
Robotics and Autonomous Systems 75 (2016) 595–613
Contents lists available at ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

RGB-D object pose estimation in unstructured environments✩

Changhyun Choi a,∗, Henrik I. Christensen b

a Computer Science & Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
b Institute for Robotics & Intelligent Machines, Georgia Institute of Technology, Atlanta, GA 30332, USA

h i g h l i g h t s

• A point pair feature describing both geometric shape and photometric color and its application to a voting-based 6-DOF object pose estimation.
• Parallel algorithms significantly accelerating the voting process on modern GPU architectures.
• Effective in unstructured scenes in which the prevailing segmentation-based approaches may not be applicable.

a r t i c l e i n f o

Article history:
Available online 9 October 2015

Keywords:
Pose estimation
RGB-D
Voting scheme
Hough transform
Range sensing
GPU
Parallelization
Bin-picking

a b s t r a c t

We present an object pose estimation approach exploiting both geometric depth and photometric color
information available from an RGB-D sensor. In contrast to various efforts relying on object segmentation
with a knownbackground structure, our approach does not depend on the segmentation and thus exhibits
superior performance in unstructured environments. Inspired by a voting-based approach employing
an oriented point pair feature, we present a voting-based approach which further incorporates color
information from the RGB-D sensor and which exploits parallel power of the modern parallel computing
architecture. The proposed approach is extensively evaluated with three state-of-the-art approaches on
both synthetic and real datasets, and our approach outperforms the other approaches in terms of both
computation time and accuracy.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

As robotic systems are getting deployed from well controlled
space to unstructured environments, they are required to operate
in highly cluttered scenes. A typical scenario involves pick-and-
place tasks, where a robot has to detect the presence of an object
in clutter, to pick it up, and to move to a particular location. An
important challenge is thus designing a system that can detect and
estimate poses for a diverse set of objects. Following the pioneering
work by [1], there have been a large number of efforts to tackle the
6 degrees of freedom (6-DOF) pose estimation problem. In spite
of the considerable attention and efforts, most of the developed
techniques are limited as they perform poorly in the presence
of clutter. In addition, most of approaches are computationally

✩ This paper was presented in part at the 2012 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), Vila Moura, Algarve, Portugal (Choi and
Christensen, 2012).
∗ Corresponding author.

E-mail address: cchoi@csail.mit.edu (C. Choi).
URL: http://people.csail.mit.edu/cchoi/ (C. Choi).

http://dx.doi.org/10.1016/j.robot.2015.09.020
0921-8890/© 2015 Elsevier B.V. All rights reserved.
challenged due to the high dimensional problem space, and thus
the algorithms scarcely perform fast enough for general robotic
manipulation tasks.

For the 6-DOF pose estimation problem, it is a typical assump-
tion that 3D object models are known a priori. With the 3D object
representation, various sensormodalities, such asmonocular cam-
eras, stereo rigs, and laser rangefinders, were employed to calcu-
late the rigid body transform from the object coordinate system to
the sensor coordinate system. While monocular cameras are rel-
atively cheap and popular, these sensors lose depth information
via the perspective projection. Stereo cameras provide depth in-
formation, but the depth information is not reliable for textureless
regions as the depth is typically estimated via the disparity deter-
mined by texture distances. Laser rangefinders provide accurate
depth in exchange for low resolution, high cost, and slow frame
rate. In addition to these sensors, RGB-D sensor is a good alterna-
tive as it overcomes aforementioned restrictions. This sensor can
be regarded as a combination of a monocular camera and an active
illumination depth sensor which estimates more reliable depth on
textureless regions than the stereo camera. This affordable sen-
sor provides depth data along with color image in real-time speed
(30 fps). It is thus of interest to investigate how this sensor can be
utilized for the 6-DOF object pose estimation problem.

http://dx.doi.org/10.1016/j.robot.2015.09.020
http://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
http://crossmark.crossref.org/dialog/?doi=10.1016/j.robot.2015.09.020&domain=pdf
mailto:cchoi@csail.mit.edu
http://people.csail.mit.edu/cchoi/
http://people.csail.mit.edu/cchoi/
http://people.csail.mit.edu/cchoi/
http://people.csail.mit.edu/cchoi/
http://people.csail.mit.edu/cchoi/
http://people.csail.mit.edu/cchoi/
http://dx.doi.org/10.1016/j.robot.2015.09.020

596 C. Choi, H.I. Christensen / Robotics and Autonomous Systems 75 (2016) 595–613
Fig. 1. Overview. Our approach exploits both geometric shape and photometric
color information in point clouds for robust object pose estimation. The estimated
pose of each object is depicted as a color mesh model. Since our approach does
not hinge upon the planar segmentation, it can be applied in highly cluttered
environments wherein the planar segmentation might not be applicable.

In this work, we tackle the longstanding robotic perception
problem, which is estimating the pose of a known object in heavy
clutter. To fully take advantage of the new RGB-D camera, we pro-
pose the color point pair feature (CPPF) that selectively encodes the
geometric surface shape and the photometric color characteristics.
Fig. 1 shows a teaser that depicts the pose estimation results of our
approach in a highly cluttered background.

This paper is organized as follows. In Section 2, various pose es-
timation approaches are revisited, and their advantages and limi-
tations are discussed. After our main contributions are explained
in Section 3, the RGB-D pose estimation approach is prudently de-
scribed in Section 4,where the point pair feature is revisited in Sec-
tion 4.1, and our color augmented pair feature is then introduced in
Section 4.2. We explain the parallelized object learning algorithm
which calculates a set of features from an object point cloud in Sec-
tion 4.3. The voting process on a GPU is shown in Section 4.4, fol-
lowed by the pose clustering in Section 4.5. Experimental results
on various synthetic and real datasets are reported and discussed
in Section 5.

2. Related work

2.1. 2D keypoint descriptors

Object recognition and 6-DOF pose estimation are important
tasks in robotic perception. For the last decade, stable keypoint
descriptors [2,3] have led to successful progress on object recog-
nition. As these keypoint descriptors are invariant to changes in
illumination and moderate geometric transformations, keypoint
correspondences across different images can be reliably deter-
mined. For robotic manipulation, as an object model a set of 3D co-
ordinates of the keypoints is generally required so that a full 6-DOF
object pose can be recovered by a set of keypoint correspondences.
These keypoint coordinates can be calculated via structure from
motion [4] or back-projecting 2D keypoints to a 3D CADmodel [5].

2.2. 2D edges and template matching

The keypoint descriptors are suitable for textured objects, but
a large number of daily or industrial objects lack texture. For less
textured objects, edge features are preferred since they correspond
to the geometric shape or boundaries of the objects. A common
approach is so-called ‘‘Template Matching’’; a set of edge image
templates of an object is known a priori, and in the testing phase
the templates are matched with a given edge image. In classic
computer vision, the chamfer [6] and Hausdorff [7] distances
were proposed as robust metrics, and they were further enhanced
by considering edge orientations [8,9]. Common methods to
extract edge features from an image are image gradient-based,
such as the Canny edge detector [10]. However, these methods
often result in unnecessary edges from surface texture or non-
Lambertian reflectance.Meaningful edges are obtained fromdepth
discontinuities; [11] introduced the multi-flash camera to detect
depth edges by casting shadows from multiple flashes. The sensor
was successfully employed in several bin-picking system [12,13].

Beyond the depth discontinuous edges, there were efforts to
exploit dense depth information for better recognition perfor-
mance. [14] utilized the depth data to detect edges from depth
discontinuities and adopted a template matching of the signed
distance transformed images. [15] combined the image gradient
from RGB channels and the surface normal vectors calculated from
the depth channel. The work employs a large number of templates
for each object to take into account the variability of shape, and
it uses the modern SSE instructions for parallel computation in
CPU. While the initial work learns object templates online, the
later work [16] automatically generates templates from 3D mesh
models. Although this work can rapidly detect objects from RGB-
D scenes, it is not free from the limitations of template matching:
high false positive rates, low accuracy, and not reliable detection
outside the learned viewpoints.

2.3. 3D global descriptors

RGB-D sensor provides depth as well as color information in
real-time. As the sensor is available at low cost, 3D information-
based pose estimation can be more feasible than ever. Unlike 2D
images, 3D datamaintains depth informationwhich plays a crucial
role in registration and pose estimation. The iterative-closest point
(ICP) algorithm [17] has been well-known for the registration of
3D point clouds, but it requires a good initial pose estimate to
guarantee a good registration. The viewpoint feature histogram
(VFH) proposed in [18] encodes four angular distributions of
surface normals on a segmented point cloud. As the VFH is not
robust to occlusion and does not allow full 6-DOF pose estimation,
the clustered viewpoint feature histogram (CVFH) overcoming the
previous limitations was subsequently presented [19]. This work
further extended to combining local keypoint descriptor, shape,
and color features [20], and [21] also reported a similarmultimodal
approach. For scalable object recognition and pose estimation, [22]
proposed a tree structure, yet the pose estimation is limited
in that it can only estimate 1-DOF rotation of the object pose.
Although these approaches can recognize object pose efficiently,
they hinge upon the planar segmentation that removes a known
background plane. Thus all of these approaches are applicable for
well structured table-top manipulation. However, they are not
robust for complex or cluttered backgrounds.

2.4. 3D local descriptors

For object pose estimation in unknown background shapes or
clutter, we cannot rely on the object segmentation. And hence
it is required to hypothesize a set of possible transformations
between an object model and a scene. Like local image keypoints,
several local invariant feature descriptors have been proposed
based on the distribution of surface normal around a point [23],
surface curvature [24], spin image [25], SHOT descriptor [26],

C. Choi, H.I. Christensen / Robotics and Autonomous Systems 75 (2016) 595–613 597
3D shape context [27],1 and relative angles between neighboring
normals [29]. The descriptors are then compared to generate a
set of correspondences between the model descriptors and the
descriptors sampled from the given scene. Since the descriptors
are locally determined, it is common to use a hypothesize-and-
test framework, such as RANSAC [30], in order to estimate a set
of consistent rigid body transformations. While these features are
invariant to rigid body transformations, they are often sensitive to
noise, the resolution difference of point clouds, and the parameters
of the descriptors. As a complete review of existing 3D descriptors
is beyond the scope of this paper, the reader is referred to [31,32].

2.5. Point pair features

Another avenue of pose estimation is to employ voting
processes in which all possible pose hypotheses are aggregated
in a lower dimensional space. An efficient voting scheme with a
point pair feature, defined by two points on surfaces and their
normals, was appeared in [33]. In the learning phase, a set of pair
features from an object point cloud is computed and saved in a
hash table for fast retrieval. In the testing phase, a pair of points is
sampled from the sensor data, and the pair matched to that of the
pairs in the learned model votes for a pose hypothesis. After the
voting process, a set of high votes over a certain confidence level
is aggregated to form a possible object pose hypothesis. The pair
feature can be seen as a successor of the surflet pairs [34], and using
a hash table for fast matching was also appeared in [35,36]. This
approach was recently enhanced by incorporating the visibility
context [37] or considering object boundary information [38].
There are also several variants of Hough transforms [39] using the
SRT distance [40].

The voting algorithm is composed of an amount of repetitive
and independent operations, and thus the algorithm is inherently
possible to be parallelized. Modern graphics processing unit (GPU)
provides massive parallel computation power beyond rendering
purposes, and hence it is a natural idea to design a parallel algo-
rithm to be accelerated on the GPU. One good example of paral-
lel algorithms in computer vision is the particle filter [41], which
is straightforward to be parallelized as the likelihood evaluation
of each particle is independent of the other particles. [42] showed
a preliminary design of a particle filter on a GPU for a simple 2D
object tracking, and some approaches presented GPU accelerated
particle filters for 3D object pose tracking, for which they render
a 3D object model to a GPU and a CUDA kernel directly accesses
the rendering results to calculate importance weights of the parti-
cles [43–45]. The aforementioned work of [14] was parallelized on
a GPU so that the distance transform and the downhill simplex op-
timization are accelerated. [46] showed a parallel implementation
of [33] for an object-based camera localization andmapping. Their
approach is similar to our proposed approach in the sense that the
parallelization was achieved by employing a GPU parallel library,
AMD Bolt C++ library [47].

The point pair feature was also employed in a sampling strat-
egy [48] based on RANSAC [30]. Instead of performing the voting
process, the work samples two points from the given scene and
immediately calculate the transformation between the model and
scene pair features. This approach can recognize the object of in-
terest efficiently in relatively simple scenes, but it usually suffers
from low recall rate unless the number of RANSAC iterations is
big enough. Moreover, it excessively reduces the number of model
point pairs by only considering a set of pairs having a certain point
distance andby reducing the number of features onpopulated hash

1 3D shape context descriptor [27] is a 3D extension of the 2D shape context [28].
slots. It may reduce computation time but certainly degrade the
recognition performance.

The surface point pair feature is well suited to recognize objects
that have rich variations in surface normals. However, it is not very
efficient in representing planar or self-symmetric objects because
a lot of different point pairs fall into the same hash slot. Although
this ambiguity could be ameliorated via the voting process where
different pose hypotheses are aggregated separately, this certainly
degrades its efficiency. Moreover, when there are a large amount
of background clutter in a test scene, a lot of the point pair
features may come from the clutter. If surface shapes of our
object model and the clutter are similar to each other, it is highly
likely to have false feature matches and consequently results in
false pose estimates. As such, we need to prune unnecessary
feature matching for more efficient and accurate pose estimation.
We exploit the RGB color information to prevent potentially
false matches based on the color similarity. To be more robust
to illumination changes, the HSV (Hue, Saturation, and Value)
color space is considered. By using these additional dimensions,
the casted votes are more likely to contribute to true pose
hypotheses. Moreover, the voting process is more efficient since
unnecessary votes are disregarded. Employing color information
for computational perception is not new; a color variant of SIFT
feature [49] is one example. [50,51] used color channels for planar-
patch data association. The SHOT local descriptor [26] was also
augmented with color information in order to represent local
shape and texture information [52].

3. Contributions

Our main contributions are as follows:
• CPPF: We present the color point pair feature which enables

the voting-based pose estimation to bemore efficient. Although
employing color information is not novel idea, to the best of our
knowledge it is the first effort to augment the point pair feature
by utilizing color. We further discuss why it is more accurate
and efficient, and the color quantization learning from data is
also presented.
• Parallelization: Inspired by the parallel operation of the voting

scheme, we present a set of parallel algorithms for pose
estimation. Our approach is significantly accelerated on a GPU
so that it processes an RGB-D scene in about one second.
• Datasets: We present an extensive dataset for the RGB-D pose

estimation problem with ground truth pose information. The
dataset is composed of synthetic and real RGB-D scenes along
with 10 object mesh models, and it is designed for various
evaluations, such as noise, multiple objects single instance,
single object multiple instances, and highly cluttered scenes.

The preliminary result of this work was presented in [53]. The
major improvements in this work compared to the previous work
are as follows:
• Object model: While the preliminary work used a set of partial

point clouds registered in a common object coordinate frame,
this work employs 3D polygonal meshes as object models
(Fig. 6). The former is restricted in terms of view coverage,
the latter is more general as it allows to recognize at any
viewpoints.
• Parallelization: We tackle the inherent computational com-

plexity of the voting procedure by decomposing the computa-
tion into parallel operations. To process one RGB-D scene, [53]
takes more than 30 s, whereas this work only takes about 1 s.
• Evaluations: While [53] was only compared with Drost

et al. [33], this work is rigorously evaluated with Papazov
et al. [48] andHinterstoisser et al. [16] aswell as Drost et al. [33].
GPU-accelerated version of Drost et al. [33] is also compared
(please see Section 5).

598 C. Choi, H.I. Christensen / Robotics and Autonomous Systems 75 (2016) 595–613
Algorithm 1: RGB-D Pose Estimation
Data: M = {(pm

1 ,nm
1 , cm1), · · · , (pm

Nm
,nm

Nm
, cmNm

)}, S =
{(ps

1,n
s
1, c

s
1), · · · , (p

s
Ns

,ns
Ns

, csNs
)}

Result: P = {(P1, v1), (P2, v2), · · · , (PNp , vNp)}

Params: Nv, γs, δ, θ, σ,Nc

1: {A, Is
o, Hr , Dh, Ir

s } ← ObjectLearning(M) ⟨2⟩
2: {V, iv} ← Voting(M, S, A, Is

o, Hr , Dh, Ir
s) ⟨3⟩

3: P ← ComputePoses(M, S, V, iv) ⟨4⟩
4: P ← ClusterPoses(P) ⟨5⟩

• Color quantization step learning: Whereas [53] found the
color quantization step empirically, this paper presents an au-
tomatic step learning from a set of synthetic data. (please see
Section 5.8)

4. RGB-D pose estimation

In this section, our RGB-D pose estimation algorithm is pre-
sented. By revisiting the point pair features of [33] in Section 4.1,
we introduce our color point pair feature in Section 4.2. In Sec-
tion 4.3, the parallel object learning algorithm is presented, and
the voting process and pose clustering are explained in Sections 4.4
and 4.5, respectively. The overall algorithm is shown in Algorithm
1 which takes an object model point cloud M and an scene point
cloud S as inputs and returns a set of pose hypotheses P as an
output. The more details of the parameters and the algorithms, re-
ferred as (·) in the comments area, will be described in the subse-
quent sections.

4.1. Point pair feature

The point pair feature (PPF) is defined by pairing two oriented
points, and it has been employed in shape-based object recogni-
tion [34,33]. Let {(pi,ni), (pj,nj)} denote the pair of two oriented
points where pi and pj ∈ R3 are the reference and referred points
on the object surface, and ni and nj ∈ R3 are their normals respec-
tively. The point pair feature vector FPPF ∈ R4 is then defined as

FPPF = PPF(pi, pj,ni,nj) (1)

=

 ∥d∥2
π − ̸ (ni, d)
̸ (nj, d)
̸ (ni,nj)


where d = pi − pj ∈ R3, and ̸ (v1, v2) ∈ [0, π] represents the
angle between two vectors, v1 and v2 ∈ R3. The first dimension,
∥d∥2 = ∥pi − pj∥2 ∈ R+, represents the Euclidean distance be-
tween the two points. The second and third components are angles
between the vector d and the surface normal vectors ni and nj, re-
spectively. The last component is the angle between the two nor-
mal vectors. This feature effectively encodes geometric constraints
of point cloud surfaces so that efficient matching between model
and scene point clouds is possible, especially when these point
clouds contain rich surface normal variations.

4.2. Color point pair feature

Even though the PPF might be suitable for objects having rich
variations in surface normals, it is generally not discriminative
enough to describe planar or self-symmetric objects. Hence it is
required to augment the pair feature so that the feature will be
more effective to these types of objects. The color point pair feature
(CPPF) vector FCPPF ∈ R10 is defined by concatenating two 3D color
vectors of the points:
Fig. 2. The color point pair feature (CPPF). The feature is defined by the pair
of two color orientated points {(pi,ni, ci), (pj,nj, cj)} where each dimension is
determined by the Euclidean distance between two points (∥pi − pj∥2), angles
between surface normals and distance vector (π− ̸ (ni, d), ̸ (nj, d), ̸ (ni,nj)), and
colors (ci, cj).

Algorithm 2: ObjectLearning(M)
Data: M
Result: A, Is

o, Hr , Dh, Ir
s

Params: δ, θ, σ

1: H ← 0Nm×Nm
2: A← 0Nm×Nm
3: for i← 1 to Nm do
4: for j← 1 to Nm do
5: if i ≠ j then
6: F← CPPF(pm

i , pm
j ,nm

i ,nm
j , cmi , cmj) (2)

7: k← HashKey(F, δ, θ, σ) (3)
8: κ ← BitEncodeCPPF(k) (4)
9: αm ← PlanarRotAngle(ni, pm

i , pm
j) (§4.4)

10: H(i, j)← κ
11: A(i, j)← αm

12: {Hs, Is
o} ← gpu::Sort(H)

13: {Hr , Dh} ← gpu::Reduce(Hs)
14: Ir

s ← gpu::ExclusiveScan(Dh)

FCPPF = CPPF(pi, pj,ni,nj, ci, cj) (2)

=

PPF(pi, pj,ni,nj)

ci
cj


where ci and cj ∈ R3 are color vectors. For generality, each color
channel is normalized as c ∈ [0, 1]. Fig. 2 illustrates the CPPF.
When it comes to using color information, it is crucial to choose
a proper color space to be less variable to illumination changes.
The original color information from the RGB-D sensor is in the RGB
color space. However, the RGB values tend to change much as illu-
mination intensity varies. As an alternative, HSV (Hue, Saturation,
and Value) color space was well studied and proven to be more in-
variant than the RGB space with respect to illumination changes.
Thus we adopt the HSV color space in our experiments.

4.3. Object learning

In the object learning phase, an object representation is learned
globally by calculating all possible CPPFs from an object point
cloud. When there are Nm points in the point cloud M, Nm × Nm
CPPFs are calculated including Nm self pairs. Once the set of CPPF
features are calculated, it is saved in a data structure for the later
feature matching. Hash tables have been widely adopted for the
purpose due to its fast search time [35,33,37,38,48]. To use the
CPPF as the key for hash table, we first need to quantize the feature
vector as

C. Choi, H.I. Christensen / Robotics and Autonomous Systems 75 (2016) 595–613 599
Fig. 3. Feature alignment in the intermediate coordinate system. By aligning the reference points and normal vectors to the origin and the x-axis of the coordinate system,
respectively, the displacement between scene and model CPPFs is reduced to the 1-DOF rotation α around the x-axis. (Please see Section 4.4 for details.)
k = HashKey(FCPPF, δ, θ, σ) (3)

=




∥d∥2

δ




π − ̸ (ni, d)

θ



̸ (nj, d)

θ



̸ (ni,nj)

θ


⌊ci ⊘ σ⌋
⌊cj ⊘ σ⌋


where δ ∈ R, θ ∈ R, σ ∈ R3 are quantization levels for
distance, angle, and color vectors, respectively. The symbol ⊘
denotes component-wise division. A key of the CPPF, k ∈ Z10, is
then bit-encoded as

κ = BitEncodeCPPF(k) (4)

where the 64-bit key κ ∈ Z is encoded as in Fig. 4.
Although the hash table search is designed for constant time

search O(1), the performance of the hash tables highly depends on
the choice of hash function. Even though we carefully design the
hash function, lots of point pairs are inserted in a relatively small
number of hash slots due to the symmetric regions of objects. As
a result, each hash search does not guarantee the optimal search
time. In our approach, we employ the modern parallel computing
architecture which is called GPU. For computational acceleration
on the GPU, it is required tomaintain the data in a simple structure
so that a large number of threads can efficiently process the data
in parallel. In this respect, we maintain the set of keys in an array
storage and use parallel operations for faster search later.

The object learning process is presented in Algorithm 2 where
referred equations and sections are marked as (·) and (§·) in the
comments area, respectively. Given an object model point cloud
M, the algorithm returns the reduced hash keys Hr with the
intermediate angle array A and other data required for the later
voting process. The Nm designates the number of points in M, and
the αm is the intermediate angle stored in A that will be explained
in Section 4.4. The for-loop in line 3 is parallelized so that each
thread takes care of each (i, j) pair. Once the keys are calculated
and saved in H , they are first sorted (Hs) and then reduced so
that duplicated keys are removed. By reducing, the sorted keys Hs
are shrunk to the reduced keys Hr with the array of duplication
numbersDh. TheDh is further utilized to come upwith the indices
from the reduced array to the sorted array Ir

s . Similarly, the Is
o has

the indices from the sorted array to the original array. These two
arrays of indices are necessary tomap from the reduced arrayHr to
the original array H for the voting process. The parallel primitive
operations, such as sort, reduce, and exclusive scan, are available
via GPU C++ template libraries, such as NVIDIA Thrust library [54]
or AMD Bolt library [47].
The quantization parameters δ, θ, σ are important to set.While
choosing very large levels reduces the discriminative power of
the feature, using very small levels makes the algorithm sensitive
to noise. In Section 5.8, we show how the color quantization
parameters σ are learned from data.

4.4. Voting scheme

Let us assume that we found a correct match of CPPFs between
scene and model point clouds. As described in Fig. 3, we can align
two normal vectors {ns

i ,n
m
i′ } of the two reference points {ps

i , p
m
i′ }

in an intermediate coordinate system. The alignment of two
reference points constrains 3-DOF translation and the alignment
of the two normals further constrains 2-DOF rotation. Therefore,
there is only 1-DOF rotation ambiguity α ∈ R around the x-axis of
the intermediate coordinate system. Once the α is determined by
the two vectors ps

j−ps
i and pm

j′ −pm
i′ , we can recover the pose of the

object,P ∈ SE(3), which is the full 6-DOF rigid body transformation
from the model coordinate system to the scene coordinate system
via

P = Tm→s

= T−1s→gRx(α)Tm→g (5)

where Rx(α) is the rotation around the x-axis with angle α, Ts→g ∈

SE(3) and Tm→g ∈ SE(3) are the transformations from the scene
and model coordinate systems to the intermediate coordinate
system, respectively. For a quick verification, the referred points
{ps

j , p
m
j′ } can be aligned by P as

ps
j′ = Ppm

j′

= T−1s→gRx(α)Tm→gpm
j′ .

It is possible to choose any arbitrary intermediate coordinate sys-
tem, but a trivial choice is choosing the sensor coordinate system.

Unfortunately, the aforementioned assumption of a correct
correspondence between two CPPFs is not always valid. In reality,
there is a nontrivial amount of similar geometric and colored
surfaces between the actual object and cluttered background point
clouds. Due in part to sensor noise and to illumination changes,
it happens that these similar regions result in incorrect pose
hypotheses. To address this issue, a voting process is performed
so that it finds the most likely pose hypothesis from the bin
earned the maximum number of votes [33]. The usual approach
is employing two dimensional accumulator space for the voting
process, in which the rows are the model reference points and the
columns are discretized bins of α [33,38]. Though it is possible
to allocate a big memory space in CPU memory, it is technically
impossible to assign the big voting space to each thread in GPU.
As a workaround, a big chunk of global memory V , where the
maximum size is Nv , is allocated and every votes are accumulated
in V . Algorithm 3 carefully describes the voting process. Given the
model point cloudM, scene point cloud S, and other data obtained

600 C. Choi, H.I. Christensen / Robotics and Autonomous Systems 75 (2016) 595–613
Algorithm 3: Voting(M, S, A, Is
o, Hr , Dh, Ir

s)
Data: M, S, A, Is

o, Hr , Ir
s , Dh

Result: V, iv
Params: Nv, γs, δ, θ, σ

1: V ← 01×Nv

2: iv ← 0
3: for i← 1 to Ns do
4: for j← 1 to Ns do
5: if i ≠ j and ∥ps

i − ps
j∥ < γs then

6: F← CPPF(ps
i , p

s
j ,n

s
i ,n

s
j , c

s
i , c

s
j) (2)

7: κ ← HashKey(F, δ, θ, σ) (3)
8: αs ← PlanarRotAngle(ns

i , p
s
i , p

s
j) (§4.4)

9: ir ← BinarySearch(Hr , κ)
10: if ir ≠ ∅ then
11: Nd ← Dh(ir)
12: is ← Ir

s (ir)
13: for d← 1 to Nd do
14: io ← Is

o(is + d)
15: αm ← A(io)
16: α← αm − αs (7)
17: iv ← AtomicAdd(iv , 1)
18: V(iv)← BitEncodeVote(i, io

Nm
, ⌊ α

θ
⌋) (6)

Algorithm 4: ComputePoses(M, S, V, iv)
Data: M, S, V, iv
Result: P = {(P1, v1), (P2, v2), · · · , (PNp , vNp)}
Params: δ, θ, σ

1: Vs ← gpu::Sort(V, iv)
2: {Vr , Dv} ← gpu::Reduce(Vs)
3: for i← 1 to Length(Vr) do
4: v← Vr (i)
5: is ← ScenePointIndex(v)
6: im ← ModelPointIndex(v)
7: iα ← AlphaIndex(v)
8: Ts→g ← InterTransform(ps

is ,n
s
is)

9: Tm→g ← InterTransform(pm
im ,nm

im)

10: P ← P ∪ {GetPose(Ts→g , Tm→g , iα), Dv(i)} (5)

from Algorithm 2, each reference scene point ps
i is paired with the

other scene points ps
j . When the Euclidean distance between these

two points are within the given search radius γs, the CPPF from
the two points is calculated and is searched in the model keys Hr
via the binary search. Since Hr is already sorted and reduced, the
binary search is done in O(log |Hr |) where |Hr | is the number of
reduced keys. If the corresponding key is found, the number of
duplicated keys Nd is looked up via Dh and the model point index
of the sorted array is is found from Ir

s . Finally, the original index
in the original key array io is determined from Is

o, and this index
is used to refer the pre-calculated intermediate angle from A. The
set {i, io

Nm
, ⌊ α

θ
⌋} comprises a vote for a pose hypothesis, and for the

later computation each vote is bit-encoded as

ν = BitEncodeVote

i,

io
Nm

,
α

θ


(6)

where the 64-bit vote ν ∈ Z is encoded as in Fig. 5, i and io
Nm

are
indices of scene and model reference points, respectively, and the
last term ⌊ α

θ
⌋ is the discretized angle of α. To avoid race condition

in the arrayV , the atomic add operation is employed. Note that the
α could be calculated online, but it is more efficient if αm, the angle
between the vector pm

j′ − pm
i′ and the upper xy half-plane, is pre-

calculated and saved in A [33]. Then all α for every corresponding
Algorithm 5: ClusterPoses(P)
Data: P = {(P1, v1), (P2, v2), · · · , (PNp , vNp)}
Result: P = {(P1, v1), (P2, v2), · · · , (PNp , vNp)}

Params: Nc

1: P ← gpu::SortDescending(P)
2: prev← next ← 1
3: Np ← 0
4: while 1 ≤ next ≤ Np and Np < Nc do
5: next ← gpu::Partition({P (i) | prev ≤ i ≤ Np}, P (prev))
6: P (Np)← gpu::Reduce({P (i) | prev ≤ i < next})
7: Np ← Np + 1

8: P ← gpu::SortDescending(P , Np)

model features can be determined by one calculation of αs and
minus operations as

α = αm − αs. (7)

The set of votes V is then used to compute the final pose
hypotheses in Algorithm 4 which shows how a set of pose
hypotheses is obtained. Given the votes array V and its associated
size iv , it calculates a set of poses and vote numbers P , in which
each element is the pair of a pose hypothesis Pi ∈ SE(3) and its
number of votes vi ∈ Z. As in Algorithm 2, V is sorted and then
reduced to avoid redundant calculations on the same votes. In this
process, duplicated elements in V are removed and the number of
duplication is updated in Dv . Inside the for-loop, each unique vote
element is bit-decoded so that the index of scene reference point
is (i in Fig. 5), the index of model reference point im (io

Nm
in Fig. 5),

and the index of alpha iα (⌊ α
θ
⌋ in Fig. 5) can be obtained. From the

indices, the intermediate transforms Ts→g and Tm→g are recovered,
and finally the pose estimate is calculated via Eq. (5). The sorting
and reducing are performed via the parallel library, and the for-
loop is parallelized on GPU.

4.5. Pose clustering

In Algorithm 4, it is important to note that each pair of pose
and vote number in P is calculated from the pair of isth scene
point and imth model point. Since the object has Nm model points,
many pairs in P should represent a consistent pose hypothesis.
For instance, if a half of Nm points are visible in the given scene,
then the ideal number of pairs in P should be Nm

2 . But, in
reality, the number tends to be much more or less due mainly to
scene noise, the occlusion ratio of the object, false matches from
clutter, and multiple instances of the same object. To take into
account these cases, we need to aggregate similar pose hypotheses.
Since advanced clustering methods such as mean shift [55,40] are
computationally expensive, we employ an efficient agglomerative
clustering. While [33,37,38] have done the similar clustering, we
further enhance this process onGPU so that hundreds of thousands
elements in P can be clustered in parallel.

The clustering process on GPU is shown in Algorithm 5. It takes
unclustered pose hypotheses P as an input, and it sorts P in
descending order of the number of votes vi to make sure that
the elements are grouped together to the several most likely pose
hypotheses. The algorithm aggregates pose hypotheses until the
number of clustered pose hypotheses Np reaches the maximum
number of clusters Nc or every elements are grouped together. The
main operation in here is the partition operation which reorders
the elements close to the compared pose P (prev). The similar
elements to the compared one are then placed between prev and
next , and they are aggregated to result in a pose hypothesis P (Np)
by the reduce operation. After the clustering, it ends with the final
descending sorting on the clustered pose hypotheses so that the
most likely pose hypothesis comes first.

C. Choi, H.I. Christensen / Robotics and Autonomous Systems 75 (2016) 595–613 601
Fig. 4. Bit-encoded 64-bit CPPF key. The quantized CPPF descriptor k in Eq. (3) is bit-encoded so that the discretized distance ⌊ ∥d∥2
δ
⌋, discretized angles

⌊
π−̸ (ni,d)

θ
⌋, ⌊

̸ (nj,d)

θ
⌋, ⌊

̸ (ni,nj)
θ
⌋, and the discretized color values ⌊ci ⊘ σ⌋, ⌊cj ⊘ σ⌋ are stored in a 64-bit key.
Fig. 5. Bit-encoded 64-bit vote. Each vote is composed of three values: the index of scene reference point i, the index of model reference point io
Nm

, and the quantized α

angle ⌊ α
θ
⌋. These values are encoded in a 64-bit vote, and a set of votes is further processed to result in a set of pose hypotheses.
Fig. 6. Polygonal meshmodels of the test objects. Ten daily objects were chosen. Each object model is obtained by combiningmultiple views of object point clouds, followed
by the Poisson reconstruction algorithm [56]. From left to right: Clorox, Flash, Kuka Mug,Milk, MVG Book, Orange Juice, Pringles, Starbucks Mug, Tide, andWrench.
5. Experimental results

In this section, we present a set of comparative experiments in
which our approach is compared with Drost et al. [33], Papazov
et al. [48], and Hinterstoisser et al. [16]. We briefly explain howwe
build the object models from an RGB-D camera in Section 5.1. Sec-
tion 5.2 describes our experiment setup, such as the implementa-
tions of the approaches, the chosen parameters associatedwith the
implementations, and themachine specifications used for the eval-
uations. We start the evaluations with a synthetic dataset to com-
pare the performance of the approaches with respect to Gaussian
noise in Section 5.3. The performance of the approaches are fur-
ther evaluated in two sets of synthetic cluttered scenes: multiple
objects single instance setting in Section 5.4 and single object mul-
tiple instances setting in Section 5.5. In Section 5.6, the approaches
are compared in a set of highly cluttered real RGB-D scenes, cap-
tured by placing the random selections of the target objects and
several other objects as clutter in a paper box. We compare the
computation time of the approaches and discuss the reasons of the
different efficiency in Section 5.7. Lastly, learning of color quanti-
zation step is explained in Section 5.8.

5.1. Object models

As test objects, 10 daily objects were chosen and their polyg-
onal mesh models were generated as shown in Fig. 6. To gener-
ate the mesh models, we used an RGB-D camera to capture mul-
tiple RGB-D views containing one of the objects. For simplicity,
ARTags [57] were employed to register themultiple RGB-D scenes,
followed by a planar segmentationwhich removes the background
plane to result in the segmented object of interest. The meshmod-
els were then obtained by running the Poisson reconstruction al-
gorithm [56]. Since our approach requires color information of the
objects, color attributes of the point clouds were transferred to
their closest vertices in the mesh models so that the mesh mod-
els maintain the color information.

As we already explained in Section 4, the object model M in
Algorithm 1 is a model point cloud, and hence we need to con-
vert the mesh models to model point clouds. For the conversion,
we employ a sampling approach that randomly samples a set of
points from the faces of an object meshmodel with the probability
proportional to the areas of the faces. Since our approach requires
color information, the color attribute of each point is also deter-
mined by averaging the color values of the three vertices of the
randomly selected face. To generate sufficient samples, we sample
1,000,000 points per objectmesh and subsample using a voxel grid
with the leaf size 5mm. By averaging color values in each voxel, we
can avoid the texture aliasing which is undesirable artifact when
we sample from a high frequency texture. As a large number of
CAD models are available from web nowadays, such as the Google
3D Warehouse [58] or the KIT object models web database [59],
our approach can easily learn any object as long as its 3D model
is available from the database. Even if the 3D model is not avail-
able, we can generate themodel as we built themodels for our test
objects (Fig. 6).

5.2. Experiment setup

For experiments, we generated a set of synthetic and real
datasets. The synthetic datasets were generated by rendering
the polygonal mesh models (Fig. 6) in OpenGL. The projection
matrix in OpenGL was set in accordance with the known intrinsic
parameters of the RGB-D camera, the ASUS Xtion Pro in our
experiments, so that the rendered scenes simulate the captured
scenes from the RGB-D camera. The color and depth buffers from
each rendering were accessed to save as an RGB-D pcd file which
is a de facto standard file format of point cloud in the Point Cloud
Library (PCL) [60].Whenwe save the point cloud, the pose values of
the rendered objects were also saved as ground truth pose files for
quantitative evaluations. More detailed descriptions of the dataset
generation will be stated in each following section.

Our approach is compared with Drost et al. [33], Papazov
et al. [48], and Hinterstoisser et al. [16]. The approach using spin
images [25] is a possible baseline, but it is not considered here since
both Drost et al. [33] and Papazov et al. [48] reported better results.
We use our own implementation of Drost et al. [33], and its GPU
accelerated version is also used to compare the computation time
with our approach in Section 5.7. Papazov et al. [48] contributed
their implementation to the PCL, so it is chosen for this evaluation.
The work of Papazov et al. [48] has two important parameters

602 C. Choi, H.I. Christensen / Robotics and Autonomous Systems 75 (2016) 595–613
which determines its performance significantly: the pair width d
constraining the first dimension (the distance between two points
in a pair which is equivalent to ∥d∥2 in Eq. (1)) of learned PPFs and
the probability PM of recognizing the model in a single iteration.
The authors suggested to use about half the maximum distance
between visible points for the value of d. Thus we calculate the
maximum point distance in each model dmmax ∈ R+ as

dmmax = max
i,j∈[1,Nm]

∥pm
i − pm

j ∥2 (8)

where Nm is the number of model points M and pm
i , pm

j ∈ R3 are
the i, jth model points. Then d is set as

d = γ · dmmax (9)

where γ is the ratio. Although the authors recommended γ = 0.5,
we evaluated the performance of Papazov et al. [48] with different
values γ = 0.1, 0.3, 0.5, 0.7, 0.9, and we found that γ = 0.3
is the best value. The other parameter PM decides the number of
RANSAC iterations. The default value of PM is 0.0125, but when
we evaluated with this value, the random sampling approach of
Papazov et al. [48] barely reported true positives. The number of
RANSAC iterations with PM = 0.0125 is

N =
ln(1− PS)
ln(1− PM)

(10)

= 366.1062

where PS = 0.99 is the probability of recognizing the model in N
trials. Since the approach searches for pose hypotheses only 366
times, the chance of having true positive recognitions is very low.
We reduced the parameter as low as PM = 0.0005 so that the
number of iterations is sufficiently high as

N =
ln(1− 0.99)

ln(1− 0.0005)
(11)

= 9208.04

which means the approach of Papazov et al. [48] will randomly
search for the pose hypotheses about 9000 times. In this experi-
ments, we set γ = 0.3 and PM = 0.0005 for Papazov et al. [48].

The LINEMOD in [15] is a template matching approach for pose
estimation. Since each template encodes the shape information of
an objectwith a certain pose, it is generally required to have a large
set of templates to take into account the shape variations. While
the work of [15] learned the templates with a manual interaction
from a user, the later work of Hinterstoisser et al. [16] exploited
3D CADmodels to generate the templates automatically. Following
the setup in Hinterstoisser et al. [16], we used 15° and 10 cm for
rotation and depth step sizes. We generated multiple templates
for each object by rotating the 3D object model with 15° step
in x ∈ [−π

2 , π
2], y ∈ (−π, π], and z ∈ (−π, π] axes, which

results in both in-plane and out-of-plane rotations. To address
scale changes depending on the distance between the sensor and
the object, templateswere generatedwith six levels of depth: from
40 to 90 cm with 10 cm step size. Therefore, the total number
of templates per each object is 13 × 24 × 24 × 6 = 44,928.
Please note that Hinterstoisser et al. [16] sampled only the upper
hemisphere of the objects, whereas we sampled the whole sphere
as objects in our datasets are randomly placed. This template
matching approach requires a large number of templates, which
takes an amount of time to generate.2 As opposed to the time
consuming template generation, learning CPPFs is very efficient as
our model for each object M is just a subsampled 3D point cloud

2 In our experiment, it takes about 1.76 h, on average, to generate 44,928
templates.
Fig. 7. Adding Gaussian noise in the synthetic noise dataset. To simulate the noise
of RGB-D cameras, Gaussian noise is added in the direction of the camera ray. From
left to right: σ = 0, 2, 4, 6, 8, 10 mm.

and building a hash table is parallelized in GPU.3 In Hinterstoisser
et al. [16], they did not explicitly explain how to recover the set
of SE(3) poses from the template matching, and thus we used
the coarse pose estimation shown in [61] which estimates the
rotation and translation from both the corresponding template’s
rotation information and the similar triangles. Hinterstoisser
et al. [16] employed two post-processing stages in which false
positive detections are removed via checking color value followed
by the ICP refinement [17]. In this experiment, the additional
color checking is not performed. Please note that Hinterstoisser
et al. [16] used RGB channels to calculate the color gradient
features when they create templates and applied the color-based
post-verification for higher precision. To compare the performance
of the templatematching with that of other approaches, we decide
not to perform this refinement exclusively for Hinterstoisser
et al. [16] approach. Instead, we run LINEMOD with the ICP as
the estimated poses from template matching are approximated
and thus geometric refinement is strongly necessary. It will be
shown, however, in the following sections that running the ICP
refinementwould not always enhance final pose estimates. For the
ICP parameters, we set 1 cm for the max correspondence distance,
50 for the maximum number of iterations, and 10−6 for the
transformation epsilon. We chose the LINEMOD implementation
in the OpenCV [62] and the ICP implementation in the PCL.4

All approaches except Papazov et al. [48] are deterministic in
the sense that the approaches always result in the same pose
estimates if identical objectmodel and scene point cloud are given.
Papazov et al. [48] is, however, stochastic as it employs the RANSAC
algorithm. For statistically meaningful results, we ran 10 trials for
Papazov et al. [48] and averaged over the results of the multiple
trials, while our approach, Drost et al. [33], and Hinterstoisser
et al. [16] with and without the ICP were run only once.

We evaluate the performance of the five approaches quanti-
tatively using the ground truth information. If the difference be-
tween an estimated pose and its corresponding ground truth pose
is less than 15mm for translation and 10° for rotation, it is counted
as a true positive. As some objects are self-symmetric, symmetry
of each object is also taken into account. For example, ‘‘Clorox’’ is a
cylinder shape, so any rotation in the axis of symmetry is ignored
for the comparison.

For the parameters in Algorithm 2, we set δ = 10 mm, θ = 6°.
The color quantization steps σ are learned automatically as will be
shown in Section 5.8. We set the maximum size of the global vote
memory Nv = 40,000,000 and the search radius γs = 1.0 · dmmax
in Algorithm 3. The maximum number of pose clusters is set as
Nc = 10 in Algorithm 5.

All the experiments were evaluated in a standard desktop
computer with an Intel Core2 Quad CPU Q9300, 8G RAM, and an
off-the-shelf GPU, NVIDIA GeForce GTX 590 with CUDA 4.1.

3 In our experiment, it takes less than 50 ms as will be shown in Section 5.7.
4 There is another implementation of LINEMOD in the PCL, but in our evaluation

it reported much worse performance than the LINEMOD implementation in the
OpenCV.

C. Choi, H.I. Christensen / Robotics and Autonomous Systems 75 (2016) 595–613 603
Fig. 8. Some ‘‘Clorox’’ examples of the synthetic noise dataset. To evaluate the performance of five approaches with respect to Gaussian noise, a large set of synthetic dataset
was generated. For each object, its mesh model was drawn in OpenGL with a fixed translation (0.5 m apart from the virtual camera) yet with random rotations. Some scenes
of ‘‘Clorox’’ object are shown here.
5.3. Gaussian noise

To examine the performancewith respect to noise, we generate
a set of synthetic noise scenes by adding Gaussian noise with
different standard deviations as shown in Fig. 7. Tomimic the noise
of RGB-D cameras, the Gaussian noise is added in the direction of
the camera ray as follows

p̃s
= ps
+

ps

∥ps∥2
· n, n ∼ N (0, σ 2) (12)

where p̃s, ps
∈ R3 are noisy and noise free points in the synthetic

scene respectively, ps
∥ps∥2

is the unit vector of the camera ray, and
n ∈ R is the noise from the zero-mean Gaussian distribution with
the standard deviation σ . The range of the standard deviations
is 0, 2, . . . , 10 mm, which are 6 different standard deviations.
For statistically meaningful results, 50 different test clouds were
generated with random rotations for each object, as some of
‘‘Clorox’’ scenes are shown in Fig. 8. Thus the total number of tested
point clouds for 10 test objects are 10× 6× 50 = 3000.

Fig. 10 presents recognition rates with respect to the six differ-
ent amount of Gaussian noise. Aswewould expect, the recognition
rates of the five approaches decrease as the noise level σ increases.
Except some cases, our approach reports the best recognition per-
formance in general, and slightly worse performance is shown by
Drost et al. [33]. Hinterstoisser et al. [16] shows moderate recog-
nition rates, while Papazov et al. [48] reports the worst recogni-
tion performance overall. Hinterstoisser et al. [16] is better or com-
parable to our approach in the two mug objects, ‘‘Kuka Mug’’ and
‘‘Starbucks Mug’’. It is possibly due to the fact that the templates of
Hinterstoisser et al. [16] capture distinctive boundaries of the ob-
jects. According to the results of Hinterstoisser et al. [16] with and
without the ICP, the ICP refinement helps to increase the recogni-
tion rate, but only for smaller Gaussian noise levels. As the standard
deviation σ increases, the additional ICP process evenworsens due
mainly to the false point data association on the noisy point cloud.
It is worth noting that the performance of Hinterstoisser et al. [16]
is relatively less affected by the Gaussian noise. It is because that
approach relies on template matching in which 2D templates are
matched against the input scene image. Since the Gaussian noise
is added only to the depth channel, the RGB channels are not af-
fected at all, and thus the approach relatively less degenerates.
However, our approach still shows better recognition rates than
Hinterstoisser et al. [16] in most cases.

The results are also shown as precision–recall curves in Fig. 9.
The curves were generated by varying the threshold value on the
score of the pose estimates: the number of votes for both our
approach and Drost et al. [33], the visibility term µV which is the
ratio of the model surface area matched to the scene in Papazov
et al. [48], and the template matching score in Hinterstoisser
et al. [16]. As a performance measure, average precision (AP) is
shown at the end of each curves.5 AP value less than 0.01 is
omitted for clear visualization. According to the precision–recall
graphs, our approach outperforms other approaches in most cases
with some minor exceptions. In both mug objects, Hinterstoisser
et al. [16] shows better or comparable precision and recall to our
approach. In most cases, Papazov et al. [48] shows poor recall,
mostly lower than 30%, except ‘‘Milk’’ and ‘‘Tide’’. Even in ‘‘Tide’’, its
recall is at best about 50%,while our approach at least reports about
80% in all cases. Drost et al. [33] exhibits comparable performance
to our approach in some objects, and yet our approach shows
higher precision in general. From the results of Hinterstoisser
et al. [16] with and without the ICP, we can notice that the ICP
enhances both precision and recall in general, but it degrades
in ‘‘Flash’’, ‘‘Kuka Mug’’, and ‘‘Starbucks Mug’’ objects which are
relatively small objects.

The noise dataset only has one object per scene without
any backgrounds, and thus all points are corresponding to the
test object. In these relatively simple scenes, the performance
difference between our approach and other approaches is not so
distinctive, but we will see the gap as we evaluate them in more
challenging datasets in the following sections.

5.4. Synthetic scenes: Multiple objects single instance (MOSI)

As we discussed in Section 5.3, when the scene is quite
simple in the sense that only one object exists in an uncluttered
background, pose estimation is quite straightforward. However,

5 AP is a measure of the area under the precision–recall curve, and it is
widely used in object recognition literature to compare performance of various
approaches [63].

604 C. Choi, H.I. Christensen / Robotics and Autonomous Systems 75 (2016) 595–613
Fig. 9. Precision–recall curves of the noise experiment. Average Precision (AP) value is presented at the end of each curve. Our approach outperforms the other approaches
in most cases. The performance of Drost et al. [33] is quite similar to that of ours in some cases, but in general our approach reports higher precision. According to the results
of Hinterstoisser et al. [16] with and without the ICP, the ICP algorithm generally enhances both precision and recall but not always. Note that the work of Papazov et al. [48]
is suffered from low recall; while it reports about 50% recall at best, our approach shows at least about 80% recall in every case.
Fig. 10. Recognition rates against Gaussian noise σ. As σ increases, the performance of the five approaches decreases. Though the performance of the approaches slightly
varies, overall our approach outperforms the four compared approaches in most objects.
as environments are getting more cluttered the number of
possible pose hypotheses needed to hypothesize and to verify is
exponentially increasing with the number of points from cluttered
backgrounds. To evaluate the performance of five approaches
with respect to clutter, we generated 50 synthetic scenes where
random selections of our test objects were placed in either a white
laundry basket or a wire basket (Fig. 11), whose 3D models were
downloaded fromGoogle 3DWarehouse [58]. Since single instance
of each object is considered, we call this setup as multiple objects
single instance (MOSI).

Fig. 11 presents selected pose estimation results from the 50
scenes. The first row shows the color images of the synthetic
scenes, and the second to sixth rows present the detection re-
sults of Hinterstoisser et al. [16] without and with the ICP, Papa-
zov et al. [48], Drost et al. [33], and our approach, respectively. For
clear visualization, only correct pose estimates are displayed with
color mesh models in the monochrome scene point clouds. Please
note that except Hinterstoisser et al. [16] with the ICP any pose re-
finement processes were not performed for the rest of approaches,
though the additional refinements would enhance the final pose
accuracy. According to the qualitative results, it is clear that the
recognition performance of our approach is superior to the other
approaches. In the cluttered scenes, Hinterstoisser et al. [16] with-
out the ICP does not detect any of objects. The main reason of the
discouraging performance is due to the limitation of the template
matching. Please recall that the templateswere generatedwith the
15° rotational and 10 cm depth steps. Even though we employ the
significant number of templates,6 the templates do not cover en-
tire variations in the appearance of the object. So the detections
from the template matching are often not accurate enough to be
considered as true positives. The ICP refinement certainly helps in
this case. Hinterstoisser et al. [16] with the ICP reports several true
positive detections in several scenes. Papazov et al. [48] showspoor
performance as it only recognizes one object per scene at best. The
reason of the substandard performance may be due to the limited
number of searches in the sampling approach. Note that we set the
parameter PM in Papazov et al. [48] small enough to ensure a suffi-
ciently large number of iterations. The number of iterations, 9208
in Eq. (11), might be sufficient for simple scenes, such as the noise
experiment dataset in Section 5.3, but it may not be sufficiently

6 As mentioned in Section 5.2, 44,928 templates were used in our experiments.

C. Choi, H.I. Christensen / Robotics and Autonomous Systems 75 (2016) 595–613 605
Fig. 11. Selected pose estimation results of Hinterstoisser et al. [16]without the ICP (second row), Hinterstoisser et al. [16]with the ICP (third row), Papazov et al. [48] (fourth
row), Drost et al. [33] (fifth row), and our approach (sixth row) in the MOSI dataset. The first row shows the color images of the synthetic scenes. Correct pose estimates are
depicted as color mesh models in the second to sixth rows. In these cluttered scenes, Hinterstoisser et al. [16] without the ICP barely detects the target objects due to the
coarse sampling of templates. By the additional ICP refinement, it reports some true positive detections, but it is much inferior to both Drost et al. [33] and our approach.
Papazov et al. [48] also works poorly mainly due to the relatively insufficient number of searches for these challenging environments. Drost et al. [33] shows better results
than Papazov et al. [48] via the voting process that considers a much large number of pose hypotheses, but this approach still misses a number of true positive detections.
Thanks to the additional color information encoded in CPPFs, our approach shows the best performance among the five approaches in these cluttered environments.
large enough for these complex scenes. Drost et al. [33] seemsmore
encouraging compared to Papazov et al. [48], but it still fails to rec-
ognize some objects of which our approach with the CPPF can suc-
cessfully recognize and estimate the poses. Due mainly to more
discriminative power of the CPPF, our approach outperforms the
other approaches.

Fig. 12 presents precision–recall graphs of the MOSI experi-
ment. Like Fig. 9, the graphs were drawn by varying the thresh-
old value on the score of the pose estimates. The precision–recall
curves clearly show the distinguished performance of our ap-
proach, as it reports about 100% recall near 100% precision in some
objects, such as ‘‘Clorox’’, ‘‘Flash’’, ‘‘Pringles’’, and ‘‘Tide’’. Drost
et al. [33] also shows good performance especially in ‘‘Clorox’’,
‘‘Milk’’, ‘‘Pringles’’, and ‘‘Tide’’, yet it is inferior compared to our ap-
proach in terms of both precision and recall. Papazov et al. [48] ex-
hibits moderate performance in some objects, such as ‘‘Clorox’’ or
‘‘Tide’’ which are relatively bigger size and having rich variations
in surface normals. Whereas Hinterstoisser et al. [16] with the ICP
is comparable to Papazov et al. [48], the approach without the ICP
is the worst approach in this dataset.

The five approaches return Nc = 10 pose results in maximum,
and these multiple poses are sorted in decreasing order of the
score. Thus it is of interest to examine the recognition rate with
respect to the top N poses. Fig. 13 presents the recognition rates
of the top N pose estimates. The recognition rates are calculated
by the ratio of true positives which are counted if the ground
truth pose is within the top N poses. The recognition rates thus
increase monotonously as N increases. According to the plots, the
same story is discovered; the recognition rates of our approach are
highest among the five approaches, followed by Drost et al. [33]. In
both Figs. 12 and 13, it is clear that the ICP improves the recognition
rates a lot for Hinterstoisser et al. [16].

5.5. Synthetic scenes: Single object multiple instances (SOMI)

Both experiments of Sections 5.3 and 5.4 were designed to
detect one instance of each object at a time. Inmany real scenarios,
however, it happens to exist more than one instance of an object.
One of the most popular scenarios, especially in manufacturing,
is the bin-picking in which a bunch of identical objects, needed
to be picked, are placed in a pile [13,12,38,64,65]. Even in our
daily lives, identical objects are often placed in environments, such
as dishes and silverware in a shelf or identical milk bottles in a
refrigerator. As such, it is of interest to evaluate the performance
of five approaches in themultiple instances setting, which is called
as single object multiple instances (SOMI).

When there are multiple identical objects in a scene, it tends to
have an amount of the similar local features, and hence grouping
these features and verifying multiple hypotheses calculated from
the features are generally required. The voting-based approaches
are especially preferred in this setting, since it is designed to
search all possible pose hypotheses and to group together in a
set of consistent pose hypotheses via the voting process. For the

606 C. Choi, H.I. Christensen / Robotics and Autonomous Systems 75 (2016) 595–613
Fig. 12. Precision–recall curves of the multiple objects single instance (MOSI) experiment. Our approach significantly outperforms the four other approaches in both
precision and recall. Hinterstoisser et al. [16] without the ICP is the worst approach in this MOSI setting, but with the help of the ICP refinement its recognition performance
is enhanced as good as that of Papazov et al. [48].
Fig. 13. Recognition rates of top N pose results in the MOSI experiment. If the ground truth pose is within the top N poses, it is counted as a true positive. Our approach
shows the best recognition rates in every object.
evaluation in the SOMI setting, we generated 10 synthetic scenes
for each object where randomly chosen numbers of instances,
between 3 and 10 instances of the object, were randomly placed in
the white laundry basket. Like the previous experiment, Nc = 10
maximum number of clusters was used.

Some of the experimental results on the SOMI dataset are pre-
sented in Fig. 14. Similar to Fig. 11, the color image of the synthetic
scenes are shown in the first row, and their corresponding pose es-
timation results by Hinterstoisser et al. [16] without and with the
ICP, Papazov et al. [48], Drost et al. [33], and our approach are pre-
sented in the second to sixth rows respectively. Please note that
our approach can handle this multiple instances setting very well.
Our approach even reports three true positive detections in the
‘‘Pringles’’ scene, which is very challenging due to the occlusion of
the grid in the laundry basket.

When we look at the precision–recall curves in Fig. 15, it is
quite clear that our approach significantly outperforms both Hin-
terstoisser et al. [16] and Papazov et al. [48] and still better than
Drost et al. [33] in most cases. The recognition performance of our
approach and Drost et al. [33] is similar in ‘‘Flash’’ object. As we
saw in the MOSI experiment, Hinterstoisser et al. [16] with the ICP
in ‘‘Kuka Mug’’ object shows the recognition performance compa-
rable to our approach. Other than that, the approach suffers from
low precision and recall.
In the recognition rates of top N results (Fig. 16), we can notice
that the superior performance of our approach in most cases.
Since each scene in the SOMI dataset contains up to 10 instances
of the tested object, the recognition rates should monotonously
increase as N increases. The recognition performance of both our
approach and Drost et al. [33] increase as we expect, whereas
Hinterstoisser et al. [16] without the ICP and Papazov et al. [48]
do not. It implies that Hinterstoisser et al. [16] without the ICP and
Papazov et al. [48] are not encouraging in this multiple instances
scenario. It is also worth noting that in this SOMI experiment
the performance of Papazov et al. [48] is comparable to the
performance of Hinterstoisser et al. [16] with the ICP, while it is
worse in the MOSI experiment. It is probably due to the multiple
instances of the test object. As there are more than one instance,
the sampling approach of Papazov et al. [48] may have better
chances to have true positive detections.

5.6. Real cluttered scenes

So far, we have evaluated the five pose estimation approaches
in synthetic datasets which were generated by rendering 3D
mesh models in OpenGL. However, it is necessary to compare
the performance of the approaches in real RGB-D scenes which

C. Choi, H.I. Christensen / Robotics and Autonomous Systems 75 (2016) 595–613 607
Fig. 14. Selected pose estimation results of Hinterstoisser et al. [16]without the ICP (second row), Hinterstoisser et al. [16]with the ICP (third row), Papazov et al. [48] (fourth
row), Drost et al. [33] (fifth row), and our approach (sixth row) in the SOMI dataset. Our approach can handle the multiple instances scenario well, whereas Hinterstoisser
et al. [16] and Papazov et al. [48] fail to recognize multiple instances in most cases.
Fig. 15. Precision–recall curves of the single objectmultiple instances (SOMI) experiment. It is clear that our approach is superior to both Papazov et al. [48] andHinterstoisser
et al. [16] and still better than Drost et al. [33] in general.
contain the real sensor noise as well as background clutter. For
the more realistic test scenes, we put random subsets of our test
objects in a paper box with random poses. All other objects not in
our test objects were additionally placed as clutter to make more
challenging dataset. We captured 31 test scenes, and 7 of them
were captured by changing illumination with a non-white lamp;
the scene of the right most column in Fig. 17 is one example. This
dataset ismuchmore challenging than the synthetic datasets in the
previous sections, since additional clutter and the target objects are
superimposed each other. For quantitative evaluation, the ground
truth poses of the objects were carefully annotated. To annotate
them, we first performed the five pose estimation approaches on

608 C. Choi, H.I. Christensen / Robotics and Autonomous Systems 75 (2016) 595–613
Fig. 16. Recognition rates of top N pose results in the SOMI experiment. As N increases, the recognition rates have to monotonously increase, because each scene has up to
10 instances of each object. While our approach and Drost et al. [33] perform as we expected, Hinterstoisser et al. [16] without the ICP and Papazov et al. [48] fail to increase
the recognition rates, implying that they are not suitable for this multiple instances setting.
Fig. 17. Selected pose estimation results of Hinterstoisser et al. [16] without the ICP (second row), Hinterstoisser et al. [16] with the ICP (third row), Papazov et al. [48]
(fourth row), Drost et al. [33] (fifth row), and our approach (sixth row) in the real cluttered dataset. The first row shows the color image of the scanned RGB-D scenes. In
these cluttered scenes, neither of approaches recall more than half of the objects except our approach. Hinterstoisser et al. [16] without the ICP does not detect any objects,
whereas it can recall one or two objects with the help of the ICP algorithm. Papazov et al. [48] is also suffered from low recall in the cluttered scenes, and hence it detects at
best one object per scene. Drost et al. [33] works poorly because the low dimensional PPF feature does not give good matches between the model and the scene. Using the
color information, CPPF is more discriminative so that pose results from the voting scheme are more likely to be the true positive poses.
the test scenes and ran the ICP [17] algorithm starting from the
estimated pose results. When none of the approaches recognized
the object, we manually aligned the corresponding object model
to the scene point cloud and then ran the ICP algorithm to obtain
the ground truth pose. If the refined pose was close enough to
the true pose, we saved it for quantitative analysis. We use the
same criterion from the previous experiments for counting true
positives.
Fig. 17 shows selected pose estimation results from the 31
scenes. The images in the first row are test scene images captured
from an RGB-D camera, and the second to sixth rows represent
estimated poses of Hinterstoisser et al. [16] without and with the
ICP, Papazov et al. [48], Drost et al. [33], and our approach in the
scene point clouds respectively. While Hinterstoisser et al. [16],
Papazov et al. [48], and Drost et al. [33] estimate at best two object
poses per scene, our approach recalls more than half of the test
objects inmost scenes. Precision–recall curves of these approaches

C. Choi, H.I. Christensen / Robotics and Autonomous Systems 75 (2016) 595–613 609
Fig. 18. Precision–recall curves for the real cluttered scene experiments. While our approach reports good precision as well as high recall, other approaches report
substandard results in the highly cluttered backgrounds.
Fig. 19. Recognition rates of top N pose results in the real cluttered scene experiments. Hinterstoisser et al. [16] and Papazov et al. [48] report poor recognition rates,
whereas our approach shows outstanding performance in most cases.
are presented in Fig. 18.Whereas the performance of our approach
is promising, the performance of both Hinterstoisser et al. [16]
and Papazov et al. [48] is extremely not encouraging for these
cluttered scenes. Especially, they barely report true positive poses
in some objects such as,‘‘Flash’’, ‘‘Kuka Mug’’, ‘‘MVG Book’’, and
‘‘Wrench’’. Drost et al. [33] shows better performance than these
approaches, yet it is not enough for this cluttered real dataset. In
comparison with Fig. 12 showing precision–recall curves for the
synthetic MOSI experiment, the performance of five approaches in
this dataset is worse because of noise from the real RGB-D sensor
and extra clutter. But the overall trend in the performance of the
five approaches is quite similar in the sense that our approach
exhibits the best performance andHinterstoisser et al. [16]without
the ICP results in the worst performance.

The recognition rates of topN poses on each object is presented
in Fig. 19. According to the plots, the recognition rates increase
as the considered number of results N increases. In ‘‘Clorox’’ and
‘‘Tide’’, our approach shows nearly perfect performance as the first
or second pose estimates are always true positives. Due to the
difficulty in the scenes, the performance of all the approaches is
degraded, but our approach still shows outstanding performance
compared to the other approaches.
5.7. Computation time

Our approach is not only more accurate but also more efficient.
The average processing time of the each approach, which is the
amount of time required to estimate the pose of each object per
scene, is shown in Table 1. We also report the time of our GPU
implementation of Drost et al. [33] to compare the differences
between the CPPF and the PPF. The pre-processings in the third
and fourth columns of the table include subsampling and normal
estimation. Given a model or scene point cloud, it subsamples the
given cloud using a voxel grid that averagesmultiple points in a set
of voxels to result in a set of subsampled points. Since we are using
the color information, the RGB color attributes are also aggregated.
As all approaches, except Hinterstoisser et al. [16] without the
ICP, require oriented points,7 normal estimation is performed on
both model and scene point clouds. The pre-processing is running
in CPU, and thus the computation time of the pre-processing is
nearly the same across the six approaches. For the subsampling,
the same voxel size (10 mm) for the 10 test objects was used,
so we can notice that the pre-processing time of the each object
model increases proportional to the size of the objects; the bigger

7 Oriented points mean the points having associated surface normal vectors.

610 C. Choi, H.I. Christensen / Robotics and Autonomous Systems 75 (2016) 595–613
Table 1
Average computation time of the approaches on the real dataset.
Object Approachesa Prep. model Prep. scene Model2GPUd ,c Scene2GPUd Main comp. ICP Total (s)b

Clorox

Our+ GPU 0.013± 0.001 0.086± 0.005 0.035± 0.003 0.006± 0.002 0.996± 0.104 – 1.134± 0.106
[33]+ GPU 0.013± 0.002 0.087± 0.006 0.029± 0.003 0.005± 0.001 1.479± 0.120 – 1.613± 0.124
[33] 0.013± 0.007 0.088± 0.008 1.278± 0.055 – 26.366± 4.865 – 27.745± 4.891
[48] 0.012± 0.001 0.088± 0.005 – – 7.369± 1.979 – 7.469± 1.981
[16] – – – – 14.290± 4.739 – 14.290± 4.739
[16]+ ICP 0.012± 0.002 0.087± 0.005 – – 14.818± 4.821 0.784± 0.692 15.701± 4.916

Flash

Our+ GPU 0.008± 0.001 0.086± 0.005 0.018± 0.006 0.004± 0.001 0.248± 0.057 – 0.363± 0.058
[33]+ GPU 0.008± 0.001 0.084± 0.005 0.017± 0.001 0.004± 0.000 0.968± 0.016 – 1.080± 0.016
[33] 0.008± 0.001 0.085± 0.004 0.271± 0.007 – 4.444± 0.531 – 4.807± 0.535
[48] 0.008± 0.001 0.086± 0.005 – – 1.624± 0.256 – 1.718± 0.257
[16] – – – – 27.091± 5.831 – 27.091± 5.831
[16]+ ICP 0.008± 0.001 0.086± 0.005 – – 28.229± 6.109 0.291± 0.174 28.615± 6.153

Kuka Mug

Our+ GPU 0.008± 0.001 0.084± 0.004 0.017± 0.002 0.004± 0.001 0.201± 0.022 – 0.314± 0.024
[33]+ GPU 0.008± 0.001 0.084± 0.005 0.017± 0.002 0.004± 0.001 0.262± 0.023 – 0.374± 0.027
[33] 0.008± 0.001 0.084± 0.004 0.210± 0.004 – 1.426± 0.148 – 1.727± 0.151
[48] 0.008± 0.001 0.086± 0.005 – – 2.653± 0.445 – 2.748± 0.445
[16] – – – – 27.478± 7.147 – 27.478± 7.147
[16]+ ICP 0.008± 0.002 0.087± 0.004 – – 28.572± 7.224 0.245± 0.129 28.912± 7.232

Milk

Our+ GPU 0.011± 0.001 0.086± 0.005 0.026± 0.002 0.004± 0.001 0.312± 0.063 – 0.439± 0.066
[33]+ GPU 0.013± 0.004 0.086± 0.006 0.030± 0.004 0.005± 0.002 0.825± 0.075 – 0.960± 0.083
[33] 0.011± 0.001 0.084± 0.004 3.059± 0.049 – 27.447± 4.250 – 30.602± 4.256
[48] 0.012± 0.001 0.086± 0.004 – – 6.248± 1.380 – 6.346± 1.382
[16] – – – – 13.155± 4.102 – 13.155± 4.102
[16]+ ICP 0.012± 0.002 0.086± 0.005 – – 13.748± 4.149 1.130± 0.710 14.977± 4.253

MVG Book

Our+ GPU 0.011± 0.001 0.083± 0.004 0.025± 0.002 0.004± 0.001 0.401± 0.087 – 0.524± 0.089
[33]+ GPU 0.012± 0.001 0.085± 0.004 0.024± 0.007 0.006± 0.014 1.001± 0.049 – 1.128± 0.057
[33] 0.011± 0.001 0.085± 0.004 1.606± 0.024 – 39.460± 7.268 – 41.161± 7.273
[48] 0.011± 0.001 0.086± 0.005 – – 2.890± 0.490 – 2.987± 0.492
[16] – – – – 13.205± 3.109 – 13.205± 3.109
[16]+ ICP 0.011± 0.001 0.087± 0.006 – – 13.744± 3.173 0.677± 0.508 14.519± 3.070

Orange Juice

Our+ GPU 0.011± 0.001 0.085± 0.005 0.025± 0.003 0.004± 0.001 0.629± 0.140 – 0.753± 0.141
[33]+ GPU 0.012± 0.002 0.087± 0.004 0.030± 0.006 0.006± 0.002 1.715± 0.022 – 1.851± 0.023
[33] 0.011± 0.001 0.085± 0.005 1.314± 0.034 – 25.694± 4.768 – 27.104± 4.770
[48] 0.011± 0.001 0.084± 0.004 – – 4.856± 1.084 – 4.951± 1.085
[16] – – – – 13.272± 3.928 – 13.272± 3.928
[16]+ ICP 0.011± 0.001 0.086± 0.005 – – 13.892± 4.093 1.046± 0.585 15.035± 4.125

Pringles

Our+ GPU 0.010± 0.001 0.086± 0.004 0.021± 0.002 0.004± 0.002 0.389± 0.059 – 0.509± 0.062
[33]+ GPU 0.011± 0.002 0.087± 0.005 0.028± 0.004 0.006± 0.002 1.004± 0.017 – 1.135± 0.020
[33] 0.009± 0.001 0.084± 0.004 0.719± 0.019 – 28.450± 6.196 – 29.263± 6.202
[48] 0.010± 0.001 0.086± 0.006 – – 2.588± 0.466 – 2.683± 0.468
[16] – – – – 15.478± 4.329 – 15.478± 4.329
[16]+ ICP 0.010± 0.001 0.087± 0.006 – – 16.198± 4.421 0.557± 0.347 16.852± 4.548

Starbucks Mug

Our+ GPU 0.008± 0.001 0.084± 0.004 0.018± 0.002 0.004± 0.001 0.227± 0.050 – 0.341± 0.052
[33]+ GPU 0.010± 0.002 0.088± 0.005 0.020± 0.002 0.005± 0.001 1.297± 0.081 – 1.418± 0.084
[33] 0.008± 0.001 0.085± 0.004 0.370± 0.010 – 3.583± 0.382 – 4.046± 0.385
[48] 0.008± 0.001 0.085± 0.004 – – 2.230± 0.341 – 2.323± 0.341
[16] – – – – 23.733± 6.328 – 23.733± 6.328
[16]+ ICP 0.009± 0.002 0.087± 0.005 – – 24.676± 6.532 0.327± 0.154 25.099± 6.578

Tide

Our+ GPU 0.012± 0.001 0.085± 0.005 0.031± 0.003 0.004± 0.001 0.446± 0.097 – 0.578± 0.097
[33]+ GPU 0.014± 0.002 0.086± 0.004 0.027± 0.004 0.005± 0.002 0.885± 0.011 – 1.017± 0.016
[33] 0.012± 0.001 0.085± 0.004 4.739± 0.071 – 30.405± 4.256 – 35.241± 4.245
[48] 0.012± 0.001 0.086± 0.004 – – 6.432± 1.386 – 6.530± 1.388
[16] – – – – 13.072± 4.281 – 13.072± 4.281
[16]+ ICP 0.013± 0.001 0.087± 0.005 – – 13.714± 4.443 1.242± 0.676 15.056± 4.550

Wrench

Our+ GPU 0.008± 0.001 0.086± 0.005 0.017± 0.002 0.004± 0.001 0.349± 0.047 – 0.463± 0.051
[33]+ GPU 0.009± 0.001 0.087± 0.005 0.023± 0.005 0.005± 0.001 1.721± 0.026 – 1.845± 0.028
[33] 0.007± 0.001 0.086± 0.004 0.321± 0.011 – 20.017± 3.868 – 20.430± 3.869
[48] 0.008± 0.001 0.087± 0.005 – – 1.070± 0.176 – 1.164± 0.178
[16] – – – – 30.508± 4.373 – 30.508± 4.373
[16]+ ICP 0.008± 0.001 0.086± 0.005 – – 31.525± 4.442 0.211± 0.131 31.830± 4.483

a Our approach is compared with Drost et al. [33], Papazov et al. [48], Hinterstoisser et al. [16] with and without ICP [17].
b The most efficient computation time is indicated in bold type.
c Transfer time of model points to the GPU memory also includes the running time of the object learning algorithm shown in Algorithm 2.
d As parallel algorithms on GPU require model and scene data in GPU memory, the transfer times from CPU memory to GPU memory are reported as well.
objects, the more time to pre-process. Since our approach and
the implementation of Drost et al. [33] + GPU are parallelized on
GPU, we also report the transfer time of model and scene point
clouds from CPU memory to GPU memory. In model point clouds,
the transfer time includes the running time of the object learning
algorithm (Algorithm 2). Please note that the model transfer and
the object learning can be run only one time for each object. For
Drost et al. [33] without GPU, only the object learning time in CPU
is reported. The main computation time is for the rest of the pose
estimation procedures. As Hinterstoisser et al. [16] with the ICP

C. Choi, H.I. Christensen / Robotics and Autonomous Systems 75 (2016) 595–613 611
Fig. 20. Example images of the color quantization step learning dataset. The dataset consists of 50 scenes, where object mesh models are rendered with random poses, and
ground truth poses. To find a robust quantization step to illumination variations, four different lighting conditions are considered: normal, red, blue, and dark lights. (For
interpretation of the references to color in this figure, the reader is referred to the web version of this article.)
employs the ICP algorithm as a post-processing, the ICP time is also
reported.

According to the table, the total computation time of our ap-
proach is the most efficient. Depending on the kind of objects, the
total time varies. But the maximum runtime of our approach is
within about 1 s, whereas the running time of Papazov et al. [48]
and Hinterstoisser et al. [16] takes up to about 7 and 30 s, respec-
tively, which are not instantaneous for real robotic manipulation
tasks.

It is also worth comparing the computation time between our
approach and Drost et al. [33]. Drost et al. [33] without GPU accel-
eration is extremely slow. For instance, it takes more than 40 s in
‘‘MVG Book’’. The computation time depends on the size of model
point clouds. For those small object such as ‘‘Flash’’, ‘‘Kuka Mug’’,
and ‘‘Starbucks Mug’’, the computation is done in several seconds.
But it becomesnot scalable as themodel size increases.WhenDrost
et al. [33] with GPU is considered, our approach is still about two
times faster than Drost et al. [33]. Our algorithm is efficient due to
the sparsity of correspondences between model and scene CPPFs.
When the object model is learned, similar CPPFs are grouped to-
gether by the reduction parallel operation as explained in Sec-
tion 4.3. Since our CPPF ismore discriminative than the PPF of Drost
et al. [33], our approach results in a smaller number of duplication
for each key. The smaller number of duplication is directly related
to the efficiency of the voting stage, as it determines the number
of iterations of the for-loop in the 13-th line of Algorithm 3. The
efficiency of our approach further comes from the fewer number
of correspondences betweenmodel and scene CPPFs. Thanks to the
color information, a set ofmistakenlymatched point pairs between
model and scene can be ruled out if their color similarities are low,
while the voting of Drost et al. [33] cannot help but processing the
false matches. This facts enable our approach to be more efficient.
5.8. Color quantization step learning

A proper color quantization step

σ =

σh σs σv

ᵀ
∈ R3 (13)

is crucial for the good performance of our CPPF-based pose
estimation as it plays an important role to quantize the CPPF vector
in Eq. (3). The default quantization step

σ̃ =

0.25 0.25 1.00

ᵀ (14)

works reasonably in general, but it is more preferable if the al-
gorithm learns the parameter from data. In this section, we ex-
plain how the color quantization step is learned for each object
from a synthetic dataset. To learn the step parameter, we gener-
ate a dataset of RGB-D scenes. Fig. 20 shows some example scenes
among 50 scenes, where 10 object mesh models were rendered
with random poses in front of a gray wall. To find a robust quan-
tization step with respect to illumination variations, four differ-
ent lighting conditions are considered: normal, red, blue, and dark
lights. With the dataset, we run our approach with various quanti-
zation steps. We alter σh and σs in 6 different values: 0.1, 0.2, 0.25,
0.33, 0.5, and 1.0, while σv is fixed to 1.0 so that it is invariant to the
variation on brightness. The total number of investigated steps for
each object is thus 6 × 6 = 36, and the performance of each step
is measured by AP of precision–recall curve on the dataset. Fig. 21
shows AP values with respect to color quantization steps in hue
σh and saturation σs, where the highest AP value is depicted in its
associated step. If there are multiple steps having the highest AP
value, we choose the default step σ̃ in Eq. (14) as shown in ‘‘Flash’’
and ‘‘Pringles’’.

Not surprisingly, there is no ideal quantization step that works
well for all objects. Depending on the color distribution of each
object, the best quantization step varies. Some objects are quite
insensitive to the steps, such as ‘‘Flash’’, ‘‘Pringles’’, and ‘‘Tide’’. It is
also worth noting that too coarse (1.0) and too fine (0.1) steps do

612 C. Choi, H.I. Christensen / Robotics and Autonomous Systems 75 (2016) 595–613
Fig. 21. Average precision (AP) values with respect to color quantization steps σh and σs . The value of σv is fixed to 1.0 for illumination invariance.
not work very well in general. Too coarse step means that color
is barely considered in the quantization of the CPPF in Eq. (3).
Note that the upper right corner of each plot is equivalent to the
performance of the PPF-based pose estimation as 1.0 step means
no quantization. If the step is too fine, the voting procedure might
be too sensitive to illumination variations and thus results in less
reliable pose estimates.

As we mentioned earlier, the upper right corner of each plot
in Fig. 21 corresponds to the performance of the PPF approach.
From these plots, it is clear that the performance of the PPF-based
approach represents the lower bound of the performance of the
CPPF-based approach. As we discussed in the previous sections,
our CPPF-based approach is more accurate and faster than the PPF-
based approach due mainly to the fact that matched pair features
are more likely to be correct and sparser.

It isworth noting that even if an object is completely textureless
it can still take advantage of the CPPF. The worst case would be the
color of the object is identical to that of backgrounds, and in this
case the performance of the CPPFwill be the same as that of the PPF
approach. But if the color of the object is different from that of the
backgrounds, our CPPF approach would result in better results as
false point pair from the backgrounds will be ignored in the voting
phase thanks to the color channel. In that sense, our approach is
general as it can be applicable to both textured and textureless
objects.

The total time taken for learning the color quantization step for
all objects is 22730.89 s, which is about 6 h and 20 min. If faster
learning is required, we might employ a hill climbing algorithm
starting from the default step in Eq. (14) as the function AP(σh, σs)
is approximately convex.

6. Conclusions

We presented a voting-based pose estimation algorithm by
combining geometric shape and color information from an RGB-
D camera. Our color point pair feature (CPPF) was employed in
the efficient voting process which can recognize learned objects
in highly cluttered environments. As the voting algorithm is
inherently possible to be parallelized, we devised a set of highly
parallelized algorithms that perform a large amount of repetitive
operations in the multi-processors of a GPU. For quantitative
evaluations, we generated extensive synthetic and real datasets on
which our approachwas systematically comparedwith three other
state-of-the-art approaches. Our approach turned out to be more
efficient as well as more robust than the compared approaches.

One of the possibilities for future work is to augment our CPPF
to be more descriptive by appending additional information, such
as principal curvature, boundary edges, etc. Another interesting di-
rectionwould be to exploit contextual knowledge of environments
so that pose estimation approaches adaptively change their algo-
rithmic complexity depending on the scene complexity.

Acknowledgment

This work has in part been sponsored by the Boeing Corpo-
ration (12966BC–Wing Assembly). The support is gratefully ac-
knowledged.

References

[1] L.G. Roberts, Machine perception of three-dimensional solids, in: Optical and
Electrooptical Information Processing, MIT Press, 1963.

[2] D.G. Lowe, Distinctive image features from scale-invariant keypoints, Int. J.
Comput. Vis. 60 (2) (2004) 91–110.

[3] H. Bay, A. Ess, T. Tuytelaars, L.V. Gool, Sp eeded-up robust features (SURF),
Comput. Vis. Image Underst. 110 (3) (2008) 346–359.

[4] A. Collet, D. Berenson, S.S. Srinivasa, D. Ferguson, Object recognition and full
pose registration froma single image for roboticmanipulation, in: Proceedings
of IEEE International Conference on Robotics and Automation, ICRA, 2009, pp.
48–55.

[5] C. Choi, H.I. Christensen, Robust 3D visual tracking using particle filtering
on the special Euclidean group: A combined approach of keypoint and edge
features, Int. J. Robot. Res. 31 (4) (2012) 498–519.

[6] H.G. Barrow, J.M. Tenenbaum, R.C. Bolles, H.C. Wolf, Parametric correspon-
dence and chamfer matching: Two new techniques for image matching, in:
Proceedings of International Joint Conference on Artificial Intelligence, IJCAI,
Vol. 2, 1977, pp. 659–663.

[7] D.P. Huttenlocher, G.A. Klanderman, W.A. Rucklidge, Comparing images using
the Hausdorff distance, IEEE Trans. Pattern Anal. Mach. Intell. (1993) 850–863.

[8] C. Olson, D. Huttenlocher, Automatic target recognition by matching oriented
edge pixels, IEEE Trans. Image Process. 6 (1) (1997) 103–113.

[9] M.-Y. Liu, O. Tuzel, A. Veeraraghavan, R. Chellappa, Fast directional chamfer
matching, in: Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition, CVPR, 2010, pp. 1696–1703.

[10] J. Canny, A computational approach to edge detection, IEEE Trans. PatternAnal.
Mach. Intell. 8 (6) (1986) 679–698.

[11] R. Raskar, K. Tan, R. Feris, J. Yu,M. Turk, Non-photorealistic camera: Depth edge
detection and stylized rendering usingmulti-flash imaging, ACMTrans. Graph.
23 (2004) 679–688.

[12] A. Agrawal, S. Yu, J. Barnwell, R. Raskar, Vision-guided robot system for picking
objects by casting shadows, Int. J. Robot. Res. 29 (2–3) (2010) 155–173.

[13] M.-Y. Liu, O. Tuzel, A. Veeraraghavan, R. Chellappa, A. Agrawal, H. Okuda, Pose
estimation in heavy clutter using a multi-flash camera, in: Proceedings of
IEEE International Conference on Robotics and Automation, ICRA, 2010, pp.
2028–2035.

[14] I.K. Park, M. Germann, M.D. Breitenstein, H. Pfister, Fast and automatic object
pose estimation for range images on the GPU, Mach. Vis. Appl. 21 (5) (2010)
749–766.

http://refhub.elsevier.com/S0921-8890(15)00215-8/sbref1
http://refhub.elsevier.com/S0921-8890(15)00215-8/sbref2
http://refhub.elsevier.com/S0921-8890(15)00215-8/sbref3
http://refhub.elsevier.com/S0921-8890(15)00215-8/sbref5
http://refhub.elsevier.com/S0921-8890(15)00215-8/sbref7
http://refhub.elsevier.com/S0921-8890(15)00215-8/sbref8
http://refhub.elsevier.com/S0921-8890(15)00215-8/sbref10
http://refhub.elsevier.com/S0921-8890(15)00215-8/sbref11
http://refhub.elsevier.com/S0921-8890(15)00215-8/sbref12
http://refhub.elsevier.com/S0921-8890(15)00215-8/sbref14

C. Choi, H.I. Christensen / Robotics and Autonomous Systems 75 (2016) 595–613 613
[15] S. Hinterstoisser, C. Cagniart, S. Ilic, P. Sturm, N. Navab, P. Fua, V. Lepetit,
Gradient response maps for real-time detection of texture-less objects, IEEE
Trans. Pattern Anal. Mach. Intell. 34 (5) (2012) 876–888.

[16] S. Hinterstoisser, V. Lepetit, S. Ilic, S. Holzer, G. Bradski, K. Konolige, N. Navab,
Model based training, detection and pose estimation of texture-less 3D objects
in heavily cluttered scenes, in: Proceedings of Asian Conference on Computer
Vision, ACCV, 2012.

[17] P.J. Besl, N.D. McKay, A method for registration of 3-D shapes, IEEE Trans.
Pattern Anal. Mach. Intell. (1992) 239–256.

[18] R.B. Rusu, G. Bradski, R. Thibaux, J. Hsu, Fast 3D recognition and pose using
the viewpoint feature histogram, in: Proceedings of IEEE/RSJ International
Conference on Intelligent Robots and Systems, IROS, 2010.

[19] A. Aldoma, M. Vincze, N. Blodow, D. Gossow, S. Gedikli, R. Rusu, G. Bradski,
CAD-mo del recognition and 6DOF pose estimation using 3D cues, in: IEEE
International Conference on Computer Vision Workshops, ICCV Workshops,
2011, pp. 585–592.

[20] A. Aldoma, F. Tombari, J. Prankl, A. Richtsfeld, L. Di Stefano, M. Vincze,
Multimod al cue integration through hypotheses verification for RGB-D object
recognition and 6DOF pose estimation, in: Proceedings of IEEE International
Conference on Robotics and Automation (ICRA), IEEE, 2013, pp. 2104–2111.

[21] Z. Xie, A. Singh, J. Uang, K.S. Narayan, P. Abbeel, Multimod al blending for high-
accuracy instance recognition, in: Proceedings of IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), IEEE, 2013, pp. 2214–2221.

[22] K. Lai, L. Bo, X. Ren, D. Fox, A scalable tree-based approach for joint object and
pose recognition, in: AAAI Conference on Artificial Intelligence, 2011.

[23] F. Stein, G. Medioni, Str uctural indexing: Efficient 3-D object recognition, IEEE
Trans. Pattern Anal. Mach. Intell. 14 (2) (1992) 125–145.

[24] C. Dorai, A. Jain, COSMOS—a representation scheme for 3D free-form objects,
IEEE Trans. Pattern Anal. Mach. Intell. 19 (10) (1997) 1115–1130.

[25] A.E. Johnson, M. Hebert, Using spin images for efficient object recognition
in cluttered 3D scenes, IEEE Trans. Pattern Anal. Mach. Intell. 21 (5) (1999)
433–449.

[26] F. Tombari, S. Salti, L. Di Stefano, Unique signatures of histograms for
local surface description, in: Computer Vision—ECCV 2010, Springer, 2010,
pp. 356–369.

[27] A. Frome, D. Huber, R. Kolluri, T. Bülow, J. Malik, Recogni zing objects in range
data using regional point descriptors, in: Proceedings of European Conference
on Computer Vision (ECCV), Springer, 2004, pp. 224–237.

[28] S. Belongie, J. Malik, J. Puzicha, Shape matching and object recognition using
shape contexts, IEEE Trans. Pattern Anal. Mach. Intell. (2002) 509–522.

[29] R.B. Rusu, N. Blodow, M. Beetz, Fast point feature histograms (FPFH) for 3D
registration, in: Proceedings of IEEE International Conference on Robotics and
Automation, ICRA, 2009, pp. 3212–3217.

[30] M.A. Fischler, R.C. Bolles, Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography,
Commun. ACM 24 (6) (1981) 381–395.

[31] A. Mian, M. Bennamoun, R. Owens, Auto matic correspondence for 3D
modeling: an extensive review, Int. J. Shape Model. 11 (2) (2005) 253.

[32] Y. Guo, M. Bennamoun, F. Sohel, M. Lu, J. Wan, 3D object recognition in
cluttered sceneswith local surface features: A survey, IEEE Trans. Pattern Anal.
Mach. Intell. 36 (11) (2014) 2270–2287.

[33] B. Drost, M. Ulrich, N. Navab, S. Ilic, Model globally, match locally: Efficient and
robust 3D object recognition, in: Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition, CVPR, 2010.

[34] E. Wahl, U. Hillenbrand, G. Hirzinger, Surflet- pair-relation histograms: A
statistical 3D-shape representation for rapid classification, in: Proceedings of
International Conference on 3-D Digital Imaging and Modeling, 3DIM, 2003,
pp. 474–481.

[35] A.S. Mian, M. Bennamoun, R. Owens, Three-di mensional model-based object
recognition and segmentation in cluttered scenes, IEEE Trans. Pattern Anal.
Mach. Intell. (2006) 1584–1601.

[36] B. Matei, Y. Shan, H.S. Sawhney, Y. Tan, R. Kumar, D. Huber, M. Hebert, Rapid
object indexing using locality sensitive hashing and joint 3D-signature space
estimation, IEEE Trans. Pattern Anal. Mach. Intell. 28 (7) (2006) 1111–1126.

[37] E. Kim, G. Medioni, 3D object recognition in range images using visibility
context, in: Proceedings of IEEE/RSJ International Conference on Intelligent
Robots and Systems, IROS, 2011, pp. 3800–3807.

[38] C. Choi, Y. Taguchi, O. Tuzel, M. Liu, S. Ramalingam, Voting-based pose
estimation for robotic assembly using a 3D sensor, in: Proceedings of IEEE
International Conference on Robotics and Automation, ICRA, 2012.

[39] O.J. Woodford, M.-T. Pham, A. Maki, F. Perbet, B. Stenger, Demisting the Hough
transform for 3D shape recognition and registration, Int. J. Comput. Vis. 106
(3) (2014) 332–341.

[40] M. Pham, O.Woodford, F. Perbet, A. Maki, B. Stenger, R. Cipolla, A new distance
for scale-invariant 3D shape recognition and registration, in: Proceedings of
IEEE International Conference on Computer Vision, ICCV, 2011.

[41] M. Isard, A. Blake, Condensation–conditional density propagation for visual
tracking, Int. J. Comput. Vis. 29 (1) (1998) 5–28.

[42] A.S. Montemayor, J.J. Pantrigo, Á. Sánchez, F. Fernández, Particle filter on GPUs
for real-time tracking, in: ACM SIGGRAPH 2004 Posters, 2004, p. 94.

[43] P. Azad, D. Munch, T. Asfour, R. Dillmann, 6-DoF model-based tracking of
arbitrarily shaped 3D objects, in: Proceedings of IEEE International Conference
on Robotics and Automation, ICRA, 2011, pp. 5204–5209.

[44] O. Mateo Lozano, K. Otsuka, Real-time visual tracker by stream processing, J.
Signal Process. Syst. 57 (2) (2009) 285–295.

[45] C. Choi, H.I. Christensen, RGB-D object tracking: A particle filter approach
on GPU, in: Proceedings of IEEE/RSJ International Conference on Intelligent
Robots and Systems, IROS, 2013, pp. 1084–1091.

[46] R. Salas-Moreno, R. Newcombe, H. Strasdat, P. Kelly, A. Davison, SLAM++:
Simultaneous localisation andmapping at the level of objects, in: Proceedings
of IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2013.

[47] AMD, Bolt C++ template library, 2012.
[48] C. Papazov, S. Haddadin, S. Parusel, K. Krieger, D. Burschka, Rigid 3D geometry
matching for grasping of known objects in cluttered scenes, Int. J. Robot. Res.
31 (4) (2012) 538–553.

[49] A.E. Abdel-Hakim, A. Farag, et al., CSIFT: A SIFT descriptor with color invariant
characteristics, in: Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Vol. 2, IEEE, 2006, pp. 1978–1983.

[50] K. Pathak, N. Vaskevicius, F. Bungiu, A. Birk, Utilizing color information in
3d scan-registration using planar-patches matching, in: Proceedings of IEEE
International Conference onMultisensor Fusion and Integration for Intelligent
Systems (MFI), IEEE, 2012, pp. 371–376.

[51] E. Fernandez-Moral, J. Gonzalez-Jimenez, V. Arevalo, A compact planar-
patch descriptor based on color, in: 2014 11th International Conference on
Informatics in Control, Automation and Robotics, ICINCO, Vol. 02, 2014, pp.
296–302.

[52] F. Tombari, S. Salti, L.D. Stefano, A combined texture-shape descriptor for
enhanced 3D feature matching, in: 2011 18th IEEE International Conference
on Image Processing (ICIP), IEEE, 2011, pp. 809–812.

[53] C. Choi, H.I. Christensen, 3D pose estimation of daily objects using an RGB-
D camera, in: Proceedings of IEEE/RSJ International Conference on Intelligent
Robots and Systems, IROS, 2012, pp. 3342–3349.

[54] J. Hoberock, N. Bell, Thrust: A parallel template library, version 1.7.0, 2010.
[55] O. Tuzel, R. Subbarao, P. Meer, Simultan eous multiple 3D motion estimation

via mode finding on Lie groups, in: Proceedings of IEEE International
Conference on Computer Vision (ICCV), Vol. 1, IEEE, 2005, pp. 18–25.

[56] M. Kazhdan, M. Bolitho, H. Hoppe, Poisson surface reconstruction, in:
Proceedings of Eurographics Symposium on Geometry Processing, 2006.

[57] M. Fiala, ARTag, a fiducial marker system using digital techniques, in:
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,
CVPR, Vol. 2, 2005, pp. 590–596.

[58] Google, Google 3D Warehouse, 2013.
[59] A. Kasper, Z. Xue, R. Dillmann, The KIT object models database: An object

model database for object recognition, localization and manipulation in
service robotics, Int. J. Robot. Res. 31 (8) (2012) 927–934.

[60] R.B. Rusu, S. Cousins, 3D is here: Point Cloud Library (PCL), in: Proceedings of
IEEE International Conference on Robotics and Automation, ICRA, 2011, pp.
1–4.

[61] C. Choi, H. Christensen, 3D textureless object detection and tracking: An
edge-based approach, in: Proceedings of IEEE/RSJ International Conference on
Intelligent Robots and Systems, IROS, 2012, pp. 3877–3884.

[62] G. Bradski, A. Kaehler, Learning OpenCV: Computer Vision with the OpenCV
Library, O’Reilly Media, 2008.

[63] M. Everingham, L. Van Gool, C.K. Williams, J. Winn, A. Zisserman, The pascal
visual object classes (VOC) challenge, Int. J. Comput. Vis. 88 (2) (2010)
303–338.

[64] M. Nieuwenhuisen, D. Droeschel, D. Holz, J. Stückler, A. Berner, J. Li, R. Klein,
S. Behnke, Mobile bin picking with an anthropomorphic service robot, in:
Proceedings of IEEE International Conference on Robotics and Automation,
ICRA, 2013.

[65] D. Buchholz, M. Futterlieb, S. Winkelbach, F.M. Wahl, Efficient bin-picking
and grasp planning based on depth data, in: Proceedings of IEEE International
Conference on Robotics and Automation (ICRA), IEEE, 2013, pp. 3245–3250.

Changhyun Choi is a postdoctoral associate in the
Computer Science & Artificial Intelligence Lab (CSAIL) at
Massachusetts Institute of Technology (MIT)workingwith
Prof. Daniela Rus. He obtained a Ph.D. in Robotics at the
School of Interactive Computing, College of Computing,
Georgia Institute of Technology, wherein he was also
affiliated with the Institute for Robotics and Intelligent
Machines (IRIM). He was a research intern in the Imaging
Group of Mitsubishi Electric Research Labs (MERL) in
Cambridge, Massachusetts, an intern researcher at the
Imaging Media Research Center (IMRC) at Korea Institute

of Science and Technology (KIST), and an undergraduate researcher at the
Intelligent Systems Research Center at Sungkyunkwan University. He holds a B.S.
in Electrical and Computer Engineering from Sungkyunkwan University. His broad
research interests are in visual perception for robotics, with a focus on object
recognition and pose estimation, visual tracking, and 3D registration.

Henrik I. Christensen is the KUKA Chair of Robotics at
the College of Computing Georgia Institute of Technology.
He is also the executive director of the Institute for
Robotics and Intelligent Machines (IRIM). Dr. Christensen
does research on systems integration, human–robot
interaction, mapping and robot vision. The research is
performed within the Cognitive Robotics Laboratory. He
has published more than 300 contributions across AI,
robotics and vision. His research has a strong emphasis
on ‘‘real problems with real solutions’’. A problem needs
a theoretical model, implementation, evaluation, and

translation to the real world. He is actively engaged in the setup and coordination
of robotics research in the US (and worldwide). Dr. Christensen received the
Engelberger Award 2011, the highest honor awarded by the robotics industry. He
was also awarded the ‘‘Boeing Supplier of the Year 2012’’ with 3 other colleagues at
Georgia Tech. Dr. Christensen is a fellow of American Association for Advancement
of Science (AAAS) and Institute of Electrical and Electronic Engineers (IEEE). He
received an honorary doctorate in engineering from Aalborg University 2014. He
collaborates with institutions and industries across three continents. His research
has been featured in major media such as CNN, NY Times, BBC, . . . He serves as a
consultant to companies and government agencies across the world.

http://refhub.elsevier.com/S0921-8890(15)00215-8/sbref15
http://refhub.elsevier.com/S0921-8890(15)00215-8/sbref17
http://refhub.elsevier.com/S0921-8890(15)00215-8/sbref20
http://refhub.elsevier.com/S0921-8890(15)00215-8/sbref21
http://refhub.elsevier.com/S0921-8890(15)00215-8/sbref23
http://refhub.elsevier.com/S0921-8890(15)00215-8/sbref24
http://refhub.elsevier.com/S0921-8890(15)00215-8/sbref25
http://refhub.elsevier.com/S0921-8890(15)00215-8/sbref26
http://refhub.elsevier.com/S0921-8890(15)00215-8/sbref27
http://refhub.elsevier.com/S0921-8890(15)00215-8/sbref28
http://refhub.elsevier.com/S0921-8890(15)00215-8/sbref30
http://refhub.elsevier.com/S0921-8890(15)00215-8/sbref31
http://refhub.elsevier.com/S0921-8890(15)00215-8/sbref32
http://refhub.elsevier.com/S0921-8890(15)00215-8/sbref35
http://refhub.elsevier.com/S0921-8890(15)00215-8/sbref36
http://refhub.elsevier.com/S0921-8890(15)00215-8/sbref39
http://refhub.elsevier.com/S0921-8890(15)00215-8/sbref41
http://refhub.elsevier.com/S0921-8890(15)00215-8/sbref44
http://refhub.elsevier.com/S0921-8890(15)00215-8/sbref48
http://refhub.elsevier.com/S0921-8890(15)00215-8/sbref49
http://refhub.elsevier.com/S0921-8890(15)00215-8/sbref50
http://refhub.elsevier.com/S0921-8890(15)00215-8/sbref52
http://refhub.elsevier.com/S0921-8890(15)00215-8/sbref55
http://refhub.elsevier.com/S0921-8890(15)00215-8/sbref59
http://refhub.elsevier.com/S0921-8890(15)00215-8/sbref62
http://refhub.elsevier.com/S0921-8890(15)00215-8/sbref63
http://refhub.elsevier.com/S0921-8890(15)00215-8/sbref65

	RGB-D object pose estimation in unstructured environments
	Introduction
	Related work
	2D keypoint descriptors
	2D edges and template matching
	3D global descriptors
	3D local descriptors
	Point pair features

	Contributions
	RGB-D pose estimation
	Point pair feature
	Color point pair feature
	Object learning
	Voting scheme
	Pose clustering

	Experimental results
	Object models
	Experiment setup
	Gaussian noise
	Synthetic scenes: Multiple objects single instance (MOSI)
	Synthetic scenes: Single object multiple instances (SOMI)
	Real cluttered scenes
	Computation time
	Color quantization step learning

	Conclusions
	Acknowledgment
	References

