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Abstract. In this paper, we present soft hands guided by an RGB-D
object perception algorithm which is capable of localizing the pose of an
object before and after grasping. The soft hands can perform manipula-
tion operations such as grasping and connecting two parts. The flexible
soft grippers grasp objects reliably under high uncertainty but the poses
of the objects after grasping are subject to high uncertainty. Visual sens-
ing ameliorates the increased uncertainty by means of in-hand object
localization. The combination of soft hands and visual object perception
enables our Baxter robot, augmented with soft hands, to perform object
assembly tasks which require high precision. The effectiveness of our ap-
proach is validated by comparing it to the Baxter’s original hard hands
with and without the in-hand object localization.

Keywords: soft hands, soft gripper, in-hand object localization, pose
estimation, robotic assembly, vision-guided manipulation

1 Motivation and Related Work

An important prerequisite for object manipulation is estimating the pose of an
object and coping with the uncertainty of the pose estimates. Various sens-
ing modalities, such as proprioception [1,2], visual exteroception [3,4], and con-
tact/force sensing [5] have been employed. Visual sensing allows passive percep-
tion as it does not require contact, and is thus useful in the pre-grasping phase.
Tactile, contact, force, and proprioceptive sensing modalities are useful when
robots interact with objects in the post-grasping phase. The pose of a grasped
object can be quite uncertain as the act of grasping tends to move the object and
increase the uncertainty. Many prior works have combined vision and contact to
decrease uncertainty [6,7,8,9,10,11,12,13].

Soft grippers are more compliant and easier to control than their hard coun-
terparts [14,15,16,17]. The flexible materials of soft hands enable compliance
with discrepancy between their belief space and the real environment; this com-
pliance allows soft hands to be more tolerant of errors in the pose estimates of
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Fig. 1: System overview. Our system is composed of the Baxter robot augmented
with two soft hands and an RGB-D sensor. Assembly parts are randomly placed on
the table, so the positions and orientations of the parts are unknown. The RGB-D
sensor localizes the parts on the table and inside the hand during the pre-grasping and
post-grasping phases, respectively. The RGB channels are used for identification of the
soft fingers, while the depth channel is employed for depth-based object localization.

objects. Softness, however, often reduces the confidence of the object state in
the gripper since the pose of the object is more uncertain due to the flexibility of
the soft fingers. In-hand object localization is thus needed for advanced object
manipulations requiring accurate pose.

The goal of this paper is to develop a reliable object manipulation system
using soft hands and visual pose feedback and to evaluate its effectiveness. Fig. 1a
illustrates our system setup in which the Baxter robot is augmented with two
soft hands and an RGB-D sensor. We use vision for localizing objects presented
to the robot on a tabletop and then determining the pose of a grasped object
in the hand. Fig. 1b shows one of our soft hands, which is composed of four
pneumatically actuated fingers [2]. An RGB-D sensor is employed to localize
objects in the workspace of the robot in the pre-grasping phase and to detect
soft fingers and a grasped object in the post-grasping phase. Our approach does
not rely on proprioceptive force sensing, yet it is capable of assembly operations
requiring precision. To the best of our knowledge, this is the first attempt to use
a vision-based object localization for soft hands capable of assembly tasks.

This paper is organized as follows. We explain the details of our technical
approach in Section 2, wherein the problem statement and object localization
algorithms are presented. Section 3 describes the experimental setup and results
of two experimental tasks. Section 4 discusses concluding remarks and future
work.
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Algorithm 1: Pre-grasping Object Localization

Data: depth image D, object models M, in-plane rotation step ∆, minimum
likelihood τl

Result: object poses X̂ , likelihoods L̂, object indices Ô
1: X̂ ← ∅, L̂ ← ∅, Ô ← ∅ // initialize to empty sets

2: S ← PlaneSeg(D) // segments objects S on a tabletop

3: for s ∈ S do // iterate over all segments S
4: X ← ∅,L ← ∅,O ← ∅ // initialize to empty sets

5: for m ∈M do // consider all models M
6: R← In-planeRot(m,∆) // R ⊂ SO(3)
7: for r ∈ R do
8: {X, l} ← ICP(( r s

0 1 ),m,D) // init pose for ICP [18]

9: if l > τl then
10: X ← X ∪ {X}
11: L ← L ∪ {l}
12: O ← O ∪ {M.index(m)} // index() returns index of

model m in M

13: {X̂, l̂ , ô} ← arg maxL{L,X ,O} // optimal estimate from the most L
14: X̂ ← X̂ ∪ {X̂}
15: L̂ ← L̂ ∪ {l̂}
16: Ô ← Ô ∪ {ô}

2 Technical Approach

Problem Statement: Given objects randomly placed a tabletop, we wish to
enable a robot to grasp an object and connect it to another object on the table
using vision as feedback. The robot is assumed to have soft hands. The objects
have a known geometry M. The stable grasp poses for the objects X oe ⊂ SE(3)
and the extrinsic calibration of the RGB-D sensor Xw

c ∈ SE(3) are assumed to
be known.

2.1 Pre-grasping Object Localization

The pre-grasping object localization estimates the poses of the objects on a pla-
nar table before the robot executes grasping, allowing for a pre-computed stable
grasp to be realized. Algorithm 1 presents the pre-grasping object localization
procedure. It takes the depth image D from an RGB-D sensor and a set of ob-
ject models M as input, and then it returns a set of object poses X̂ ⊂ SE(3)

and their associated likelihoods L̂ ⊂ R+ and object indices Ô ⊂ N. We assume
a table-top manipulation scenario where objects are placed on a planar table.
This assumption allows the robot to segment foreground objects from the planar
background. The function PlaneSeg(D) first fits the plane model to the point
cloud D. Foreground point clouds of the objects are then clustered, and a set of



4 Using Vision for Pre- and Post-Grasping Object Localization for Soft Hands

(a) RGB (b) Hand detection (c) Depth (d) Normal

Fig. 2: Post-grasping object localization. The hand regions (white in 2b) are esti-
mated from a Gaussian naive Bayes classification on the hue and saturation channels
from the RGB channels (2a) in the RGB-D sensor. The detected finger regions are then
ignored in the depth-based object localization (2c, 2d). The red wireframes show the
localized block part. (Best viewed in color)

Algorithm 2: Post-grasping Object Localization

Data: image I, depth image D, object model m ∈M, grasping pose Xo
e ⊂ X o

e

Result: in-hand object pose X̂, its likelihood l̂

1: H ← DetectHandRegion(I, D) // detect hand region H
2: D́ ← D ∩ ¬H // ignore hand region

3: Xw
e ← GetEndEffectorPose() // get EE pose via forward kinematics

4: Xw
o ← Xw

e (Xo
e)−1 // get object pose Xw

o in world coordinate frame

5: {X̂, l̂} ← ICP(Xw
o ,m, D́) // ICP [18]

center positions of the objects S ⊂ R3 is estimated. The Iterative Closest Point
(ICP) algorithm [18] is sequentially executed on each center position. As the
unknown orientation of each object is constrained by the table, a set of in-plane
rotations R with the step ∆ is considered. Hence the initial pose for the ICP
algorithm is set as ( r s0 1 ) ∈ SE(3) where r ∈ SO(3) and s ∈ R3. Among the

multiple ICP executions, the optimal pose estimate X̂ with the most likelihood
l̂ is chosen for each point cloud cluster s. It is worth noting that the depth im-
age D is in the camera coordinate frame, while the initial pose and the optimal
pose estimate are with respect to the world coordinate frame. To transform be-
tween these two coordinate frames, the extrinsic calibration of the sensor Xw

c is
estimated offline. The stable grasp poses for the objects X oe ⊂ SE(3) are also
assumed to be known a priori, and thus a set of grasping poses for each object
is accordingly calculated from the object pose estimates X̂ . Once this is done,
the robot can be commanded to the desired pose and the grasp can be executed.

2.2 Post-grasping Object Localization

A challenge with visual in-hand object localization (IOL) is the occlusions caused
by the grasping fingers. The performance of registration algorithms such as ICP
is often deteriorated by occlusions. It is thus important to remove the regions of
the fingers before running the registration algorithms. Traditionally, reasoning
about finger locations has been done through model-based approaches where
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an articulated shape model is rendered with the current state of joints [13].
However, the deformation of a soft finger is nonlinear so model-based approaches
are difficult to derive and often too computationally intensive to use in real-time.
Furthermore, the deformation of a soft finger varies depending on the grasped
object shape and the contact points between the finger and the surface of the
object.

To address these issues, we adopted a data-driven approach in which a bi-
nary naive Bayes classifier [19] is trained to detect the fingers using the color
data from the RGB-D sensor. Algorithm 2 presents the post-grasping object lo-
calization procedure. The RGB I and depth D images along with the grasped
object model m ∈ M and grasped pose Xo

e ∈ X oe ⊂ SE(3) are given, and the

algorithm returns the refined object pose X̂ with its likelihood l̂ . The function
DetectHandRegion(I, D) detects the soft hand regions H via the naive Bayes
classifier. To train the classifier, D from the sensor is employed to segment the
soft fingers and the background, and the color distributions of the soft finger and
background regions are used as positive and negative training data, respectively.
We adopted the HSV color space and used H (hue) and S (saturation) channels
for better invariance to brightness changes. The color distributions for both the
positive and the negative examples are modeled by the mixture of Gaussians.
The white area in Fig. 2b shows the soft hand regions H detected from the
trained naive Bayes classifier. The region H is then used as an erasing mask for
D so that the in-hand object localization is done on the depth image without
the hand regions D́. The initial object pose Xw

o in the world coordinate frame
w is estimated from the end effector pose Xw

e and the grasping pose Xo
e. Fig. 2c

and 2d show the red wireframes of the object model m with the refined pose X̂
on the depth and surface normal images, respectively.

3 Experiments

We augmented the Baxter with two hands of four soft fingers each as shown in
Fig. 1a. We tasked the robot to pick up one block with one hand then connect it
to the other block on the tabletop. Fig. 3 shows the block assembly procedure and
the step-wise stages of the assembly. Once the Baxter grasps the block object,
it re-localizes the block in the hand with the in-hand object localization (IOL).
It then approaches to the top of the second block on the table and connects
the grasped block to the block on the table. To make sure that the blocks are
well inserted together, it lifts the assembled blocks. If the two blocks are lifted
together, the assembly task is successful, otherwise unsuccessful. The rightmost
column of Fig. 4 shows some successful and unsuccessful examples.

To investigate the effectiveness of the soft hands and the post-grasping object
localization, we compare the two aspects: hard gripper vs. soft gripper, and with
and without the IOL. There are thus four different configurations considered in
this experiments:

1. The hard gripper without the IOL (H): This configuration is using the origi-
nal hard gripper of the Baxter, and not using the post-grasping object local-
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Fig. 3: Block assembly. The assembly procedure (3a) is to connect the block M1 to

the other block M0 with the relative pose X
0
1 ∈ SE(3). The sequence of figures (3b)

shows that the Baxter grasps the block with its left soft hand and inserts it on the
other block. The distance between fingers for both hand types is about 13cm (3c).

ization. This configuration serves as a baseline for comparative experiments
in the following subsections.

2. The hard gripper with the IOL (HI): It uses the original hard gripper, but
it localizes the object after grasping.

3. The soft gripper without the IOL (S): It uses the soft hand instead of the
hard one, but does not localize objects after grasping.

4. The soft gripper with the IOL (SI): This configuration uses the soft hand
and the IOL to localize the object in the hand. It is the configuration of our
system.

We investigate the effectiveness of soft hands by comparing the hard hands (H,
HI) and the soft hands (S, SI) respectively. The effectiveness of the IOL can
also be seen by comparing the performance with (HI, SI) and without (H, S)
the IOL. We compare these four configurations in the two evaluation scenarios
as follows:

1. Evaluation with respect to artificial Gaussian noise in object pose
2. Evaluation of the complete system.

Detailed experimental settings are explained in the subsequent sections.

3.1 Robustness to Object Pose Noise

The purpose of this experiment is to compare the robustness and accuracy of
the object manipulation with respect to the noise in object pose. The considered
manipulation tasks include grasping and insertion. The success of such manip-
ulation depends on object pose estimates which are calculated by the pre- and
post-grasping object localization. The successful manipulation also depend on
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Fig. 4: A grasping and insertion example of the four configurations. The same
Gaussian noise was added to the four configurations, yet the outcome of the insertion
task is different. The added noise in this experiment was not enough to cause grasping
failure, but it does cause insertion failure unless the IOL is used. Thus, using the
IOL makes insertion more robust to pose errors.

the arm trajectories solved from the motion planning algorithm. In order to
evaluate the differences between the four configurations (H, HI, S, and SI), we
minimize extraneous sources of error by maintaining a consistent configuration.
As shown in Fig. 4, we fix the poses of the two blocks on the table and the same
pose estimates are used for the four configurations. In order to ensure consis-
tent object locations, two sheets of white paper were affixed to the table and
the blocks were carefully aligned before each trial. The robot is tasked to pick
up the left block and connects it to the right block. In order to get the begin-
ning poses of the blocks, we execute the pre-grasping object localization multiple
times (100 times in our experiment) and calculate the mean of the multiple pose
estimates.1 It turns out that the accuracy of our pre-grasping object localization
algorithm shows sub-millimeter and sub-degree uncertainties in translation and

1 The pre-grasping object localization was run 100 times. For each pose estimate
Xi =

(
Ri ti
0 1

)
∈ SE(3), the standard deviation of the translation is calculated from

the arithmetic mean of the translation t =
∑

i ti/N where N is the number of
samples (i.e. N = 100). While the translation vectors ti are in Euclidean space, the
rotation matrices are in the special Orthogonal group SO(3). We thus need to take
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rotation, respectively.2 As the uncertainty of the pre-grasping localization is not
significant, we add artificial noise to the object poses for the following evaluation.

To evaluate the effectiveness of the four configurations with respect to the
uncertainty in object pose, we add artificial Gaussian noise to the mean pose
estimates. For fair comparison, we generate a series of Gaussian noise in the
object pose and use the same noise series with each of the four configurations.
As the block objects are on the table, we add Gaussian noise on the plane by
adding in x, y, and θ:

Xi = XX̃i (1)

where Xi ∈ SE(3) is the noise-perturbed pose and X ∈ SE(3) is the noise-
free pose obtained by the mean of the multiple pose estimates from the pre-
grasping object localization. The noise X̃i ∈ SE(3) is sampled from Gaussian
distributions as follows:

X̃i =

(
Rz(θ) t

0 1

)
(2)

where Rz(θ) =
(

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

)
∈ SO(3), θ ∼ N (0, σ2

r) is the 3D rotation along

the z-axis and tx, ty ∼ N (0, σ2
t ) where t = (tx, ty, 0)

ᵀ
is the translation from the

center of the noise-free object pose.3 In our experiment, we used σt = 20mm and
σr = 20◦. Fig. 4 shows a grasping and insertion trial of the four configurations
with the same Gaussian noise. The Gaussian noise for this trial is -13.5mm in x-
axis, 0.6mm in y-axis, and −12.7◦ along z-axis. The error is small enough that all
configurations are successful in grasping the left yellow block. For the insertion
task, however, we can notice that the configurations with the IOL (HI, SI) are
successful, while those without the IOL (H, S) are not accurate enough for the
task. The insertion task requires much tighter tolerance than the grasping task,
and hence enhancing the uncertainty of the object pose in the hand is crucial
for such insertion task.

Fig. 5 presents the plots of the grasping and assembly results with respect
to Gaussian noise in the object pose. By comparing left and right columns, we
notice a significant improvement in the success rate of the assembly operation
in both hard and soft hands. As the IOL refines the pose of the objects, the
uncertainty of the object in the hand is significantly reduced, and hence the

special consideration into this SO(3) space. It is well known that the geodesic metric
on SO(3) is the angle between two rotation matrices d(R1,R2) and the valid mean
of a set of rotation matrices can be estimated from the geometric mean [20]. The
standard deviation in the angle is calculated from the geometric mean.

2 The standard deviations of the (x, y, z) translation in the 100 object pose estimates
are (0.14, 0.46, 0.28) mm and (0.18, 0.38, 0.20) mm for the left and right blocks
respectively. The standard deviations of the angle distance between each rotation
matrix in SO(3) and the mean of the rotation matrices are 0.26◦ and 0.17◦ for the
left and right blocks respectively.

3 The rotational axis of the block object model is the z-axis.
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Fig. 5: Plots of the results with respect to Gaussian noise in the object pose.
Each of the four configurations was executed 50 times with a series of pre-generated
Gaussian noise in the block object pose. Each square represents one trial in which its
location and orientation depict the Gaussian noise in the translation (x and y) and
the orientation (θ). A white square means unsuccessful to grasp the object; a lightly
shaded blue square represents successful grasping but failure of assembly, while the
dark blue square shows successful grasping and assembly. The symbol + represents
the origin of the object coordinate frame.

number of successful trials is noticeably increased. Another direction to compare
is the hard hand (first row) and soft hand (second row). If we look at the left
column showing the results without the IOL, we see a noticeable improvement
in both grasping and assembly tasks. It demonstrates the adaptability of the soft
hands with respect to pose noise. In the lower plots, even if the block is off about
4cm in both axes, the soft gripper can grasp the noise-perturbed object, while
the hard gripper shows less promising results. The compliance of the soft gripper
plays an important role even with the IOL, as can be seen in the right column.
These experimental results clearly show the effectiveness of the compliant soft
grippers, which are adaptable to the noisy pose estimates, as well as of the IOL.

Table 1 presents the results of the four configurations in terms of the numbers
of each result and the success rates. If we compare the hard hands (H, HI) with
the soft hands (S, SI), we notice a significant improvement in the success rate of
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Table 1: Success rates for 50 trials of the Gaussian noise experiment.

Measure
Hard Hand Soft Hand

¬IOL (H) IOL (HI) ¬IOL (S) IOL (SI)

# of Failure 27 23 11 11
# of Grasping 18 7 26 9
# of Assembly 5 20 13 30

Successful Grasping† 46% 54% 78% 78%

Successful Assembly† 10% 40% 26% 60%

† The success rate of grasping considers both ‘# of grasping’ and ‘# of assembly’.

grasping. The success rate of grasping for hard gripper is about 50% on average,
while that for soft gripper is almost 80%. Even when the pose estimate of each
object was perturbed, the soft gripper tends to adapt to the pose error due to
the flexibility in the soft materials. Another notable difference is the success rate
of the block assembly between the configurations with and without the IOL. For
the hard gripper, the IOL enables the Baxter to assemble the blocks correctly
and thus the success rate is four times higher than without the IOL. Similar
effects can be found in the soft gripper, where SI shows 60% success rate while
S is successful about one fourth. Running the IOL reduces uncertainty in the
pose of the in-hand object, and thus it increases the success rate of the block
assembly task which requires a tight tolerance.

3.2 Evaluation of the Complete System

In the second evaluation, we compare the four configurations in less constrained
settings. The setup is similar to the experiment in Section 3.1, but the two blocks
are randomly placed on the table and the robot randomly picks one of the blocks
and connects it to the other block. The Gaussian noise is not added to the pose
estimate from the pre-grasping object localization. This setting is to evaluate
the complete system with uncertainties from the pose estimate of the object
localization algorithms, planning trajectories, robot calibration, etc.

Table 2 shows the success rates of the block assembly on the table in the four
configurations. As we explained in Section 3.1, our pre-grasping object localiza-
tion returns sub-millimeter accuracy in translation and sub-degree accuracy in
rotation. Without the additional Gaussian noise, we notice that grasping the
block object is not a challenging problem for both hard and soft hands. It is,
however, still challenging for the assembly task. When the hard hand is consid-
ered without the IOL, the success rate is only 41%. But the same hand with the
IOL improves the success rate of the assembly task to 66%, which is more than
20% improvement. A similar trend can be observed in the soft hand configuration.
Without the IOL it is successful in 72% of trials, but using the IOL enables it to
succeed in over 90% of trials. If we compare hard and soft hands, we notice that
there is about 30% improvement when using soft hands (41% to 72% and 66% to
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Table 2: Success rates for 100 trials of the complete system experiment.

Measure
Hard Hand Soft Hand

¬IOL (H) IOL (HI) ¬IOL (S) IOL (SI)

Successful Grasping 100% 100% 100% 100%
Successful Assembly 41% 66% 72% 92%

92%). These results therefore confirm both the effectiveness of using adaptable,
flexible soft hands and of using the IOL. Together, they can yield successful
manipulation in challenging scenarios.

4 Conclusion

We proposed an object manipulation approach which provides flexibility through
compliant soft hands and dependable accuracy using vision-based localization
algorithms. The color and depth channels were effectively employed for soft
finger segmentation and object localization, respectively. The object pose in the
soft hands is prone to be uncertain due to the flexible deformation of the soft
hands. Nevertheless, our in-hand localization approach is effective in mitigating
this problem. The compliance of the soft hands is adaptable to the uncertainty
in object pose, and thus it is effective for manipulation tasks which require a
tight tolerance.

For future work, we would like to extend this approach to dual-arm manip-
ulation which is capable of more sophisticated manipulation such as assembling
two object parts with two hands in air. This dual-hand manipulation doubles
the uncertainties in both hands and objects. We anticipate that this manipula-
tion will be a challenging scenario for which our in-hand object localization and
compliant fingers can be very advantageous.
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