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Learning Object Grasping for Soft Robot Hands
Changhyun Choi, Wilko Schwarting, Joseph DelPreto, and Daniela Rus

Abstract—We present a 3D deep convolutional neural net-
work (3D CNN) approach for grasping unknown objects with
soft hands. Soft hands are compliant and capable of handling
uncertainty in sensing and actuation, but come at the cost of
unpredictable deformation of the soft fingers. Traditional model-
driven grasping approaches, which assume known models for
objects, robotic hands, and stable grasps with expected contacts,
are inapplicable to such soft hands, since predicting contact
points between objects and soft hands is not straightforward.
Our solution adopts a deep CNN approach to find good caging
grasps for previously unseen objects by learning effective features
and a classifier from point cloud data. Unlike recent CNN models
applied to robotic grasping which have been trained on 2D or
2.5D images and limited to a fixed top grasping direction, we
exploit the power of a 3D CNN model to estimate suitable grasp
poses from multiple grasping directions (top and side directions)
and wrist orientations, which has great potential for geometry-
related robotic tasks. Our soft hands guided by the 3D CNN
algorithm show 87% successful grasping on previously unseen
objects. A set of comparative evaluations shows the robustness
of our approach with respect to noise and occlusions.

Index Terms—Perception for Grasping and Manipulation,
Deep Learning in Robotics and Automation

I. INTRODUCTION

IN robotic manipulation, robust object grasping is an im-
portant prerequisite for advanced autonomous manipula-

tion tasks. While object grasping with robotic manipulators
has been actively studied for decades [1], reliable grasping
of previously unseen objects is still a challenging problem.
The main challenges are the uncertainties in perception and
action. Earlier work has leveraged prior knowledge of object
shape, manipulator, stable grasps, etc. [2]. These model-driven
approaches, however, are problematic when prior knowledge
is partial or not available. Recent work has focused more
on learning from data with hope of generalizing to novel
situations by learning a mapping function from raw sensory
data to a grasp representation [3]. However, these learned grasp
representations are rather limited as they often represent 2D
grasp location and 1D wrist orientation with a fixed grasping
direction, which does not generalize to 6-DoF grasp reasoning
and thus does not utilize full workspace of the robot arm
for grasp planning. Robot hands with hard fingers require
careful positioning to achieve closure grasps. The placement of
the fingers is usually sensitive to uncertainties. To overcome

Manuscript received: September 10, 2017; Revised December 21, 2017;
Accepted February 5, 2018.

This paper was recommended for publication by Editor Han Ding upon
evaluation of the Associate Editor and Reviewers’ comments. This work was
funded in part by the Boeing Company, NSF IIS 1226883, and NSF Graduate
Research Fellowship 1122374.

The authors are with Computer Science & Artificial Intelligence Lab,
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
{cchoi,wilkos,delpreto,rus}@csail.mit.edu

Digital Object Identifier (DOI): see top of this page.

Baxter robot Depth sensor

Objects

Soft hands

Fig. 1: Baxter with soft hands. Our Baxter robot has two soft
hands on its end effectors. A depth sensor is affixed to the upper
torso of the robot, and point clouds from the sensor are used to
predict suitable grasps for soft hands so as to successfully grasp the
objects on the table. The right four figures show our four-finger soft
hand in action. Each finger is controlled by an external pneumatic
actuator and the Baxter’s original parallel gripper actuator is further
controlled to maximize the acquisition region.

this limitation, soft robot hands have been actively studied
and fabricated using soft materials [4]. The main advantages
of soft hands include compliance with external perturbation
and tolerance of uncertainties in actuation and perception [5],
which enable soft hands to be more suitable for manipulating
unknown objects. Moreover, manufacturing of soft hands is
faster and less expensive than their hard counterparts [4].

In this paper, we design a soft robotic manipulation system
which is capable of grasping previously unseen objects. Fig. 1
shows our Baxter robot setup with two soft hands mounted on
its end effectors. A depth sensor, which is affixed to the upper
torso of the robot, obtains partial point clouds of the objects
on the table. Given the input clouds, a 3D CNN model predicts
the likelihood of success of a set of suitable grasps. Together
with the grasp poses, the compliance and adaptability of the
soft hands yield successful grasping of novel objects. The work
described in this paper neither uses proprioceptive sensors nor
3D object models; it learns appropriate grasps from partial
point cloud data and generalizes well to new objects the robot
has never seen before. The main contributions of this paper
are as follows:

• 3D CNN-based grasp prediction: Our approach exploits
the power of a 3D CNN model to predict a set of suitable
grasp poses from a partial 3D point cloud of an object.
While many learning-based approaches have focused on
predicting wrist orientations with a fixed top grasping
direction, our approach predicts both grasping directions
and wrist orientations which determine a set of suitable
grasp poses.

• Vision-based soft hands: Unlike most soft hands demon-
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strating object grasping with human operation or known
object pose, we propose a whole system that combines
vision and soft actuation. In particular, we combine soft
hands with the 3D CNN grasping prediction to reliably
grasp previously unseen objects.

The rationale behind our approach is that the 3D CNN
grasp prediction and soft hands complement each other. A
set of discretized grasp poses from learning-based methods
requires adaptable grasping as there is always a discrepancy
between the predicted grasp pose and real object pose. At the
same time, soft hands necessitate good grasping guidance in
spite of their compliance and adaptability. To the best of our
knowledge, this is the first work to employ a 3D CNN-based
grasp prediction to soft hands. While the work in [6] presented
a learning from demonstration approach for soft hands, the
work employed a marker system to obtain object trajectories,
and thus no learning occurs on the visual perception side. In
addition, their object grasping capability has hinged upon a
set of human demonstrations for a known object. Our work
is different in that it learns a suitable grasp policy from the
partial point cloud of a previously unknown object.

The paper is organized as follows. Section II reviews prior
work in robotic object grasping. After our problem is formal-
ized in Section III, the details of our approach are described in
Section IV. Section V presents experimental results on grasp
pose prediction and object grasping with our soft manipulator.

II. RELATED WORK

Robotic grasping and grasp synthesis have been actively
studied in robotics literature [1]. While there are many ways
to categorize this literature [7], [1], the research approaches
of object grasping can be roughly divided into model-driven
and data-driven approaches.

A. Model-driven Approaches

Classic object grasping approaches rely on prior knowledge.
Such knowledge includes known stable grasp and contact
information, 3D models of objects and manipulators, and their
physical properties such as weights, center of mass, friction
coefficients, etc. [2]. The goal of these approaches is to find a
set of stable force closures to grasp the known objects [8], [9].
Since the models of objects are given, the grasping approaches
are based on object recognition and pose estimation with
known object grasps [10], [11] or grasp candidates sampled
from the known model or simpler geometric primitives [12],
[13]. As reviewing extensive model-driven approaches is be-
yond the scope of this paper, we refer the reader to the
comprehensive literature surveys [1], [7].

B. Data-driven Approaches

While model-driven approaches assume rich prior knowl-
edge, data-driven approaches gain knowledge of objects and
grasping from data. The key idea is to map directly from
visual sensor data to grasp representations. The most popular
representation is the grasping rectangle describing suitable
grasping in the image plane [14], [3], which is of lower

dimension than the traditional grasping parameters such as
the grasping point, the approach vector, the wrist orientation,
and the initial finger configuration [1]. While a simple logistic
regression was proven to be an effective learning algorithm
for object grasping [14], more recently deep neural network
models outperformed the previous method [3]. In particular,
convolutional neural networks (CNNs) have been successful
in generic object recognition [15] due to their end-to-end
feature learning in a hierarchical structure. Following the
success, the CNN models have recently been applied to
robotic graping [16], [17], [18], [19], [20], [21]. Common
approaches employ CNN models to classify feasibility of a
set of grasping hypotheses. Training data has been generated
via crowdsourcing [16], physics simulation with 3D model
database [16], [17], [18], [21], or trial-and-error [19], [22].
Since our approach uses soft hands which are hard to model
in physics simulation and crowdsourcing, we adopt the trial-
and-error scheme to collect the training data with the ground
truth grasp labels annotated manually.

While the most common modality for CNN models is
monocular images, visual perception for object grasping can
potentially benefit from depth data. The main advantages
of using depth data include 1) invariance of photometric
variations, such as color or texture, and 2) exploiting geometric
information closely related to object grasping. Although some
prior works employed depth as a sensory modality, their
usages were restricted to object proposal [19] or 2.5D depth
information [3], [21], [23] without exploiting the full 3D
shape information. Robust 3D reasoning is important for the
object grasping problem, as the problem is closely related to
geometric characteristics and constraints of objects and their
surrounding environments. The work in [23] employed a CNN
model that learns a grasp quality from a depth image. While
their system uses point clouds as a visual input, the CNN
model treats it as 2.5D image not 3D, and thus the object grasp
pose is limited to top grasping. Recently, full 3D CNN models
have been studied and show state-of-the-art performance for
shape-based object recognition tasks [24], [25]. These 3D
CNNs are relatively new models and have great potential for
geometry-related robotic perception.

C. Soft Hands

Robust object manipulation in unstructured environments
is a challenging problem due to the uncertainty associated
with complex and unpredictable environments. Conventional
robot hands, requiring multiple articulated fingers and sensors,
are expensive to manufacture and control, and yet fragile in
these unstructured environments. More adaptive and compli-
ant robotic hands were explored via under actuation [26].
Recently, new types of robot hands have been designed and
fabricated using soft materials [27], [4]. The main advantage of
soft hands is compliance, which is well suited for manipulation
tasks handling delicate, irregular shaped, or unknown objects.
In addition, soft hands are more tolerant of uncertainties in
perception and actuation [5].
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Fig. 2: Grasping directions and wrist orientations. Given an object, our approach discretizes grasping directions to six directions and
wrist orientations to four orientations. The total number of grasp orientations is thus 6× 4 = 24. The grasping directions include both top
grasp δ1 as well as side grasps δ2, · · · , δ6. Each wrist orientation corresponds to the principal axis (dotted gray line) of the box-shaped
object. The discretization step is 45◦. Although these grasping directions and wrist orientations are quite coarse, our soft hands are compliant
enough to adapt to the discrepancy in object orientation.
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Fig. 3: Grasping Pipeline. The pipeline starts from the raw point cloud P and segments object clouds S from P . Each segment cloud is
voxelized to generate a voxel grid G. Our approach is two-fold. First, it predicts the most likely grasping direction δ̂ from G (solid arrows).
Second, given δ̂, the voxel grid is transformed so that the chosen direction δ̂ is from the top of the transformed voxel grid G′. The 3D CNN
then estimates the most likely wrist orientation ω̂ (dotted arrows). Finally, the chosen grasping direction δ̂ and wrist orientation ω̂ determine
the rotation part of the grasp pose, and the translation part of the pose is determined by the contacting voxel with δ̂.

III. PROBLEM FORMULATION

The grasping problem we solve in this paper can be formal-
ized as follows:

Definition 1. Given a point cloud P ⊂ R3, the goal is to
find an appropriate grasp pose Xg ∈ SE(3) for a previously
unseen object o ∈ O that is placed with arbitrary pose in
P within the field of view of the robot.

The grasp pose Xg is in the Special Euclidean group SE(3),
which represents the 3D rigid body transformation, and is
defined with respect to the robot coordinate frame. The point
cloud P is obtained via a depth sensor affixed to a robot with
a known extrinsic parameter Xr

s, by which the cloud P is
transformed from the sensor coordinate frame to the robot
coordinate frame. In P , if multiple objects O exist, a grasping
pose Xg should be estimated for each object o ∈ O. An
important assumption is that

Assumption 1. There is no prior knowledge of the ob-
jects O (e.g. no shape model, weight distribution, center of
mass, friction coefficients, stable grasps configurations, etc.).

We wish to learn to predict Xg directly from data P . As

there are infinite number of poses for a given object o, we
constrain Xg so that our 3D CNN learns effectively as follows:

Constraint 1. The grasping pose Xg ∈ SE(3) is constrained
such that the grasping direction δ̂ is one of six directions: top,
left, left-front, front, right-front, right, and the wrist orientation
ω̂ is one of four orientation: 0◦, 45◦, 90◦, and 135◦.

Fig. 2 depicts six grasping directions and four wrist orien-
tations. The rationale behind this grasping direction and wrist
orientation is in [28] which has shown that grasps orthogonal
to objects’ principal axes tend to be more stable than randomly
sampled grasps. Discretization of grasping orientation is com-
mon in CNN-based grasping approaches as CNNs perform
better on classification rather than regression problems [19],
[21]. Although we chose six grasping directions and four
wrist orientations in this work, this framework can be easily
adapted to a different number of grasping directions and wrist
orientations depending on task requirements. In general, the
more outputs the CNN has, the more training data is required.
The training data amount will increase linearly with respect
to the number of outputs, and hence the computation cost will
increase linearly as well. However, it was recently shown that
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Fig. 4: 3D CNN Architecture. Our network is composed of two convolution layers, one max pooling layer, and two dense (fully connected)
layers. The input layer is the voxel grid G of 32× 32× 32 size, in which each voxel grid has either -1 (unoccupied) or 1 (occupied). The
output layer returns the probabilities of Nδ and Nω classes. In our problem, Nδ = 6 directions and Nω = 4 orientations are considered.
Details of convolution and max pooling layers are described in each layer.

most of the energy, about 80% of the entire computational
effort, is consumed by the convolution layers [29]. If we
add additional approaching directions to the output layers, it
will change only the last fully connected layer. Therefore, the
computation cost will be increased at worst sub-linear.

IV. PROPOSED APPROACH

A. System Overview
Our grasping system is composed of one Baxter robot and

two soft hands attached to its end effectors as shown in
Fig. 1. A depth sensor is affixed to the upper body of the
robot looking down on the table. The flow of our grasping
system is described in Fig. 3. When there are objects on the
table, our system obtains a point cloud P and finds a set
of segmented object point clouds S by removing the planar
background in P1. Each segmented point cloud s ∈ S is then
voxelized to a 3D voxel grid G ∈ ZNg×Ng×Ng where each
voxel in the grid is either -1 (not occupied) or 1 (occupied)
and Ng is the edge length of the cubic voxel grid. During
the voxelization, the point cloud is aligned to the lower center
of G. Given G, our 3D CNN model determines the most likely
grasping direction δ̂ and wrist orientation ω̂, and the chosen
grasp is then executed with our soft hand robot manipulator.
Algorithm 1 explains the details of the grasping prediction
procedure. The algorithm takes the point cloud P and the
trained 3D CNN model N as inputs and returns the set of
grasp poses X ⊂ SE(3) for each segmented object cloud
s ∈ S , i.e. |X | = |S|. The direction δ̂ and orientation ω̂
determine the most likely rotation of the grasp pose Xg , while
the translation t of Xg (i.e. wrist location) is estimated via
the voxel coordinates contacting with δ̂. One may sample the
voxel along the principal axis of the voxel grid, but picking
the center voxel has proven to be effective in our system.

B. 3D Convolutional Neural Network
To determine appropriate grasping directions and wrist

orientations given an input point cloud, we train a 3D con-
volutional neural network (CNN). Inspired by [25], our 3D

1While the tabletop manipulation assumption for object segmentation is
considered in this work, our pipeline can easily accommodate advanced
segmentation approaches, such as [30], [31], in order to relax the tabletop
assumption.

Algorithm 1: 3D CNN Object Grasping
Data: point cloud P , 3D CNN model N
Result: the set of grasp poses X ⊂ SE(3)

1: S ← PlanarSegmentation(P)
2: for s ∈ S do
3: G ← Voxelization(s)
4: p(δ)← N .FeedForward(G)
5: δ̂ ← argmaxδ∈N+ p(δ)

6: G′ ← VoxelTransformation(G, δ̂)
7: p(ω)← N .FeedForward(G′)
8: ω̂ ← argmaxω∈N+ p(ω)

9: t← VoxelCoordinates(G, δ̂)
10: Xg ←

(
Rot(δ̂, ω̂) t

0 1

)
∈ SE(3)

11: X ← X ∪ {Xg}

CNN model is composed of convolution, pooling, and dense
layers. The architecture of our model is shown in Fig. 4. The
input layer is a 32×32×32 3D voxel grid G which is voxelized
from the raw 3D point cloud. There are two convolution layers
where the first and second layers have 32 filters of 5× 5× 5
and 3× 3× 3 size, respectively. After the convolution layers,
the data is fed into the max pooling layer of 2×2×2 followed
by two dense layers, 128 and Nδ + Nω each. Unlike the
model in [25], the output layer of our model is activated via
the sigmoid function instead of the softmax function because
the output should be Nδ + Nω independent probabilities not
the probability distribution over Nδ grasping directions and
Nω wrist orientations. (i.e. 0 ≤ p(δi), p(ωj) ≤ 1 where
i = 1, 2, · · · , Nδ, j = 1, 2, · · · , Nω , not

∑Nδ
i=1 p(δi) = 1 and∑Nω

j=1 p(ωj) = 1.) Hence, our loss function is defined by the
binary cross-entropy instead of the categorical cross-entropy.
We use the binary voxel grid in the input layer, which has
only a binary state (occupied or unoccupied) in each voxel,
as [25] reported the performance difference between binary,
hit, and density grid for object recognition tasks is negligible.
Although we designed this model for soft hands grasping,
we believe that this approach is general. So it should be
applicable to arbitrary robot end effectors, hard and soft hands
and parallel jaw grippers, by adjusting Nδ and Nω depending
on the compliance of the end effector.
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C. Soft Hand Control

Once the grasp pose is determined by the 3D CNN, the robot
arm with our soft hand approaches to a target object and grasps
it. Our soft hand in action is shown in Fig. 1, and its detailed
design and fabrication methods are explained in [27]. Each
hand has four soft fingers which are controlled by a set of four
external pneumatic actuators. Two parts connect these fingers
to the wrist of the Baxter robot arm; one part connects one soft
finger and similarly the other part connects three fingers to the
wrist. The wrist has a linear sliding actuator which controls
the distance between the two parts. In total, there are five
control inputs for one soft hand. While it is possible to learn
to control this 5-D control parameters, it requires substantial
grasp data for training. Instead, we employ a fixed two-state
control policy which has open and close states2. One of the
main benefits of soft hands is that it is simple to control due
to the innate compliance of soft hands.

D. Training with Grasping Data

To prepare the object grasping dataset, we chose 10 training
objects (Fig. 5a). Each data entry has a voxel grid converted
from a partial point cloud and its associated ground truth label
by executing with our soft hands.3 We have collected 719
labeled data entries for the 10 training objects. We further
augment the training dataset by transforming the voxel grids,
such as mirroring and translating, and the total number of data
entries is 21, 570.4 The ground truth labels were also adjusted
when the voxel grids were mirrored. The network was trained
with the adadelta optimizer.

V. EXPERIMENTS

To evaluate the effectiveness of our approach in object
grasping tasks, we run a set of comparative evaluations.
Five approaches, including our approach, are compared: 1)
3DCNN, our approach described in this paper which predicts
the probability of grasping directions and wrist orientations
via our 3D CNN. 2) RAND, it randomly chooses one of the
grasping directions and wrist orientations instead of estimating
them from the CNN. It serves as a baseline showing the effec-
tiveness of the soft hands without the use of visual perception.
3) SVM, an approach using Support Vector Machine (SVM). A
voxel grid is flattened and used as a (32× 32× 32 = 32, 768)
dimensional feature vector. As there are multiple feasible
grasping directions and wrist orientations for a given voxel
grid, a set of multiple binary SVM classifiers was separately
trained on each grasping direction and wrist orientation. In
this experiment, Nδ +Nω = 10 SVM classifiers were trained
on the training dataset. 4) PCA, an approach using Principal

2In the open state, there is no air pressure applied to the soft fingers and
the distance between one and three fingers is the longest. In the close state,
maximum air pressure is applied to the fingers and the distance between
fingers is the shortest.

3Each ground truth label has two binary vectors lδ ∈ RNδ+ , lω ∈ RNω+
where lδ(i) = 1, lω(j) = 1 if δi, ωj are successful grasps. Otherwise,
lδ(i) = 0, lω(j) = 0.

4For each voxel grid, we flipped left and right followed by 14 translations
(4 translations in x and y (-2, -1, 1, 2) and 6 translations in z (1, 2, · · · , 6)).
In total, 719× 2× (1 + 14) = 21, 570 training voxel grids were obtained.

block csail mug detergent football logitech joystick

noodle cup paper cup rolling pin watering can wipe

(a) Training objects

blocks brush popcorn box ps joystick

sb mug shoe shower soap vitamin ziploc box

banana

(b) Test objects
Fig. 5: Training and testing objects. We use the 10 training
objects to train our CNN and evaluate its performance on the 10
test objects. Please note the shape differences between the training
and test objects.

Component Analysis (PCA). Given a voxel grid, this approach
estimates the first principal component (PC) which is often
aligned with the principal axis of the voxel grid. If the PC
is upright (i.e. the orientation of PC is more than 45◦ from
ground surface), its grasping direction is one of the side grasps
(δ2, δ3, · · · , δ6). Otherwise, its grasping direction is the top
grasp δ1. In the former case, the voxel grid is transformed
as shown in Fig. 3, and the wrist orientation is determined
by the x,y values of the PC, which are corresponding to
the wrist orientation as shown in Fig. 2b. This is an example
of human engineered approaches. Since the PCA is a purely
geometric approach, it does not require a training phase and
predicts only the best grasping direction and wrist orientation.
5) FCN, an approach based on a fully connected network which
has two hidden layers followed by two dropout layers for
regularization. This is a baseline highlighting the performance
difference between convolutional network and multi-layer neu-
ral network.

A. Grasp Pose Prediction

TABLE I: Grasping prediction accuracy on the test dataset.

RAND PCA SVM FCN 3DCNN

Grasping Direction (%) 26.67 96.55 93.09 100.00 97.60
Wrist Orientation (%) 31.67 97.49 80.84 72.73 99.77

In this experiment, we evaluate the accuracy of grasp pose
prediction in a test dataset. The test dataset is composed of 638
voxel grids from the 10 test objects and their corresponding
grasping direction and wrist orientation labels. For each ap-
proach, if the chosen grasping direction and wrist orientation
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Fig. 6: Prediction accuracy with respect to noise and occlusions. The prediction accuracies of grasping direction δ̂ and wrist orientation
ω̂ for five approaches are reported with different degree of noise and occlusions. We added artificial random noise voxels to the set of test
voxel grids. We randomly removed some of consecutive voxel planes to mimic occlusions. The solid lines represent means and the shaded
areas depict standard deviation.

belong to the labels, they are regarded as accurate prediction,
otherwise inaccurate. As the RAND and PCA approaches only
return one hypothesis for a given input, for fair comparison
the best hypothesis is chosen for the other approaches and
compared with the labels. The grasping accuracy on the test
dataset is reported in Table I. Among the five approaches,
the RAND approach reports the worst performance in terms
of accuracy. The random choice of grasping direction is
slightly better than 25% since the expected chance is 1

Nδ
where Nδ = 6 and some objects allow multiple grasping
directions due to their symmetry. The PCA works reasonably
well, but we noticed that it returns a wrong prediction when
the partial voxel grid does not give a clue to its complete
shape. The SVM is worse than the PCA, in particular in
its wrist orientation. The FCN shows perfect prediction in
grasping direction, but it turns out that the FCN was overfitted
to top grasping direction δ1. Since all examples in both
the training and test datasets allow δ1 direction, it always
predicts the top direction as the highest probability rather than
considering the side grasps. Moreover, its wrist orientation
prediction is the second worst among the five approaches.
By comparing the FCN and 3DCNN, our 3D CNN is much
more capable of predicting right wrist orientation, although
both approaches use deep neural networks. We ascribe this
outstanding performance of the 3D CNN to its 3D structure
reasoning. Whereas the FCN simply treats the voxel grids
as real valued features, the 3DCNN examines the geometric
structures of the voxel grids with learned 3D voxel filters. This
difference leads to the significant distinction in the prediction
accuracy. The PCA is the second best approach among the five
approaches, but we will see in the next section how it degrades
with noise and occlusions.

B. Robustness to Noise and Occlusions

Since voxel grids are obtained via segmentation, it is
common to have unexpected noise, wrong segments, or occlu-
sions. In this section, we compare the robustness of the five
approaches with respect to noise and occlusions. To this end,
we add artificial noise to voxel grids or randomly remove some
of voxels to simulate occlusions. The prediction accuracies of
the five approaches with noise and occlusions are reported in
Fig. 6. For statistically meaningful results, we ran 30 times for
each noise level and calculated mean and standard deviation
of the average prediction outcome.

For the grasping direction, both the SVM and PCA ap-
proaches are getting more and more inaccurate as the number
of noise voxels and the number of occluded voxel planes are
increasing. Especially, the PCA is seriously perturbed by the
noise voxels. Since the PCA mainly relies on the principal
axis of objects to reason about the grasping direction, a few
number of noise voxels are critical to the approach. The SVM is
relatively less sensitive than the PCA, but the accuracy of the
SVM monotonously decreases as noise and occlusions increase.
The FCN is not affected at all by either noise or occlusions
because the grasping direction by the FCN is overfitted to the
top grasp, while the 3DCNN approach is slightly disrupted by
occlusions.

For the wrist orientation, the 3DCNN approach clearly
outperforms all other approaches. The FCN is not encouraging
for predicting wrist orientation. It consistently performs worse
than the SVM baseline. The PCA is seriously affected by
noise, and when occlusions are severe its prediction is even
worse than guessing randomly, RAND. From this evaluation,
we notice that the 3DCNN approach is more robust than the
other approaches. We attribute the superior performance of
the 3DCNN to the hierarchical structure of CNN wherein the
convolution with the learned filters effectively suppress noise
voxels and the amalgamation of multi-layer responses enables
our approach to predict robustly even with serious occlusions.

C. Object Grasping with a Soft Robot Hand
In this experiment, we run an object grasping experiment

in which the goal is to pick up a given object on the table.
We placed each object on the table with a random location
and pose. The robot system and its experiment setting is
shown in Fig. 1. If the system can grasp and lift the test
object for more than 3 seconds, it is regarded as success. If
the system cannot grasp the object or the object slips from
the hand within 3 seconds, it is counted as failure. While
in the previous experiments each approach chose one best
grasp pose, in this experiment each approach examines a set of
grasp poses whose probability is over a certain threshold value
τp = 0.5. The set of grasp poses is sorted in decreasing order
of their probability. The system tries the best grasp pose first
to check for feasibility. If the best grasp pose is not feasible
due to the kinematic constraints of the robot, it tries the next
best pose until it is able to find a valid trajectory plan. We
have tried 10 times for each object with varying locations and
orientations. Since there are 10 test objects and 5 approaches,
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Fig. 7: Grasping success rates on real robot. The successful grasping rates of five approaches on the 10 test objects. The plot clearly
shows the effectiveness of our approach, 3DCNN, which achieves 87% of successful grasping for previously unseen objects.

Fig. 8: Successful grasps of the 3DCNN approach. Our approach reliably grasps various objects even if these objects are unknown to the
robot. The 3D CNN model generalizes for these previously unseen objects and enables our soft hands to approach to right directions and
wrist orientations for grasping.

Fig. 9: Unsuccessful grasps of the RAND approach. Though our soft hands are compliant and adaptable to a certain degree of discrepancy,
random trials often result in poor grasping as shown here. It clearly shows that an appropriate grasp pose is crucial even for these compliant
soft hands.

Fig. 10: Unsuccessful grasps of the 3DCNN approach. For each object, two images depict the pre-grasping and post-grasping situations.
Although grasping directions and wrist orientations are right, final grasps are unsuccessful due to either the offsets in the gripper locations
or challenging object poses.

the total number of grasping trials for this experiment was
10× 10× 5 = 500.

Fig. 7 presents the grasping success rate of the five ap-
proaches on the test objects, and the average grasping accuracy
of the approaches are reported in the rightmost bars. Depend-
ing on the type and shape of the objects, the grasping rate of
these approaches varies. However, the 3DCNN approach clearly
outperforms the other approaches in terms of success rate. The
3DCNN approach achieves 87% of successful grasping for the
previously unseen objects; the RAND approach shows about
15% chance of successful grasping; The performance of the
PCA and SVM are similar, while the FCN shows slight inferior
performance. Unlike the previous experiments, this experiment
considers further challenges, such as kinematic constraints and
workspace limitation of robot arms and feasibility of trajectory
plan. As the RAND and PCA return only one grasp pose, they
are rather handicapped, if their chosen grasp poses are infeasi-
ble due to these constraints. The FCN approach is also limited
not only by its inaccurate wrist orientation prediction but also
by its overfitted grasping direction, and hence it is easily

affected by these constraints. This emphasizes the importance
of model capability which is able to generalize to multiple
grasping directions, and it turns out that 3DCNN approach is
more capable of grasping under these constraints.

Some successful grasps of our approach are shown in Fig. 8.
Our 3D CNN learns partial view invariance from the training
data and generalizes to new objects. Moreover, we can see the
synergy effect between our CNN grasping prediction and soft
hands. Thanks to the compliance of the soft hands, the acqui-
sition region of the soft hands for success grasping is large.
This empowers the 3D CNN model to focus on learning the
coarsely sampled grasping directions and wrist orientations,
not worrying about other grasping relevant parameters, such
as detailed shape of objects, minor offset in hand pose, more
complex hand control, etc. Although the grasping directions
and wrist orientations are coarsely discretized, our flexible soft
hands can grasp objects with a discrepancy in orientation. We
also notice the importance of guided grasping direction and
wrist orientation information for the soft hands. Fig. 9 shows
some unsuccessful grasps of the RAND approach. Even though
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our soft hands are flexible and compliant, a good enough grasp
pose is an important prerequisite for successful grasping. By
comparing the accuracies of the 3DCNN and RAND approaches
in Fig. 7, we notice that the 3D CNN enables the soft hands
to perform 72% more successful grasping. The failure cases
of our approach are presented in Fig. 10. For each object, two
images depict the pre-grasping and post-grasping situations
to show how these grasps failed. Please note that grasping
directions are correct, but the final grasps are unsuccessful
due to either the offsets in the gripper locations or challenging
object poses.

VI. CONCLUSION

A deep learning powered grasping approach was presented.
A 3D CNN model was trained with the dataset obtained by
executing grasping with soft hands. Our soft hands with the 3D
CNN model achieved 87% of successful grasping on unknown
objects, which outperforms the other compared approaches
including one other deep neural network baseline. We noticed
the synergy between our CNN grasping algorithm and soft
hands. Our compliant soft hands were able to perform reliable
grasping with the grasp poses determined by our CNN model,
and the grasp prediction by the CNN significantly increased
the success rate by about 72% compared to the approach
without the 3D CNN-based grasp prediction.
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