPU memory, the
transfer from the framebuffer of the GPU to main memory
of the host can be skipped. Instead, the rendered view is
directly mapped into the memory space of CUDA on the
GPU.

Figure 10 depicts the optimization process. For the image
processing, the image is subdivided into tiles, and each part
is computed by a group of threads called a thread block. To
avoid concurrency errors, synchronization is required among
all the thread blocks. Finally, the rating calculated for each
pose is transferred back from the GPU to the CPU’s main
memory.

The image processing routines (edge detection, threshold
binarization, bitwise AND operation, and pixel sum compu-
tation) perform slightly better than the CPU implementations
offered by the KPP. However, our measurements have shown
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Simple PF on GPU

Particle Filter on GPUs for Real-Time Tracking

Antonio S. Montemayor⇥
ESCET-URJC

Juan José Pantrigo
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Ángel Sánchez
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Felipe Fernández
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1 Introduction

Efficient object tracking is required by many Computer Vision ap-
plication areas like surveillance or robotics. It deals with state-
space variables estimation of interesting features in image se-
quences and their future prediction. Probabilistic algorithms has
been widely applied to tracking. These methods take advantage of
knowledge about previous states of the system reducing the compu-
tational cost of an exhaustive search over the whole image. In this
framework, posterior probability density function (pdf) of the state
is estimated in two stages: prediction and update. General particle
filters are based on discrete representations of probability densities
and can be applied to any state-space model [Arulampalam et al.
2002]. Discrete particles j of a set (Xt ,!t) = {(x0t ,!0t )...(xNt ,!Nt )}
in time step t, contains information about one possible state of the
system x jt and its importance weight !

j
t . In a practical approach,

particle weights computation is the most expensive stage of the par-
ticle filter algorithm, and it has to be executed at each time step for
every particle [Deutscher et al. 2000].

Consumer graphics processing units (GPU) have become inexpen-
sive and programmable stream processors. Their programmable
capabilities have drastically grown and this has helped the devel-
opment of applications far beyond rendering purposes.

In this work, we have designed and implemented a preliminary real-
time particle filter algorithm that makes use of a GPU to execute the
algorithm’s main performance bottleneck. Our strategy uses a tex-
ture multiplication for reducing the computational efforts generated
by a sequential evaluation. This work presents some similarities
with the work of [Oh and Jung 2004] applied to GPU implementa-
tion of neural networks.

2 Exposition

Figure 1 outlines an iteration of the particle filter algorithm. The
performance of the filter has been tested on a rolling ball sequence.
The actual frame of the sequence is loaded into main memory and
N samples are taken using (x,y) coordinates stored in each parti-
cle. In the first iteration this sampling is randomly generated from a
uniform pdf. In a measurement process N square windows are cap-
tured from the image using the coordinates given by the previous
sampling stage. These windows are arranged and loaded in a first
texture unit (Tex0). In another one (Tex1) a tracked shape template
is loaded. This template consists of N repeated instances with the
same size and spatial distribution of the target shape.

Particle weights computation is based on a template matching ap-
proach although we have previously sampled the original image at
discrete locations instead of performing an exhaustive search. In or-
der to improve weights computation a fragment program is created
to carry out an effective hardware accelerated texture multiplica-
tion. The overlapping of both textures results the likelihood of a
template given a measure. As we have chosen square regions for
each measurement a mipmap reduction is accomplished to get an
estimation of the particle weights ! j

t in each pixel position.

⇥e-mail: a.sanz@escet.urjc.es
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Figure 1: Hybrid GPU/CPU particle filter scheme.

Next, we get the rendering results to proceed with the following
stages of the particle filter. The particle with the maximum weight
xmaxt is selected as best candidate for the state of the system in the
iteration. A new particle set (X⇥t ,N�1) at time t is created by se-
lecting individuals from Xt with probabilities ! j

t . We use a roulette
wheel as selection strategy. Since particles with larger weight val-
ues can be chosen several times, a Gaussian diffusion stage is ap-
plied to avoid loss of diversity. Finally, particle set at time t + 1,
(Xt+1,N�1), is predicted by using an appropriate motion model.

3 Conclusion

A preliminary real-time particle filter that exploits the intrinsic par-
allelism of GPUs architecture has been implemented. As future
works we propose comparisons between GPU and optimized CPU
implementations. Also it would be very interesting to study related
realistic applications of this GPU particle filter framework such as
articulated motion and multiple object tracking.
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Likelihood Evaluation
3D RGB-D > Object Pose Tracking [IROS’13]



Likelihood Evaluation

71

Fig. 2. Multiple renderings for the likelihood evaluation. The object of interest is rendered with the first V particle states and the likelihoods of the
V particles are evaluated from the rendering results. For the rest particles, each particle finds the closest rendering and use the rendering result to evaluate
its likelihood. Left and right images represent the color and normal renderings in the GPU. (Best viewed in color)

IV. LIKELIHOOD EVALUATION

Designing an efficient and robust likelihood function is
crucial, since it directly determines the overall performance
of the particle filtering in terms of both time and accuracy.
When an RGB-D camera is considered, there are various
measurements we can employ: 3D point coordinates, colors
of points, surface normals, curvature, edges from depth
discontinuities or surface textures, etc. In this work, we
choose the point coordinates x ⇤ R3 and their associated
colors c ⇤ R3 and normals n ⇤ R3. Thus, a measurement
point p is defined as

p = (xT,nT, cT)T ⇤ R9. (4)

For clear notation, let us define accessing operators for p
such that

x(p) = (xT 1)T ⇤ R4 (5)
n(p) = (nT 1)T ⇤ R4 (6)
c(p) = c ⇤ R3. (7)

The reason we choose the three measurements is that this
combination allows us to perform direct comparisons be-
tween the given RGB-D scene and the rendering results from
the computer graphics pipeline. Hence, we can efficiently
calculate the likelihood for a large number of particles.

Given the current pose hypothesis X(n)
t and the rendered

object model Mt, the likelihood of the scene Zt is defined
as

p(Zt|X(n)
t ,Mt) =

⇥

(i,j)⇤A

p(z(i)t |X(n)
t ,m(j)

t ) (8)

where A = {(i, j)| proj(x(z(i)t )) = proj(X(n)
t ·x(m(j)

t ))} is
the set of point associations between the scene Zt and the
object model Mt, and z(i)t ,m(j)

t ⇤ R9 are corresponding
points in the scene and model, respectively. The operator
proj(·) calculates 2D image coordinates of given 3D ho-
mogeneous point coordinates by projecting the point with

the known camera intrinsic parameters K ⇤ R3⇥3. With the
proj operator, the point associations A can be efficiently
determined. The likelihood of each association (i, j) is then
defined as

p(z(i)t |X(n)
t ,m(j)

t ) = exp��e·de(x(z
(i)
t ), X(n)

t ·x(m(j)
t ))

· exp��n·dn(n(z
(i)
t ), X(n)

t ·n(m(j)
t ))

· exp��c·dc(c(z
(i)
t ), c(m(j)

t )) (9)

where de(x1,x2), dn(n1,n2), and dc(c1, c2) are Euclidean,
normal, and color distances as shown below

de(x1,x2) =

�
⌅x1 � x2⌅ if ⌅x1 � x2⌅ ⇥ ⇤
1 otherwise (10)

dn(n1,n2) =
cos�1(nT

1n2 � 1)
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and �e,�n,�c are the parameters that determines the sensi-
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a threshold value for the Euclidean distance between the
two points. Note that n1,n2 ⇤ R4 in (11) are homogeneous
point coordinates, so 1 need to be subtracted from the inner
product. For the color distance in (12), any kind of color
space can be considered as long as 0 ⇥ dc(c1, c2) ⇥ 1, but
we adopted the HSV color space due mainly to its invariance
to illumination changes. Please note that the point and normal
coordinates of object model point m(j)

t are in the object
coordinate frame, so the transformed point by the current
pose X(n)

t should be considered to calculate the distances.

V. IMPLEMENTATION DETAILS

As we already mentioned in Section II, we render our
object of interest onto V viewports in the render buffers with
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Fig. 2. Multiple renderings for the likelihood evaluation. The object of interest is rendered with the first V particle states and the likelihoods of the
V particles are evaluated from the rendering results. For the rest particles, each particle finds the closest rendering and use the rendering result to evaluate
its likelihood. Left and right images represent the color and normal renderings in the GPU. (Best viewed in color)
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tivity of the distances to the likelihood. The ⇤ in (10) is
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two points. Note that n1,n2 ⇤ R4 in (11) are homogeneous
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product. For the color distance in (12), any kind of color
space can be considered as long as 0 ⇥ dc(c1, c2) ⇥ 1, but
we adopted the HSV color space due mainly to its invariance
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the first V particle poses. For the rest of the particles, each
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hypothesis and transforms the closet rendering result with the
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V particles are evaluated from the rendering results. For the rest particles, each particle finds the closest rendering and use the rendering result to evaluate
its likelihood. Left and right images represent the color and normal renderings in the GPU. (Best viewed in color)
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Fig. 2. Multiple renderings for the likelihood evaluation. The object of interest is rendered with the first V particle states and the likelihoods of the
V particles are evaluated from the rendering results. For the rest particles, each particle finds the closest rendering and use the rendering result to evaluate
its likelihood. Left and right images represent the color and normal renderings in the GPU. (Best viewed in color)
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measurements we can employ: 3D point coordinates, colors
of points, surface normals, curvature, edges from depth
discontinuities or surface textures, etc. In this work, we
choose the point coordinates x ⇤ R3 and their associated
colors c ⇤ R3 and normals n ⇤ R3. Thus, a measurement
point p is defined as

p = (xT,nT, cT)T ⇤ R9. (4)

For clear notation, let us define accessing operators for p
such that

x(p) = (xT 1)T ⇤ R4 (5)
n(p) = (nT 1)T ⇤ R4 (6)
c(p) = c ⇤ R3. (7)

The reason we choose the three measurements is that this
combination allows us to perform direct comparisons be-
tween the given RGB-D scene and the rendering results from
the computer graphics pipeline. Hence, we can efficiently
calculate the likelihood for a large number of particles.

Given the current pose hypothesis X(n)
t and the rendered

object model Mt, the likelihood of the scene Zt is defined
as

p(Zt|X(n)
t ,Mt) =

⇥

(i,j)⇤A

p(z(i)t |X(n)
t ,m(j)

t ) (8)

where A = {(i, j)| proj(x(z(i)t )) = proj(X(n)
t ·x(m(j)

t ))} is
the set of point associations between the scene Zt and the
object model Mt, and z(i)t ,m(j)

t ⇤ R9 are corresponding
points in the scene and model, respectively. The operator
proj(·) calculates 2D image coordinates of given 3D ho-
mogeneous point coordinates by projecting the point with

the known camera intrinsic parameters K ⇤ R3⇥3. With the
proj operator, the point associations A can be efficiently
determined. The likelihood of each association (i, j) is then
defined as

p(z(i)t |X(n)
t ,m(j)

t ) = exp��e·de(x(z
(i)
t ), X(n)
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where de(x1,x2), dn(n1,n2), and dc(c1, c2) are Euclidean,
normal, and color distances as shown below

de(x1,x2) =

�
⌅x1 � x2⌅ if ⌅x1 � x2⌅ ⇥ ⇤
1 otherwise (10)

dn(n1,n2) =
cos�1(nT

1n2 � 1)

⇥
(11)

dc(c1, c2) = ⌅c1 � c2⌅ (12)

and �e,�n,�c are the parameters that determines the sensi-
tivity of the distances to the likelihood. The ⇤ in (10) is
a threshold value for the Euclidean distance between the
two points. Note that n1,n2 ⇤ R4 in (11) are homogeneous
point coordinates, so 1 need to be subtracted from the inner
product. For the color distance in (12), any kind of color
space can be considered as long as 0 ⇥ dc(c1, c2) ⇥ 1, but
we adopted the HSV color space due mainly to its invariance
to illumination changes. Please note that the point and normal
coordinates of object model point m(j)

t are in the object
coordinate frame, so the transformed point by the current
pose X(n)

t should be considered to calculate the distances.

V. IMPLEMENTATION DETAILS

As we already mentioned in Section II, we render our
object of interest onto V viewports in the render buffers with
the first V particle poses. For the rest of the particles, each
particle finds a closest rendering with respect to the pose
hypothesis and transforms the closet rendering result with the
current pose. For this calculation, we need to access the color,

Fig. 2. Multiple renderings for the likelihood evaluation. The object of interest is rendered with the first V particle states and the likelihoods of the
V particles are evaluated from the rendering results. For the rest particles, each particle finds the closest rendering and use the rendering result to evaluate
its likelihood. Left and right images represent the color and normal renderings in the GPU. (Best viewed in color)

IV. LIKELIHOOD EVALUATION

Designing an efficient and robust likelihood function is
crucial, since it directly determines the overall performance
of the particle filtering in terms of both time and accuracy.
When an RGB-D camera is considered, there are various
measurements we can employ: 3D point coordinates, colors
of points, surface normals, curvature, edges from depth
discontinuities or surface textures, etc. In this work, we
choose the point coordinates x ⇤ R3 and their associated
colors c ⇤ R3 and normals n ⇤ R3. Thus, a measurement
point p is defined as

p = (xT,nT, cT)T ⇤ R9. (4)

For clear notation, let us define accessing operators for p
such that

x(p) = (xT 1)T ⇤ R4 (5)
n(p) = (nT 1)T ⇤ R4 (6)
c(p) = c ⇤ R3. (7)

The reason we choose the three measurements is that this
combination allows us to perform direct comparisons be-
tween the given RGB-D scene and the rendering results from
the computer graphics pipeline. Hence, we can efficiently
calculate the likelihood for a large number of particles.

Given the current pose hypothesis X(n)
t and the rendered

object model Mt, the likelihood of the scene Zt is defined
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t ·x(m(j)

t ))} is
the set of point associations between the scene Zt and the
object model Mt, and z(i)t ,m(j)

t ⇤ R9 are corresponding
points in the scene and model, respectively. The operator
proj(·) calculates 2D image coordinates of given 3D ho-
mogeneous point coordinates by projecting the point with

the known camera intrinsic parameters K ⇤ R3⇥3. With the
proj operator, the point associations A can be efficiently
determined. The likelihood of each association (i, j) is then
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where de(x1,x2), dn(n1,n2), and dc(c1, c2) are Euclidean,
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1 otherwise (10)
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and �e,�n,�c are the parameters that determines the sensi-
tivity of the distances to the likelihood. The ⇤ in (10) is
a threshold value for the Euclidean distance between the
two points. Note that n1,n2 ⇤ R4 in (11) are homogeneous
point coordinates, so 1 need to be subtracted from the inner
product. For the color distance in (12), any kind of color
space can be considered as long as 0 ⇥ dc(c1, c2) ⇥ 1, but
we adopted the HSV color space due mainly to its invariance
to illumination changes. Please note that the point and normal
coordinates of object model point m(j)

t are in the object
coordinate frame, so the transformed point by the current
pose X(n)
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V. IMPLEMENTATION DETAILS

As we already mentioned in Section II, we render our
object of interest onto V viewports in the render buffers with
the first V particle poses. For the rest of the particles, each
particle finds a closest rendering with respect to the pose
hypothesis and transforms the closet rendering result with the
current pose. For this calculation, we need to access the color,
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Conclusions

• Contributed toward robust object perception in unstructured environments
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• object perception regardless of the 
degree of texture	



• highly cluttered backgrounds	



• object discontinuities	



• real-time constraints

• combined photometric and geometric 
features	



• multiple pose hypotheses frameworks	



• combined pose estimation and tracking	



• parallelized on GPU

Four challenges



Revisit Thesis Statement

• To close the loop between the geometric era of early computer vision 
and the currently dominating appearance age, both photometric and 
geometric features need to be considered. 	



• The combination of these features enables object perception 
algorithms not only to be more effective but also to handle an 
increased spectrum of objects. 	



• Two theoretical frameworks using multiple pose hypotheses based on 
combined features are contributed in this thesis. 	



• These new frameworks are robust to significant clutter and occlusions, 
and are therefore efficacious solutions for visual object perception in 
unstructured environments.
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Future Work

• Object model adaptation	



• Object modeling	



• Multi-object tracking	



• Scalable object perception	



• Object categorization
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• 2D accumulator space:	



• S2S, B2B, and S2B share the same transform

x

y

z

Voting Scheme I

3) S2B — Surface-to-Boundary: A pair feature only based
on boundary points is not very reliable for objects with
high curvature. For example, any point on the surface of a
spherical object can potentially become a depth edge based
on the pose, whereas depth edges on a polyhedral object
are more stable and always appear on plane intersections.
To jointly and efficiently model both planar and curved
objects, we propose S2B, a heterogeneous pair feature using
an oriented surface point and an oriented boundary point.
As shown in Fig. 2(c), we define S2B feature descriptor
FS2B ⇥ R4 as

FS2B = (f
1

, f
2

, f
3

, f
4

)T (5)
= (⇤d⇤

2

,\(nr,d),\(n̄i,d),\(nr, n̄i))
T. (6)

4) L2L — Line-to-Line: We propose L2L, a pair feature
using two 3D line segments. This pair feature is particularly
efficient for polyhedral objects and objects having long
boundary line segments, since the number of line segments
is fewer than that of surface points or boundary points. Let
cr and ci be the closest points on the infinite lines that
contain the 3D line segments, and {l1r, l2r, l1i , l2i } denote the
end points of line segments, as shown in Fig. 2(d). We define
L2L feature descriptor FL2L ⇥ R3 as

FL2L = (f
1

, f
2

, f
3

)T (7)
= (⇤ci � cr⇤2,\a(l

2

r � l1r, l
2

i � l1i ), dmax

)T, (8)

where \a(v1

,v
2

) ⇥ [0; �
2

] represents the acute angle be-
tween two vectors, and

d
max

= max(⇤l1i � l1r⇤2, ⇤l1i � l2r⇤2, ⇤l2i � l1r⇤2, ⇤l2i � l2r⇤2).

The first and second components are the distance and angle
between the two infinite lines, while the last component
represents the maximum distance between the two line
segments. The maximum distance d

max

is computed by
finding the maximum of the all possible distances between
an end point in one line segment and an end point in
the other. Using d

max

is helpful to prune false matches
between two line segments having similar distance and angle
(e.g., any pair of coplanar orthogonal lines have the same
distance and angle). However, line segments usually break
into several fragments during the line fitting procedure due
to sensor noise, occlusion, etc. As a result, the end points
of line segments are usually unstable. Thus we use a bigger
quantization step for this component of the descriptor. Note
that we discard pairs of parallel lines since the closest points
cannot be uniquely determined.

Recently, it has been shown that the minimum and max-
imum distances between line segments are very effective in
pruning the search space in correspondence problems [28].
Note that we can also use the minimum distance between two
line segments in building the L2L feature. However, this was
sensitive due to breaking of line segments in our experiments.

B. Object Representation
As shown in [23], we globally model an object using a set

of all possible pair features computed from the object model.

Once this set is determined, we calculate pair features in the
scene point cloud and match them with the set of the model
pair features.

The pair feature representation of a target object is con-
structed offline. We first obtain geometric primitives M:
surface points for S2S, boundary points for B2B, both sur-
face and boundary points for S2B, and 3D lines for L2L.
These primitives can be calculated from either 3D scanned
data with known calibration between the sensor and the
object, or synthetic depth data rendered from a known CAD
model. With these primitives M, all possible pair features,
(mr,mi) ⇥ M2 for S2S, B2B, or S2B and (lr, li) ⇥ M2 for
L2L, are calculated.

For efficient feature matching, we store the set of pair
features of the model in a hash table data structure H, as
in [23]. We quantize the pair feature descriptors and use
them as the key for the hash table. Pair features that have
similar descriptors are inserted together in the same bin and
matching/voting can be done in constant time. Note that it
is important to define the quantization levels appropriately;
using very large step sizes reduces discriminative power of
the descriptors, whereas using very small step sizes makes
the algorithm sensitive to noise.

C. Voting Scheme for S2S, B2B, and S2B Features
After computing pair features and constructing a hash table

structure, we find pose hypotheses by calculating rigid body
transformations between a scene pair feature and a set of cor-
responding model pair features. To make this search efficient,
we adopt a voting scheme. A naı̈ve approach would require
voting in the 6-DoF pose space, which is not computationally
efficient. Instead, Drost et al. [23] proposed a voting scheme
that reduces the voting space to a 2D space using local
coordinates. First, a scene point pair (sr, si) ⇥ S2, where
S is the set of primitives from the scene, is searched in
the hash table H, and a corresponding model point pair
(mr,mi) ⇥ M2 is found. Then, the reference points of the
pairs, sr and mr are aligned in an intermediate coordinate
system, as shown in Fig. 4 (left). To fully align the pair, the
referred points, si and mi, should be aligned by rotating the
object around the normal. After the planar rotation angle � is
calculated, the local coordinates are defined by the pair of the
reference model point and the planar rotation angle (mr,�).
The transformation from (mr,mi) to (sr, si) is given by

si = T�1

s⇥gRx

(�)Tm⇥gmi, (9)

where R
x

(�) is the rotation around the x-axis with angle
�, Ts⇥g and Tm⇥g are the transformations from the scene
and model coordinate systems to the intermediate coordinate
system, respectively.

In the voting phase, a given reference scene point sr
and every other point si are paired, and then the model
pair features (mr,mi) which are similar to the scene pair
feature (sr, si) are searched in the hash table H using their
descriptors. For every matching (mr,mi), the rotation angle
� is computed and then votes are cast in the 2D space of
(mr,�). After all the matchings are voted, the elements that
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• 3D accumulator space:

Voting Scheme II
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Fig. 4. Aligning pair features via an intermediate coordinate system. (Left) Transformation for the point pair features S2S, B2B, and
S2B. By Ts�g , the scene reference point sr is moved to the origin and its orientation (normal or direction) ns

r is aligned to the x-axis.
The model reference point is similarly transformed by Tm�g , such that the positions and orientations of the reference points are aligned.
The referred points si and mi are then aligned by a rotation with angle � around the x-axis. Thus a 2D space (mr,�) is used for voting.
(Right) Transformation for the line pair feature L2L. By Ts�g , the scene reference line lsr is aligned to the x-axis and its middle point
os is moved to the origin. The model reference line is similarly transformed by Tm�g such that the reference lines are aligned. The
referred lines lsi and lmi are then aligned by a rotation with angle � and a translation with ⇥ along the x-axis. Thus a 3D space (om,�, ⇥)
is used for voting.

have votes exceeding a threshold are selected as valid pose
candidates, and then the transformation between the model
and scene coordinate systems is computed using (9). This
voting scheme is applicable to S2S, B2B, and S2B, since the
point pair features are fundamentally equivalent. However,
the L2L feature, defined by a pair of line segments, requires
a specialized voting scheme.

D. Voting Scheme for L2L Feature
As described earlier, the end points of line segments are

not stably determined. We therefore build a voting scheme
for the L2L feature based on the infinite lines that contain
the 3D line segments, which is robust to the fragmentation
of line segments.

Similar to the point pair features, the voting scheme for the
L2L feature is based on aligning two pair features in an in-
termediate coordinate system. As illustrated in Fig. 4 (right),
the reference line lsr and the referred line lsi from the scene
are transformed by Ts⇥g in order to align lsr to the x-axis
and to align the middle point os to the origin. Similarly,
lmr and lmi are transformed via Tm⇥g . Still there are two
degrees of freedom to fully align the line pairs. As in the
point pair features, the first one is the rotation around the x-
axis; this angle � is determined from the angle between ds

and dm. The other degree of freedom is the translation along
the x-axis; this corresponds to the displacement between the
closest points cmr to csr, denoted as ⇥ . Therefore, we use a
3D space (om,�, ⇥) for voting using the L2L feature. The
transformation from (lmr , lmi ) to (lsr, l

s
i ) can be computed as

lsi = T�1
s⇥gTx

(⇥)R
x

(�)Tm⇥gl
m
i , (10)

where T
x

(⇥) is the translation along the x-axis with ⇥ .

E. Pose Clustering
In the voting scheme explained in the previous sections,

raw pose hypotheses are obtained by thresholding in the
voting space. Since an object is modeled by a large set of
pair features, it is expected to have multiple pose hypotheses
each for different reference primitives, points mr or lines lmr ,

supporting the same pose. Thus, it is required to aggregate
similar poses from different reference primitives [23]. Al-
though there are several methods for clustering in 3D rigid
body transformation space SE(3) such as mean shift on
Lie groups [21], these methods are usually computationally
prohibitive for time critical applications. Here we adopt an
agglomerative clustering approach which is very efficient.

We first sort the raw pose hypotheses in decreasing order
of the number of votes. From the highest vote, we create a
new cluster. If the next pose hypothesis is close to one of
the existing clusters, the hypothesis is added to the cluster
and the cluster center is updated as the average of the pose
hypotheses within the cluster. If the next hypothesis is not
close to any of the clusters, it creates a new cluster. The
proximity testing is done with fixed thresholds in translation
and rotation. Distance computation and averaging for trans-
lation are performed in the 3D Euclidean space, while those
for rotation are performed using quaternion representation.
After clustering, the clusters are sorted in decreasing order
of the total number of votes which determines confidence of
the estimated poses.

IV. EXPERIMENTAL RESULTS

In this section, we present an extensive evaluation of
the proposed methods on synthetic and real data. We also
evaluate the performance of our bin-picking system described
in Section II.

A. Synthetic Data

To compare the performance of the four pair features, we
generated 500 synthetic scenes in which six objects (Fig. 5)
were drawn with randomly selected poses. We ensured that
these random poses do not lead to physically infeasible
overlapping objects by checking the intersection of their
bounding boxes. We rendered the scenes with OpenGL by
setting the parameters of the rendering camera based on the
calibration parameters of our 3D sensor. For every object
the correct pose is stored in a ground truth database for
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Real Scan: S2B feature
3D RGB-D > Voting-based Pose Estimation using Pair Features [ICRA’12]



Dataset: MOSI
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Figure 5.10. Selected pose estimation results of Hinterstoisser et al. (2012b) without the ICP (second row), Hinterstoisser et al. (2012b) with the ICP (third row), Papazov et al. (2012) (fourth
row), Drost et al. (2010) (fifth row), and our approach (sixth row) in the MOSI dataset. The first row shows the color images of the synthetic scenes. Correct pose estimates are depicted as color
mesh models in the second to sixth rows. In these cluttered scenes, Hinterstoisser et al. (2012b) without the ICP barely detects the target objects due to the coarse sampling of templates. From the
additional ICP refinement, Hinterstoisser et al. (2012b) reports some detections, but it is much inferior to both Drost et al. (2010) and our approach. Papazov et al. (2012) also works poorly mainly
due to the insufficient number of searches in the sampling approach. Drost et al. (2010) shows better results than Papazov et al. (2012) via the voting process that considers a much large number
of pose hypotheses, but this approach still misses a number of true positive detections. Thanks to the additional color information encoded in CPPFs, our approach shows the best performance
among the five approaches in these cluttered environments.
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Figure 5.10. Selected pose estimation results of Hinterstoisser et al. (2012b) without the ICP (second row), Hinterstoisser et al. (2012b) with the ICP (third row), Papazov et al. (2012) (fourth
row), Drost et al. (2010) (fifth row), and our approach (sixth row) in the MOSI dataset. The first row shows the color images of the synthetic scenes. Correct pose estimates are depicted as color
mesh models in the second to sixth rows. In these cluttered scenes, Hinterstoisser et al. (2012b) without the ICP barely detects the target objects due to the coarse sampling of templates. From the
additional ICP refinement, Hinterstoisser et al. (2012b) reports some detections, but it is much inferior to both Drost et al. (2010) and our approach. Papazov et al. (2012) also works poorly mainly
due to the insufficient number of searches in the sampling approach. Drost et al. (2010) shows better results than Papazov et al. (2012) via the voting process that considers a much large number
of pose hypotheses, but this approach still misses a number of true positive detections. Thanks to the additional color information encoded in CPPFs, our approach shows the best performance
among the five approaches in these cluttered environments.
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Dataset: SOMI
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Figure 5.13. Selected pose estimation results of Hinterstoisser et al. (2012b) without the ICP (second row), Hinterstoisser et al. (2012b) with the ICP (third row), Papazov
et al. (2012) (fourth row), Drost et al. (2010) (fifth row), and our approach (sixth row) in the SOMI dataset. Our approach can handle the multiple instances scenario well,
whereas Hinterstoisser et al. (2012b) and Papazov et al. (2012) fail to recognize multiple instances in most cases.
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Figure 5.13. Selected pose estimation results of Hinterstoisser et al. (2012b) without the ICP (second row), Hinterstoisser et al. (2012b) with the ICP (third row), Papazov
et al. (2012) (fourth row), Drost et al. (2010) (fifth row), and our approach (sixth row) in the SOMI dataset. Our approach can handle the multiple instances scenario well,
whereas Hinterstoisser et al. (2012b) and Papazov et al. (2012) fail to recognize multiple instances in most cases.
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