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System Setup

3[Homberg et al., IROS’15] Haptic identification of objects using a modular soft robotic gripper.
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• Soft hands allow compliance and adaptability.

• They increase uncertainty of the object pose after grasping.
Visual sensing ameliorates the increased uncertainty!

• How can we reduce the post-grasping uncertainty of object pose?

• How do we enable soft hands to perform advanced manipulation 
which requires precise object pose?
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approximates the limit of a robotic hand with infinitely many
degrees of freedom, which are actuated passively by contact with
the surface of the object to be gripped and are locked in place by a
single active element, a pump that evacuates the bag. Fig. 1 de-
monstrates that a wide range of different types of objects are
easily handled in pick-and-place operations using a fixed-base
robotic arm, without the need to reconfigure the gripper or even
position it precisely, as long as it can cover a fraction of a target
object’s surface. This adaptability includes switching between ob-
jects of different shapes, items difficult to pick up with conven-
tional universal grippers, or fragile targets like raw eggs, as well as
simple manipulation tasks, such as pouring water from a glass or
drawing with a pen (see Video S1 online). The same type of grip-
per can also pick up multiple objects simultaneously and deposit
them without changing their relative position or orientation. For
all of the items depicted in Fig. 1, we find that holding forces can
be achieved that exceed significantly the weight of objects of that
size. We find that this strength is due to three mechanisms, all
controlled by jamming, that can contribute to the gripping pro-
cess: geometric constraints from interlocking between gripper
and object surfaces, static friction from normal stresses at contact,
and an additional suction effect, if the gripper membrane can
seal off a portion of the object’s surface.
Results and Discussion
To evaluate gripping performance we performed pick-and-place
operations in which objects were gripped, lifted, and moved
(Fig. 1D). In addition, the holding forces required to pull out
the objects were measured (Fig. 1E). These tests were done with
a fixed-base robotic arm to which a gripper bag of radius
L ¼ 4.3 cm was attached, containing ground coffee as the gran-
ular material (Fig. 1 A–C). The bag was filled almost completely
but not stretched out so the grains remained loosely packed and
the gripper was malleable when no vacuum was applied. By
establishing a differential jamming pressure Pjam across the bag’s
latex rubber membrane (0.3 mm in thickness) the packing could
be jammed. Employing a Venturi aspirator, compressed air was
used to generate pressures Pjam around 75 kPa, i.e., the bag was

evacuated down to ≈1∕4 atm—a level easily reachable with a
small vacuum pump. For a wide range of objects, including those
shown in Fig. 1 A and E but also small flashlight light bulbs,
M&Ms®, LEDs, bottle caps, plastic tubing, foam ear plugs,
and a variety of hardware items and office supplies, the pick-
up success rate in 10 trials each was 100%. The magnitude of
the holding force, however, was clearly influenced by the objects’
shape (Fig. 1E). The only objects that could not be gripped were
those in which the gripper membrane could not reach sufficiently
around the sides, e.g., for hemispheres larger than about half
the size of the gripper or for thin disks lying flat, or for very soft
objects like cotton balls.

In the following we focus on spheres as test objects to isolate
contributions from individual gripping mechanisms and perform
quantitative comparisons with model predictions. The gripper
used for these holding force measurements was stationary and
consisted of a rubber bag (0.3 mm in thickness) with average
L ≈ 4 cm, filled with smooth soda-lime glass spheres 100 μm in
diameter to about 80% of the bag volume. The experiment used
an inverted configuration, in which the target object, an acrylic
sphere with radius R, was attached to an Instron 5869 materials
tester and pressed into the gripper bag which itself was fixed to a
flat surface. A differential jamming pressure Pjam was then ap-
plied. The holding strength was measured by pulling the sphere
out of the gripper and recording the tensile force as a function of
vertical extension. A diagram of this setup and typical force-
extension curves for are shown in Fig. 2. Additional measure-
ments showing that the gripper also resists lateral forces as well
as torques (required for force closure (10, 15, 28, 29)) are pre-
sented in the SI Text. The gripping performance was investigated
for different Pjam, R, and surface properties, although for brevity
we focus here on data taken with Pjam ¼ 80 kPa and R ¼ 19 mm.

Focusing on the maximum force that can be sustained prior to
failure, one of the features seen in Fig. 2 is the enhancement of
the holding strength when the interface between the sphere and
the rubber seals tightly for wet or dry smooth surfaces. This seal is
key for the suction effect between the gripper and the sphere.
When it cannot be established, shown for the cases of a porous

Fig. 1. Jamming-based grippers for picking up a wide range of objects without the need for active feedback. (A) Attached to a fixed-base robot arm.
(B) Picking up a shock absorber coil. (C) View from the underside. (D) Schematic of operation. (E) Holding force Fh for several three-dimensional-printed test
shapes (the diameter of the sphere shown on the very left, 2R ¼ 25.4 mm, can be used for size comparison). The thin disk could not be picked up at all.
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layers separated by a single flat membrane provides an
example (Figure 3a and b). Each of the top and bottom
Ecoflex-based layers contained one set of embedded chan-
nels, which ran almost the entire lengths of the legs. Between
these two molded layers, a flat PDMS membrane served to
seal both sets of channels. By actuating the individual
networks, the device could continuously change its shape
from convex to concave (Figure 3b). The freedom to design
each layer separately, and then join them in a single device,
made it possible to tailor the structure of each part to achieve
a function. For example, a ridged texture added to a layer
enhanced gripping (Figure 4).[39] This textured surface is more
compliant than a solid surface of the same material and
provided more traction. Other physical or chemical modifi-
cations to the gripping surface could also be applied.[40]

To demonstrate a soft structure with immediate potential
for use, we built starfish-like grippers. The active parts of
these structures are fully soft: PDMS and Ecoflex are the only
materials used for fabrication; the polyethylene tubing and
nylon string used for lifting are not. The trilayer structure
used here consisted of one active layer made of Ecoflex, a
closing PDMS membrane and a gripping layer formed of
Ecoflex. The gripping layer was either a solid layer of Ecoflex
or a textured surface shown in Figure 4. Each of the networks
for actuating the individual legs used a common inlet.
Polyethylene tubing inserted in the inlet delivered air for
actuation. The actuated legs of the gripper curled about axes
perpendicular to the long axes of the legs. When we applied
pressure to the PneuNets in the top active layer of the device,
the legs curled downward. The actuated response by the

effective curling of the six legs was capable of gripping objects
such as an uncooked egg or an anesthetized mouse (Figure 5).
The soft gripper did not damage/harm the egg or the mouse
during manipulation.

By picking up smooth polypropylene spheres with
increasing diameter and weight, we tested the loading
capacity of the grippers. We used spheres with diameters of
2.5, 5, 7.5, and 10 cm and incrementally loaded them with free
weights until the gripper failed to lift and maintain a grip on
the sphere. This test showed that the grippers described here
were able to maintain a grip on spheres with diameters up to
10 cm and loads up to 300 grams. Adding a modified surface
such as that depicted in Figure 4 to both grippers improved
their ability to lift larger and heavier spheres. The Supporting
Information includes tabulated values for the maximum loads
attained.

Soft robots are promising for applications that require
robotic interactions with delicate objects, and where the use
of feedback sensors is too cumbersome, difficult, or costly to
install. The flexible pneumatic manipulators, upon gripping,
do not concentrate stresses in the way that rigid manipulators
do—the soft pneumatically actuated interface distributes the
force over the entire area of contact. Patterning topography
into the gripping surface created alternating gaps of air and
Ecoflex, increased the compliance of the surface and
improved their ability to grip fragile objects. Because the
PneuNets do not use articulated joints the soft grippers can
manipulate many irregularly shaped objects. Even when
actuated by a single inlet, fingers with PneuNets can have
different local curvatures along their length. Therefore, edges
or protrusions on an object do not interfere with the actuation

Figure 4. a) A close-up photograph showing a textured surface which
has been modified independently of the PneuNets. A set of ridges
formed in Ecoflex provided better traction than a flat surface (this
texture is more compliant than a solid surface because half of the
volume has effectively been removed, and each ridge is pliable and
deforms easily). b) A photograph demonstrating an actuated leg on
the gripper; the individual chambers that make up the network are
visible. The minimum radius of curvature achieved in this design is
less than 5 mm.

Figure 5. The top row shows a 9 cm tip-to-tip PneuNet gripping an
uncooked chicken egg. A string suspends the gripper and assists in
lifting the egg; a tube, visible on the left side of the gripper, runs into
the central portion of the gripper to provide pressurized air for
actuation. On the bottom, a modified version of the starfish-based
gripper with 14 cm tip-to-tip distance; thinner and longer fingers can
pick up a live anesthetized mouse; here also, a string (dashed arrow)
suspends the gripper, and a tube (solid arrow) from the side provides
compressed air. A video of the gripper in action is available in the
Supporting Information.
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Shield) mounted on the hard robot. We could drive the wheels
of the hard robot using the joystick or switch modes and,
using the same joystick, control the motion of the soft robot.
(Supplementary Fig. S1 provides a systems overview of the
communications and control subsystems.)

Multimode operation of legged robot as gripper

The legged soft robot can also be used to grasp objects
(Supplementary Fig. S9). With no sensors on the legs of the
robot for feedback, we pressurized all of its actuators to grip a
fragile object (a light bulb) without causing damage. This
capability is a demonstration of two of the key features of soft
robots: multiple functions from a single device and simple
control resulting in complex motion with mechanical com-
pliance.

Retrieval of an object

We demonstrated the utility of this hybrid system by using
it to retrieve an object: an Apple iPod Nano. Figure 3 shows
still frames from Supplementary Video S1. Figure 3a shows
the object in the middle of a room. Using the joystick, we
drove the hybrid system across the room at its maximum
speed (Fig. 3b). In Figure 3c and d, we deployed the soft robot
by directing it to walk off the back of the hard robot, and

directed it to climb over the iPod. By simultaneously actuating
all four legs (all eight pneu-nets) we caused the legged robot to
grip the iPod. Finally (Fig. 3e), we showed that, by main-
taining the pressure in the soft robot and driving the hard
robot away, we could flip the object over, and drag it to a new
location. The overturned soft robot acted as a skid and pro-
tected the iPod as it was dragged.

Conclusions

The hybrid soft–hard robotic system by Dienno26 used a
mobile hard robotic base with a tethered soft robotic trunk.
Our system differs in that we have a multifunctional soft robot
that is capable of locomotion that is independent of the hard
robotic base unit.

This hybrid system is capable of moving rapidly, with no
physical connection to the operator, over smooth surfaces
using the wheels of the hard robot and then slowly with the
soft robot. The communications system for the hard robot is
already well developed. The load-carrying capability of the
hard robot enables it to support the components, valves,
controllers, and communications systems necessary to run the
soft robot. The soft robot is able to walk (although slowly) and
to grip irregularly shaped objects. The structure of the soft
robot and its connections to the pneumatic tether enable the
combined hard–soft system to provide a protective covering
of an object during retrieval, and to move it—once gripped—
rapidly. This hybrid of hard and soft robots integrates the
benefits of both classes of robots. Systems of this type will
allow complex tasks to be performed under remote control,
using only relatively simple communication and control
systems.

Robots that use this hybrid design may find utility in as-
sisted living (e.g., by helping elderly or immobile people re-
trieve objects from the floor that they would otherwise be
unable to reach), in search and rescue, for tasks involving
some component of a mechanically weak (e.g., wet sand) or
underwater path, when access limits the reach of the hard
robot (e.g., when it is required to crawl under barriers), and in
operations in hazardous environments.

Retrieval of delicate objects by robots has, previously, re-
quired precise motion control and feedback. Our system
separates this complex control problem into two components:
(i) the hard robot—which provides rapid motion (over com-
patible terrain, such as a floor) and carries the weight of the
electropneumatic components; (ii) the soft robot—which
provides a different kind of mobility (e.g., over sand or mud)
and the capability for soft, compliant gripping. Our hybrid
system shifts the complexity of the system from the design of
control software and sensor feedback systems into the phys-
ical properties of the soft robot: the requirement for precise
control and feedback is removed by the introduction of me-
chanical compliance.

Hybrid hard and soft robotic systems are capable of per-
forming tasks that neither can do alone. Although it is true
that there are specialized hard robotic arms with grippers that
could perform the functions we describe here, those systems
are complex, relatively expensive, and require sophisticated
controls. Our system, by contrast, is (i) easy to construct, (ii)
simple to control, and (iii) low in cost. The soft robot in our
system is lightweight, disposable if contaminated or dam-
aged, and capable of multiple functions.

FIG. 3. A series of still frames from Supplementary Video
S1 show the hybrid robotic system retrieving an object (iPod
Nano) from the center of a room (a–f). The hard robot carries
the soft robot to the object (b). The soft robot first acts as a
walker (c–d) and then as a gripper (e). When the hard robot
is driven away (f), the soft robot inverts and protects the
iPod as it is pulled to a new location.
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DRAFT
Fig. 6: Examples of successful sliding grasps; objects are shown in Figure 8a

(a) left to right: tape dispenser, marker,
tube, paper cup, water bottle, cylinder

(b) reference frame

(c) Left to right: cylinder, sun glasses, tube, marker, tape dispenser,
staple remover, tissue, water balloon

Fig. 8: Objects used in grasping experiments

which indicates a tolerance to position uncertainties. Al-
though there are significant differences between the tested
objects, a robot capable of distinguishing between them
could easily select a reliable action sequence for each.
The most difficult object tested was the marker (shown in
Figure 8a), whose outer diameter is smaller than the inner
diameter of the fully flexed fingers. It escapes the grasps
when only caged, and generally falls over when being pushed
(shown in Figure 12). Still, the RBO hand managed to grasp
the marker in eight positions, which cluster in two regions
and correspond to two distinct grasp mechanisms. Exploiting
these two displacements necessitates a very precise position-
ing of the object though.

Examples of other sliding grasping failures are show in
Figure 12.

C. Surface-Constrained Grasp Results

The surface-constrained grasp exploits the support surface
to guide the grasping motion, leveraging the strengths of
a highly compliant hand. The tested objects are shown in
Figure 8. For each experiment, the hand is positioned above
the object and approaches the table surface from top down,
with the palm pitched at 45�. The individual steps are shown
in Figure 9. In these experiments, the hand displacements
were varied relative to the object.

Fig. 10: Examples of a successful surface-constrained grasps;
objects are shown in Figure 8c
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Fig. 11: Surface-constrained grasp success probability under
object placement variation

The results in Figure 11 are similar to those of the first
experiment in Figure 7. All objects show a contiguous region
in parameter space. This is expected when using compliant
mechanisms, as they often exhibit gradual failure modes
rather than abrupt changes in performance. The regions of
success are comparable to other compliant hands as surveyed
in [6]. Even though object properties vary significantly, the
regions of success possess large overlaps—an indication that
the RBO Hand indeed is able to grasp many objects without

6.1. Postural diversity of the Feix taxonomy

To assess the dimensionality of the attainable grasp posture
space, we first have to assert that the grasp set we use to
sample from that space is diverse enough, i.e. that the
employed grasps span the space of possible grasps. For
this, we recorded humans doing Feix taxonomy grasps
using the method published by Santello et al. (1998), and
compare the results with existing published data sets (the
data published in Santello et al. (1998), the UNIPI data
set,

1

, and UNIPI-ASU data set.
2

In the experiment, we asked five healthy human partici-
pants to enact every grasp of the Feix taxonomy five times
while wearing a Cyberglove II data glove, using exactly the
same objects as used for the experiment in the previous
section. Participants were allowed to use the other hand to
assist in assuming the grasp posture, but had to achieve a
successful grasp in the sensorized hand without additional
support. The resulting postures were sampled 50 times
within 500 ms and averaged over samples and episodes.
We then performed dimensionality reduction by applying
principal component analysis (PCA) for each subject indi-
vidually to exclude inter-subject variance in accordance
with the data analysis used in Santello et al. (1998). We
then compared the resulting residual unexplained variances
with data from literature.

The results are shown in Figure 14. For four out of five
participants, the unexplained variances were higher than
those of the three independently published data sets, sug-
gesting that the grasps span the space of possible grasp

postures more effectively than the considerably larger but
less structured set of objects that was used for the data sets
we compare with.

The discrepancy between the published data sets and
ours may be explained by the fact that the Santello and
UNIPI data sets were recorded on grasping imagined

Fig. 13. Performing grasps using the grasp postures 25, 1, 9, 28 and 18: a human places the hand and then triggers the actuation of
the appropriate grasp; top, pre-grasp posture; middle, executed grasp; bottom, lifting object to show success.
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Figure 12.
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horizontal resistive forces across a range of tube diameters. In
vertical pull tests with the 50.8 mm diameter tube, the boa-
type gripper without foam had an average maximum holding
force of 52.9 N, whereas peak average force of the actuator
with foam was 44 N (Fig. 12). Furthermore, in experiments in
which the tube diameter was reduced to 25.4 and 12.7 mm,
the holding force remained high compared to the bellows-
type actuator (Fig. 14).

In horizontal pull tests, the boa-type gripper actuator
without foam had higher resistive forces (peak average
of 56.8 N), whereas the resistive force of the actuator with
foam was approximately half (approximate peak average of
26.9 N) (Fig. 13). This is likely because of the differences
in friction coefficients between silicone rubber and foam on
the acrylic tube. When the tube diameter was varied for the

boa-type gripper with foam, the peak average resistive forces
were similar and were 23.8 N for 12.7 mm and 22.4 N for
25.4 mm diameter tubes (Fig. 15).

Pilot Study

In a small pilot study, we brought the Deep Reef ROV and
soft robotic grippers to the Gulf of Eilat in the northern Red
Sea. To our knowledge, these field trials were the first to
demonstrate deep sea marine biology collection and manip-
ulation with soft robotic grippers. Figure 16 presents the two
gripper configurations that were evaluated: one with two
opposing pairs of bellows-type actuators (Fig. 16A) and the
other with a single boa-type actuator (Fig. 16B). Both gripper
configurations were operated from a single hydraulic source
and had memory foam lining on the actuators and the palm.
Using the bellows-type gripper we retrieved a red soft coral
(Dendronephthya sp.) after landing the ROV on the sea floor.
The four bellows-type actuators gently closed around the
specimen without damaging any of the branches. The boa-
type gripper proved very effective at wrapping around long
and narrow (<12 mm diameter) coral whips that extended
vertically from the sea floor. The large effective range of
motion of the boa-type actuator combined with the coiling
effect reduced the burden on the operator to position the ROV
and gripper in the optimal position. We repeatedly demon-
strated that once a specimen was in reach, the boa-type ac-
tuator could draw it in and close around it. This is an
important capability because the seafloor is not always suit-
able for landing the ROV (e.g., rough terrain, risk of stirring
up sediment, or tangle hazards such as fishnets may be
nearby). Consequently, the operator must try to maintain a
stable hover under external influences (i.e., currents and

FIG. 14. Vertical load–extension response of the boa-type
gripper with foam for three different diameter acrylic
tubes—12.7, 25.4, and 50.8 mm diameter. Color images
available online at www.liebertpub.com/soro

FIG. 15. Horizontal load–extension response of the boa-
type gripper with foam for three different diameter acrylic
tubes—12.7, 25.4, and 50.8 mm diameter. Color images
available online at www.liebertpub.com/soro

FIG. 16. (A) Bellows-type gripper collecting soft coral
(Dendronephthya sp.) with inset image showing the sample on
the deck of the ship. (B) Boa-type gripper collecting an Alcyo-
nacean whip coral at a depth of 100 m. The arm and gripper were
visually controlled using the Deep Reef’s onboard cameras.
Color images available online at www.liebertpub.com/soro
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Fig. 4: This is a view of the inside of the finger. Through the
translucent rubber, the constraint layer and the bend sensor
are visible.

Fig. 5: Views of an individual finger and the entire hand.

motor controllers connected to a PC and controlled via serial
messages sent from a ROS node. Each sensor within a
finger is connected to an Arduino micro controller running
rosserial. To complete the hand, we made a compliant palm
out of a very soft rubber (Ecoflex 00-10).

IV. HAPTIC OBJECT IDENTIFICATION
Our goal with this hand is to enable the robot to pick

up objects and, based on internal sensing data, identify the
object. To achieve this we first characterize the relation
between hand configurations and sensor readings. Then, we
present a data-driven approach to identifying an object based
on sensor readings.

A. Modeling the sensor noise
Our hand attains different configurations as it interacts

with the environment and grasps objects. We define a con-
figuration of our hand as a vector q = [q1, q2, q3], where
each q

i

2 Q represents the way finger i is bent. Q is the
configuration space of a finger: that is, the space of all
different shapes our soft finger can achieve. For a given
configuration of the hand, we get sensor readings s =

[s1, s2, s3], where each s

i

represents the sensor reading for
finger i.

Our sensor readings are noisy. Therefore, we represent
the sensor reading given a hand configuration as a proba-
bility distribution, p(s|q). We assume the sensor value on a
finger is independent of the configurations of other fingers,
and therefore the sensor model of the whole hand can be
expressed in terms of the sensor model for each finger:

p(s|q) =
3Y

i=1

p(s

i

|q
i

) (1)

We can model p(s

i

|q
i

), the sensor noise for a finger,
in a data-driven way by placing the finger at different
configurations and collecting sensor value data. In Sec. V-A
we present experiments for such a characterization, where we
use constant curvature configurations of the unloaded finger.

Note that when the finger is loaded, for example during
an actual grasp, the resulting finger configurations and the
corresponding sensor readings display significant variation
due to the highly compliant nature of the fingers. Therefore,
to identify objects during grasping, we use data collected
under the grasp load, instead of assuming that the unloaded
sensor model applies to the loaded case.

B. Object identification through grasping
When our hand grasps an object, it attains a certain

configuration. We use the sensors on the hand to predict
the hand configuration, which we then use to identify the
grasped object.

The grasping configuration for an object can be different
for different types of grasps. In this work we focus on two
types of grasps: enveloping grasps (Fig. 10d, 10e) and pinch
grasps (Fig. 10a, 10b, 10c, 10f, 10g, 10h). For a given ob-
ject, o, we represent the configuration during an enveloping
grasp as qenvel

o

; and we represent the configuration during a
pinch grasp as qpinch

o

.
For a given sensor reading s and a grasp type g 2

{envel, pinch}, we define the object identification problem
as finding the object with the maximum likelihood:

o

⇤  argmax

o2O
p(qg

o

|s) (2)

where O is the set of known objects and o

⇤ is the predicted
object. Applying Bayes’ rule and assuming a uniform prior
over finger configurations, the above formulation becomes:

o

⇤  argmax

o2O
p(s|qg

o

) (3)

In our experiments we use k-means clustering to build
models of p(s|qg

o

) for different objects and grasp types. Then,
we identify the object for a new grasp (Eq. 3) using a k-
nearest neighbor algorithm. The implementation details are
presented in Sec. V-C and Sec. V-D.

V. EXPERIMENTS AND RESULTS
In this section, we describe the experiments we performed.

The first experiment characterized the resistive sensor within
each finger. The second experiment performed grasping tests
to cluster and then to identify objects based on the sensor
values.

1701
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• Closing loop between soft manipulation and visual perception has been less addressed.

• We employ an RGB-D vision to go beyond simple grasping and to enable soft hands to do 
advanced object manipulation.
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2 Using Vision for Pre- and Post-grasping Object Localization for Soft Hands

RGB-D Sensor

Soft Hands

Assembly Parts

(a) System setup (b) Soft hand

Fig. 1: System overview. Our system is composed of the Baxter robot augmented
with two soft hands and an RGB-D sensor a�xed to its torso. Assembly parts are ran-
domly placed on the table, so the positions and orientations of the parts are unknown.
The RGB-D sensor localizes the parts on the table in the pre-grasping phase and inside
the hand in the post-grasping phase. The RGB channels are used for identification of
the white soft fingers, while the depth channel is employed for the depth-based object
localization.

of objects. Softness, however, often reduces the confidence of the object state in
the gripper since the pose of the object is more uncertain due to the flexibility of
the soft fingers. In-hand object localization is thus needed for advanced object
manipulations requiring accurate pose.

The goal of this paper is to develop algorithms for grasping and manipulation
using soft hands and visual pose feedback. Fig. 1a illustrates our system setup
in which the Baxter robot is augmented with two soft hands and an RGB-D
sensor attached to its upper torso. We use vision for localizing objects presented
to the robot on a table top, as well as determining the pose of a grasped object.
Fig. 1b shows one of our soft hands which is composed of four soft fingers actu-
ating pneumatically [2]. An RGB-D sensor is employed to localize objects in the
workspace of the robot in the pre-grasping phase and to detect soft fingers and
the objects in the post-grasping phase. Our approach does not rely on proprio-
ceptive force sensing, yet it is capable of assembly operations requires precision.
To the best of our knowledge, this is the first attempt to use a vision-based
object localization for soft hands capable of assembly tasks.

This paper is organized as follows. We explain the details of our technical
approach in Section 2 wherein the problem statement, pre- and post-grasping
object localization are presented. Section 3 presents the experimental setup and
two evaluations described in Section 3.1 and Section 3.2.
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Localization via ICP

810x
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Pre-grasping Object Localization

9

Goal: To estimate the 6-DOF pose of each object on a table

t 2 R3

Ri 2 R ⇢ SO(3)

• Planar segmentation (table-top assumption)

• For each foreground object point cloud

• center location

• a set of rotations (in-plane)

• An ICP algorithm is initialized

• The maximum likelihood pose is chosen for each object
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In-hand Object Localization (IOL)

10

• The hand regions are estimated from a Gaussian naive Bayes classification (H & S).

• The detected finger regions are then ignored in the depth-based object localization. 

RGB Hand detection Depth Normal

Occlusions by fingers!

Goal: To estimate the 6-DOF pose of the object in the hand
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Evaluation

12

• Compare hard and soft hands

• With and without the IOL

• 4 configurations: H, HI, S, SI

• Fixed the locations of the blocks on the table

• 50 trials with Gaussian noise in object pose estimates

13 cm

10 cm

12.8 cm

10 cm
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Evaluation

13

• if two blocks are lifted together, success

• otherwise, failure

pre-grasping post-grasping IOL approaching

insertion

lifting
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Localization via ICP

• Perception is solved!

14

Hard Hand Hard Hand with the IOL

Soft Hand with the IOLSoft Hand
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Localization via ICP

• Perception is solved!
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Hard Hand Hard Hand with the IOL

Soft Hand with the IOLSoft Hand



Choi et al., Using Vision for Pre- and Post-grasping Object Localization for Soft Hands, ISER 2016

Evaluation: Fixed + Noise

16

Using Vision for Pre- and Post-Grasping Object Localization for Soft Hands 9

Fig. 5: Plots of the results with respect to Gaussian noise in the object pose.
Each of the four configurations was executed 50 times with a series of pre-generated
Gaussian noise in the block object pose. Each square represents one trial in which its
location and orientation depict the Gaussian noise in the translation (x and y) and
the orientation (✓). A white square means unsuccessful to grasp the object; a lightly
shaded blue square represents successful grasping but failure of assembly, while the
dark blue square shows successful grasping and assembly. The symbol + represents
the origin of the object coordinate frame.

number of successful trials is noticeably increased. Another direction to compare
is the hard hand (first row) and soft hand (second row). If we look at the left
column showing the results without the IOL, we see a noticeable improvement
in both grasping and assembly tasks. It demonstrates the adaptability of the soft
hands with respect to pose noise. In the lower plots, even if the block is o↵ about
4cm in both axes, the soft gripper can grasp the noise-perturbed object, while
the hard gripper shows less promising results. The compliance of the soft gripper
plays an important role even with the IOL, as can be seen in the right column.
These experimental results clearly show the e↵ectiveness of the compliant soft
grippers, which are adaptable to the noisy pose estimates, as well as of the IOL.

Table 1 presents the results of the four configurations in terms of the numbers
of each result and the success rates. If we compare the hard hands (H, HI) with
the soft hands (S, SI), we notice a significant improvement in the success rate of

Compliance of Soft Hand Effectiveness of IOL
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Table 1: Success rates for 50 trials of the Gaussian noise experiment.

Measure
Hard Hand Soft Hand

¬IOL (H) IOL (HI) ¬IOL (S) IOL (SI)

# of Failure 27 23 11 11
# of Grasping 18 7 26 9
# of Assembly 5 20 13 30
Successful Grasping† 46% 54% 78% 78%
Successful Assembly† 10% 40% 26% 60%

† The success rate of grasping considers both ‘# of grasping’ and ‘# of assembly’.

grasping. The success rate of grasping for hard gripper is about 50% on average,
while that for soft gripper is almost 80%. Even when the pose estimate of each
object was perturbed, the soft gripper tends to adapt to the pose error due to
the flexibility in the soft materials. Another notable di↵erence is the success rate
of the block assembly between the configurations with and without the IOL. For
the hard gripper, the IOL enables the Baxter to assemble the blocks correctly
and thus the success rate is four times higher than without the IOL. Similar
e↵ects can be found in the soft gripper, where SI shows 60% success rate while
S is successful about one fourth. Running the IOL reduces uncertainty in the
pose of the in-hand object, and thus it increases the success rate of the block
assembly task which requires a tight tolerance.

3.2 Evaluation of the Complete System

In the second evaluation, we compare the four configurations in less constrained
settings. The setup is similar to the experiment in Section 3.1, but the two blocks
are randomly placed on the table and the robot randomly picks one of the blocks
and connects it to the other block. The Gaussian noise is not added to the pose
estimate from the pre-grasping object localization. This setting is to evaluate
the complete system with uncertainties from the pose estimate of the object
localization algorithms, planning trajectories, robot calibration, etc.

Table 2 shows the success rates of the block assembly on the table in the four
configurations. As we explained in Section 3.1, our pre-grasping object localiza-
tion returns sub-millimeter accuracy in translation and sub-degree accuracy in
rotation. Without the additional Gaussian noise, we notice that grasping the
block object is not a challenging problem for both hard and soft hands. It is,
however, still challenging for the assembly task. When the hard hand is consid-
ered without the IOL, the success rate is only 41%. But the same hand with the
IOL improves the success rate of the assembly task to 66%, which is more than
20% improvement. A similar trend can be observed in the soft hand configuration.
Without the IOL it is successful in 72% of trials, but using the IOL enables it to
succeed in over 90% of trials. If we compare hard and soft hands, we notice that
there is about 30% improvement when using soft hands (41% to 72% and 66% to

Evaluation: Fixed + Noise
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Compliance of Soft Hand
Effectiveness of IOL
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Localization via ICP

• Perception is solved!
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Hard Hand Hard Hand with the IOL

Soft Hand with the IOLSoft Hand 10x
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Evaluation: Random locations
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Table 2: Success rates for 100 trials of the complete system experiment.

Measure
Hard Hand Soft Hand

¬IOL (H) IOL (HI) ¬IOL (S) IOL (SI)

Successful Grasping 100% 100% 100% 100%
Successful Assembly 41% 66% 72% 92%

92%). These results therefore confirm both the e↵ectiveness of using adaptable,
flexible soft hands and of using the IOL. Together, they can yield successful
manipulation in challenging scenarios.

4 Conclusion

We proposed an object manipulation approach which provides flexibility through
compliant soft hands and dependable accuracy using vision-based localization
algorithms. The color and depth channels were e↵ectively employed for soft
finger segmentation and object localization, respectively. The object pose in the
soft hands is prone to be uncertain due to the flexible deformation of the soft
hands. Nevertheless, our in-hand localization approach is e↵ective in mitigating
this problem. The compliance of the soft hands is adaptable to the uncertainty
in object pose, and thus it is e↵ective for manipulation tasks which require a
tight tolerance.

For future work, we would like to extend this approach to dual-arm manip-
ulation which is capable of more sophisticated manipulation such as assembling
two object parts with two hands in air. This dual-hand manipulation doubles
the uncertainties in both hands and objects. We anticipate that this manipula-
tion will be a challenging scenario for which our in-hand object localization and
compliant fingers can be very advantageous.
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Conclusions

• Soft hands + an RGB-D object localization

• Grasping known objects and connecting two objects

• Soft hands are more robust than hard hands w.r.t. uncertainty.

• In-hand object localization (IOL) enables soft hands to perform an 
assembly task reliably.
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