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Abstract— This paper presents a particle filtering approach
for 6-DOF object pose tracking using an RGB-D camera. Our
particle filter is massively parallelized in a modern GPU so that
it exhibits real-time performance even with several thousand
particles. Given an a priori 3D mesh model, the proposed
approach renders the object model onto texture buffers in
the GPU, and the rendered results are directly used by our
parallelized likelihood evaluation. Both photometric (colors)
and geometric (3D points and surface normals) features are
employed to determine the likelihood of each particle with
respect to a given RGB-D scene. Our approach is compared
with a tracker in the PCL both quantitatively and qualitatively
in synthetic and real RGB-D sequences, respectively.

I. INTRODUCTION

As robots are getting gradually deployed away from struc-
tured environments to unstructured environments, the reliable
interaction with the environments is a key necessity for the
success of utilizing robotic systems. Especially, a robust and
efficient object pose recognition is an important requirement
for reliable robotic tasks. In early stages of robotic object
perception, it was tried to solve this problem by employing
known 3D object models [1]. The problem was typically
formulated as estimating a pose that will best fit the given
3D model of the object to 2D image features: edges [2], [3]
or line segments fitted from the edges [4]. The optimal pose
or motion parameters were then estimated via efficient local
optimizations.

Although edge-based tracking was shown to be usable for
video rate tracking even in the early 90’s [2], it was not
robust to complex backgrounds and occlusions. Since edges
themselves are not discriminative enough to provide reliable
edge data associations, there have been many efforts to
augment the early work by fusion with keypoint features [5],
[6], [7] or maintaining multiple pose hypotheses on edge
data associations [5], [8]. However, these approaches were
still limited in the sense that they only considered a small
number of pose hypotheses.

A more advanced formulation considering multiple pose
hypotheses has appeared based on particle filtering. Particle
filter [9], [10] is a Bayesian filtering method based on
sequential simulation from posterior probability distributions.
For the last two decades, this method has become popular
since it can handle nonlinear and non-Gaussian dynamics, so
it has often been regarded as a good alternative to the filtering
methods designed upon Gaussian probability distributions for

Fig. 1. A tracking example. An object is tracked via our particle filter
parallelized on a GPU. The object rendering represents the mean of the
particles.

the state space. Isard and Blake [11] introduced a particle
filter to the computer vision community as a robust 2D
contour tracking approach. Since then, a large number of
variants have been applied to the problem of body pose esti-
mation [12], 3D object tracking [13], [14], [15], SLAM [16],
etc.

However, adopting the particle filtering approaches to
robotic perception has been limited mainly due to their
high computational cost. To tackle this problem, some re-
searchers [13], [14], [17], [18] have noticed that particle filter
algorithms are inherently parallelizable. The main bottleneck
of particle filters is in their likelihood evaluations. When
N particles are employed to approximate the true posterior
probability distribution, N independent and identical like-
lihood evaluations should be performed at each time step.
Since one likelihood evaluation for a particle does not depend
on the rest of the particles, the likelihood computation can
be parallelized.

Modern graphics processing unit (GPU) provides massive
parallel power beyond rendering purposes, so it is a natural
idea to design a particle filter on the GPU for fast and
robust object pose tracking. Montemayor et al. [17] showed
a preliminary design of a particle filter on the GPU for a
simple 2D object tracking. Klein and Murray [13] presented



a particle filter which tracks an arbitrarily shaped object
in real-time. To maintain the high frame rate, the OpenGL
occlusion query extension was employed to calculate the
particle likelihood efficiently from a given edge image. While
the work simply relied on an OpenGL extension, several
approaches [14], [18] adopted a more advanced technique
to exploit the GPU, NVIDIA CUDATM technology, so that
they render an object model to the GPU and a CUDA
kernel directly accesses the rendering results, and then the
importance weights of the particles are calculated from the
differences between the rendered results and an input scene.

Most of the previous work have mainly used a monocular
camera, so the visual features employed so far have been
limited to edges [13], [14] or intensity differences [17], [18].
However, as RGB-D sensors were recently introduced, not
only color but also depth information is readily available in
real-time. This depth information enables us to use various
geometric features, such as 3D point coordinates, surface
normals, edges from depth discontinuities, high curvature
regions, etc. Recently, this additional depth data has actively
been used in many robotic and vision applications, such as
human pose estimation [19], bin-picking problem [20], [21],
[22], SLAM [23], [24], and object tracking [25]. The particle
filter-based tracking in the PCL [26] is probably the closest
system to our proposed solution. Given an object point cloud
as a reference model, it can track the 6-DOF pose of the
reference model over a sequence of RGB-D images. Its time
consuming routines were parallelized in CPU, yet it does not
achieve real-time performance with a sufficient number of
particles (see Section VI). A brief description of the approach
can be found in [27].

II. CONTRIBUTIONS

We propose a robust particle filter parallelized on a GPU
which can track a known 3D object model over a sequence of
RGB-D images. Unlike the PCL tracking [27], we render the
3D object model to be used in the likelihood evaluation so
that our approach can track the object in spite of significant
pose variations. Our key contributions are as follows:

• We employ extended features to evaluate the likelihood
of each particle state. While most of the previous work
has mainly relied on 2D edges [13], [14] or inten-
sity differences [17], [18] to calculate the importance
weights of particles, we use both photometric (colors)
and geometric features (3D points and surface normals)
available from both RGB-D images and OpenGL ren-
dering.

• We use the framebuffer object extension (FBO) in
OpenGL and the CUDA OpenGL interoperability to
reduce the mapping time of the rendering result to
CUDA’s memory space. As [14] mentioned, the map-
ping between OpenGL framebuffer and the memory
space of CUDA takes as much as copying the rendered
result to the memory space of CPU. To avoid this
problem, our rendering is performed in the FBO so that
the mapping time is nearly negligible.

• We devised an hierarchical approach to consider mul-
tiple renderings of the object. While the PCL track-
ing [26] maintains only one reference object cloud, we
render the object to multiple viewports with different
poses. It would be ideal if we draw all particle poses
to the render buffers in the GPU, but it is not possible
due to the memory limitation of the buffers. Instead, our
approach renders the object to V viewports, and each
particle searches the closest rendering from V viewports
so that each likelihood evaluation is performed by
transforming the closest rendered result with the current
particle state (see Fig. 2).

To the best of our knowledge, our proposed solution is the
first real-time particle filter for 6-DOF object pose tracking
using rich visual features from the RGB-D sensor. Fig. 1
shows an example frame of our tracking where a target object
is tracked in background clutter. The rendered 3D mesh
model represents the mean of the particles for visualization
purpose.

This paper is organized as follows. A particle filter for 6-
DOF object pose tracking is briefly mentioned in Section III,
and the likelihood function employing points, colors, and
normals is introduced in Section IV. After the further ex-
planation on the OpenGL and the CUDA implementation in
Section V, our approach is compared with a baseline in both
synthetic and real RGB-D image sequences in Section VI.

III. PARTICLE FILTER

In the 6-DOF pose tracking problem, a particle filter is
employed to sample the trajectory of an object of interest
over time. In a particle filtering framework, the posterior
probability density function of the object pose p(Xt|Z1:t) at
the current time t is represented as a set of weighted particles
by

St = {(X(1)
t , π

(1)
t ), . . . , (X

(N)
t , π

(N)
t )} (1)

where the particles X
(n)
t ∈ SE(3) represent samples, the

normalized importance weights π(n)
t are proportional to the

likelihood function p(Zt|X(n)
t ), and N is the total number of

the particles. At each time t, the particle filter performs the
sequential importance sampling with resampling [10]. The
current state Xt could be estimated by the weighted particle
mean:

Xt = E [St] =
N∑
n=1

π
(n)
t X

(n)
t . (2)

As we already showed in [15], when we estimate the mean,
we need to obtain a valid rotation Rt ∈ SO(3) as the
arithmetic mean Rt =

1
N

∑N
n=1 R

(n)
t is not usually on the

SO(3) group. From [28], the desired mean rotation can be
calculated via the orthogonal projection of the arithmetic
mean as

Rt =

{
VUT when det(R

T

t ) > 0

VHUT otherwise,
(3)

where U and V are estimated via the singular value decom-
position of R

T

t (i.e. R
T

t = UΣVT) and H = diag[1, 1,−1].



Fig. 2. Multiple renderings for the likelihood evaluation. The object of interest is rendered with the first V particle states and the likelihoods of the
V particles are evaluated from the rendering results. For the rest particles, each particle finds the closest rendering and use the rendering result to evaluate
its likelihood. Left and right images represent the color and normal renderings in the GPU. (Best viewed in color)

IV. LIKELIHOOD EVALUATION

Designing an efficient and robust likelihood function is
crucial, since it directly determines the overall performance
of the particle filtering in terms of both time and accuracy.
When an RGB-D camera is considered, there are various
measurements we can employ: 3D point coordinates, colors
of points, surface normals, curvature, edges from depth
discontinuities or surface textures, etc. In this work, we
choose the point coordinates x ∈ R3 and their associated
colors c ∈ R3 and normals n ∈ R3. Thus, a measurement
point p is defined as

p = (xT,nT, cT)T ∈ R9. (4)

For clear notation, let us define accessing operators for p
such that

x(p) = (xT 1)T ∈ R4 (5)

n(p) = (nT 1)T ∈ R4 (6)

c(p) = c ∈ R3. (7)

The reason we choose the three measurements is that this
combination allows us to perform direct comparisons be-
tween the given RGB-D scene and the rendering results from
the computer graphics pipeline. Hence, we can efficiently
calculate the likelihood for a large number of particles.

Given the current pose hypothesis X
(n)
t and the rendered

object model Mt, the likelihood of the scene Zt is defined
as

p(Zt|X(n)
t ,Mt) =

∏
(i,j)∈A

p(z
(i)
t |X

(n)
t ,m

(j)
t ) (8)

where A = {(i, j)|proj(x(z(i)t )) = proj(X
(n)
t ·x(m

(j)
t ))} is

the set of point associations between the scene Zt and the
object model Mt, and z

(i)
t ,m

(j)
t ∈ R9 are corresponding

points in the scene and model, respectively. The operator
proj(·) calculates 2D image coordinates of given 3D ho-
mogeneous point coordinates by projecting the point with

the known camera intrinsic parameters K ∈ R3×3. With the
proj operator, the point associations A can be efficiently
determined. The likelihood of each association (i, j) is then
defined as

p(z
(i)
t |X

(n)
t ,m

(j)
t ) = exp−λe·de(x(z(i)

t ), X
(n)
t ·x(m

(j)
t ))

· exp−λn·dn(n(z(i)
t ), X

(n)
t ·n(m

(j)
t ))

· exp−λc·dc(c(z(i)
t ), c(m

(j)
t )) (9)

where de(x1,x2), dn(n1,n2), and dc(c1, c2) are Euclidean,
normal, and color distances as shown below

de(x1,x2) =

{
‖x1 − x2‖ if ‖x1 − x2‖ ≤ τ
1 otherwise (10)

dn(n1,n2) =
cos−1(nT

1n2 − 1)

π
(11)

dc(c1, c2) = ‖c1 − c2‖ (12)

and λe, λn, λc are the parameters that determines the sensi-
tivity of the distances to the likelihood. The τ in (10) is
a threshold value for the Euclidean distance between the
two points. Note that n1,n2 ∈ R4 in (11) are homogeneous
point coordinates, so 1 need to be subtracted from the inner
product. For the color distance in (12), any kind of color
space can be considered as long as 0 ≤ dc(c1, c2) ≤ 1, but
we adopted the HSV color space due mainly to its invariance
to illumination changes. Please note that the point and normal
coordinates of object model point m

(j)
t are in the object

coordinate frame, so the transformed point by the current
pose X

(n)
t should be considered to calculate the distances.

V. IMPLEMENTATION DETAILS

As we already mentioned in Section II, we render our
object of interest onto V viewports in the render buffers with
the first V particle poses. For the rest of the particles, each
particle finds a closest rendering with respect to the pose
hypothesis and transforms the closet rendering result with the
current pose. For this calculation, we need to access the color,



Fig. 3. Mesh models for objects and kitchen. Object models were generated by fusing multiple RGB-D views, followed by running the Poisson
reconstruction algorithm [29]. To generate a set of synthetic sequences, a kitchen model was download from the Google 3D warehouse. From left to right,
‘Tide’, ‘Milk’, ‘Orange Juice’, ‘Kinect Box’, and ‘Kitchen’.

Fig. 4. Camera trajectories in synthetic sequences. Synthetic RGB-D sequences were generated with their corresponding ground truth trajectories of
the objects. Please note the significant variations in translation, rotation, and velocity. From left to right, trajectories of ‘Tide’, ‘Milk’, ‘Orange Juice’, and
‘Kinect Box’.

vertex (i.e. 3D point), and normal information for all visible
points in the rendered result. It is relatively straightforward
to get color information via accessing the render buffer, but
it is tricky to access 3D point and 3D normal data from
the buffer. To tackle this problem, we employ the OpenGL
Shading Language (GLSL) to directly access the point and
normal data in the middle of the graphics pipeline. For
point information, we designed a set of simple vertex and
fragment shaders so that the 3D coordinates of visible points
gl Vertex are saved to color texture points gl FragColor.
Similarly, for normal data another set of vertex and fragment
shaders is used so that the surface normals of the object
gl Normal are saved in color texture points. Note that these
points and normals are in the object coordinate frame, so we
do not need to perform an inverse transform on the rendering
result before transforming them with respect to the current
particle pose.

The main purpose of the multiple viewports rendering
is not for visualization but for the likelihood evaluation of
each particle. Thus using the Frame Butter Object (FBO,
GL ARB framebuffer object) is a good choice for our
rendering purpose. The FBO is an OpenGL extension for
off-screen framebuffers. Unlike the default framebuffer of
OpenGL provided by window systems, the FBO is more
flexible and efficient since all resources bound in the
FBO are shared within the same context. The FBO allows
users to attach multiple texture images to color attach-
ments. For our purpose, we attach three texture images to
the three color attachments: GL COLOR ATTACHMENT0 for
color data, GL COLOR ATTACHMENT1 for point data, and
GL COLOR ATTACHMENT2 for normal data. In the rendering

phase, our object of interest is drawn onto each color
attachment. While the color texture is drawn using the
usual OpenGL rendering, the point and normal textures are
rendered via the aforementioned shader programs. For each
rendering, the object is rendered to V viewports by calling
glViewport().

After rendering the object with shader programs, we evalu-
ate the likelihood function on the GPU. To utilize the texture
images attached to the FBO in our likelihood evaluation
kernel, we use the CUDA OpenGL interoperability that
allows to map/unmap OpenGL buffers to CUDA’s memory
space. So our CUDA kernel can access the rendered buffers
very efficiently.

VI. EXPERIMENTS

In this section, we present a set of comparative experi-
ments between the PCL tracking and our proposed approach.
The performance of the two approaches is quantitatively
evaluated using a set of synthetic RGB-D sequences with
the ground truth object trajectories in Section VI-B, followed
by the qualitative evaluation using real RGB-D sequences in
Section VI-C. For the evaluations, both trackers are initial-
ized with the known ground truth in synthetic sequences and
with the converged pose estimates after running our tracker
from a sufficiently close initial pose. The PCL tracking
provides an option for adaptive particle size based on [30],
but here the fixed particle size is considered for fair compar-
isons with our approach and for the performance evaluation
with respect to different particle sizes. All experiments were
performed using a standard desktop computer (Intel Core2
Quad CPU Q9300, 8G RAM) with an off-the-shelf GPU



Fig. 5. Tracking results on the ‘Orange Juice’ and the ‘Kinect Box’ synthetic sequences. For both sequences, the upper rows show the tracking
results of our approach, while the lower rows present the results of the PCL tracking (N = 6400 for the ‘Orange Juice’ sequence and N = 12800 for the
‘Kinect Box’ sequence). In both sequences, our approach tracks the true object trajectories well, but the PCL tracking is often lost due to the limitation
of the object model. (Best viewed in color)
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Fig. 6. The 6-DOF pose plots of the ‘Kinect Box’ results in Fig. 5. While our approach well follows the ground truth, the PCL tracking suffers from
wrong tracking due to the limitation of the object model.

(NVIDIA GeForce GTX 590, CUDA 4.1) and an RGB-D
camera (ASUS Xtion Pro Live).

A. Object Models

For the experiments, four objects were chosen, and the
3D mesh models of the objects (Fig. 3) were generated by
using an RGB-D sensor. To generate the mesh model, we
first obtained multiple RGB-D views and registered them. We
could use one of the RGB-D SLAM approaches [23], [24],
[31] to register the multiple views, but we employed several
ARTags for simplicity. Once the multiple views were fused,

the object cloud was segmented from the background clouds
and was reconstructed to result in a mesh model via the
Poisson reconstruction algorithm [29]. As the PCL tracking
can not use the 3D mesh models, the object point clouds
which were obtained by rendering with the initial poses were
fed to be used as reference models.

B. Synthetic Sequences

For a quantitative analyses, we generated a set of synthetic
RGB-D sequences. To simulate a realistic environment, a
virtual kitchen model (see Fig. 3) was downloaded from the



TABLE I
RMS ERRORS AND COMPUTATION TIME IN SYNTHETIC RGB-D SEQUENCES (PCL VS. OUR TRACKING)

Objects Tracker N RMS Errors† Time (ms)†
X (mm) Y (mm) Z (mm) Roll (deg) Pitch (deg) Yaw (deg)

Tide

PCL

100 3.43 4.96 3.09 9.10 4.05 5.85 81.46
200 2.45 3.66 2.38 6.96 2.88 4.34 106.50
400 2.13 3.00 1.89 5.85 2.53 3.50 152.57
800 1.74 2.79 1.59 5.43 2.35 3.20 253.33
1600 1.69 2.61 1.51 5.58 2.23 3.39 430.15
3200 1.49 2.50 1.11 5.26 2.17 3.00 744.50
6400 1.34 2.11 0.95 5.02 2.15 2.93 1376.92
12800 1.46 2.25 0.92 5.15 2.13 2.98 2762.73

Ours (τ = 0.01)

100 3.47 6.55 4.30 7.58 5.14 4.96 41.48
200 3.51 4.16 2.71 8.17 3.12 4.55 41.55
400 2.33 3.25 2.53 5.19 2.26 2.86 42.00
800 1.88 2.96 2.24 3.79 1.93 2.32 42.37
1600 1.66 2.42 1.91 3.48 1.71 2.21 44.60
3200 1.27 1.87 1.54 2.43 1.36 1.58 48.93
6400 1.14 1.54 1.42 2.25 1.13 1.39 77.88
12800 0.83 1.37 1.20 1.78 1.09 1.13 111.48

Milk

PCL

100 3.04 7.91 3.60 62.43 37.62 50.76 74.09
200 2.48 6.65 3.33 62.37 37.76 50.82 91.37
400 2.37 4.89 2.35 50.49 33.71 41.33 130.47
800 2.36 4.81 2.03 52.23 33.78 42.89 208.83
1600 1.78 3.99 1.69 49.27 33.65 40.22 351.83
3200 13.68 43.72 24.92 64.45 21.52 74.78 585.79
6400 2.03 4.24 1.57 55.55 34.51 45.67 1126.65
12800 13.38 31.45 26.09 59.37 19.58 75.03 2205.18

Ours (τ = 0.01)

100 3.51 5.96 2.95 12.18 3.36 11.19 49.14
200 2.42 4.79 2.52 14.06 2.97 12.55 50.21
400 1.99 4.00 2.21 10.50 2.57 9.29 50.28
800 1.79 3.16 1.97 7.77 2.03 6.96 51.32
1600 1.28 2.55 1.74 4.35 1.68 3.90 52.95
3200 1.20 2.37 1.41 6.22 1.74 5.49 60.55
6400 1.05 2.07 1.21 4.00 1.44 3.47 94.55
12800 0.93 1.94 1.09 3.83 1.41 3.26 133.95

Orange Juice

PCL

100 4.83 4.95 3.18 84.38 41.50 46.51 74.15
200 3.58 3.47 2.99 84.12 44.11 44.76 88.67
400 3.21 2.83 2.49 86.48 44.67 45.26 114.36
800 3.06 2.54 2.44 84.76 42.36 45.87 182.19
1600 2.61 2.39 2.11 84.42 41.65 46.37 295.26
3200 26.76 5.18 10.83 97.34 51.81 50.67 487.15
6400 26.86 5.30 11.19 92.67 53.43 65.90 896.85
12800 2.53 2.20 1.91 85.81 42.12 46.37 1637.13

Ours (τ = 0.01)

100 3.49 4.19 2.70 6.82 2.86 6.55 50.39
200 3.39 4.05 2.41 5.02 2.23 5.81 50.19
400 2.86 3.64 2.14 3.88 1.77 4.68 50.54
800 2.18 2.53 1.94 2.55 1.44 2.80 50.64
1600 1.86 2.39 1.79 2.36 1.29 2.76 52.58
3200 1.56 2.17 1.50 1.54 1.09 2.09 56.74
6400 1.12 1.61 1.45 1.54 0.84 1.61 80.22
12800 0.96 1.44 1.17 1.32 0.75 1.39 117.08

Kinect Box

PCL

100 50.02 48.08 54.28 12.78 2.98 19.77 96.23
200 44.45 71.22 53.61 86.93 34.92 64.54 146.30
400 32.62 51.28 51.01 12.46 2.43 12.56 238.51
800 44.83 43.50 56.51 10.23 2.31 10.63 395.86
1600 43.93 42.70 55.70 9.80 2.33 10.58 666.85
3200 44.59 42.93 55.78 11.82 1.94 11.33 1218.44
6400 43.43 41.92 55.78 7.21 2.08 7.74 2377.42
12800 43.99 42.51 55.89 7.62 1.87 8.31 4539.42

Ours (τ = 0.01)

100 11.26 30.02 19.66 15.86 3.75 14.51 50.07
200 7.67 18.51 12.02 11.27 2.18 11.15 49.74
400 5.61 13.86 9.24 10.12 1.71 10.16 52.21
800 3.67 5.28 2.60 8.40 1.58 8.43 51.87
1600 3.37 4.13 2.15 7.86 1.17 7.86 56.33
3200 6.11 9.16 7.51 7.63 1.03 7.51 64.00
6400 2.38 3.28 1.52 8.14 1.42 7.52 116.17
12800 1.84 2.23 1.36 6.41 0.76 6.32 166.14

† For the sake of comparison, better results are indicated in bold type.



Fig. 7. Tracking results on the ‘Tide’ and ‘Milk’ real sequences. For both sequences, the upper rows show the tracking results of our approach, while
the lower rows present the results of the PCL tracking (N = 1600). As the objects undergo significant variations in rotations, the PCL tracking suffered
from false pose estimates. Thanks to multiple model renderings every time, our tracking reliably tracks the true poses of the objects. (Best viewed in color)
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Fig. 8. Boxplots showing computation time of our tracking (left)
and the PCL tracking (right) on the ‘Tide’ synthetic sequence. For
both approaches, time linearly increases as the number of the particles N
increases, but our increasing rate is much smaller. Note that the computation
time of our approach is less than 50 ms until N ≤ 3200.

Google 3D warehouse. After placing each object model in
the kitchen model, a set of synthetic sequences was generated
by moving the virtual camera around the object. Fig. 4 shows
the camera trajectories of the synthetic data which exhibit
high variations in translation, rotation, and velocity of the
camera. The object trajectories were saved to be used as
ground truth poses of the objects with respect to the camera
coordinate frame.

To compare our approach with the PCL tracking, we
calculated the root mean square (RMS) errors and average
computation time per frame over the four synthetic RGB-D

sequences as shown in Table I. For the sake of comparison,
better results are indicated in bold type. The RMS errors vary
depending on both the object type and the difficulty of the
sequences. But the overall trend here is that as the number
of the particles N increases the translational and rotational
errors are decreased. In the ‘Tide’ sequence which is rather
simple compared to the other sequences, for example, the
PCL tracking reports slightly better results when N ≤ 800.
But as N increases, our tracker shows more accurate results.
An interesting fact in the ‘Tide’ sequence is that the PCL
tracking shows slightly better result in z translation. This
may be due to the fact that the PCL tracking has only one
reference object point cloud as an object model so that it does
result in smaller error in that direction. However, the limited
number of the reference cloud is getting problematic when
it runs on more challenging sequences. Please note that big
errors in both translation and rotations in the ‘Milk’, ‘Orange
Juice’, and ‘Kinect Box’ sequences. Since the objects are
self-symmetric themselves, the one reference view of each
object is not enough to track the objects over the entire
sequences. As shown in Fig. 5 and Fig. 6, the PCL tracking
is often stuck in local minima during the tracking, while our
approach robustly tracks the objects in the sequences.

For robotic applications, the computation time is really
important since it directly determines the performance and
the reliability of the robotic systems. As we can see in both
Table I and Fig. 8, the computation time of both approaches



increases linearly as N increases. However, our tracking only
takes about 50 ms per frame (i.e. 20 frames per second)
with several thousands particles, whereas the PCL tracking
suffers from low frame rates. Although the PCL tracking
shows comparable performance in the ‘Tide’ sequence, if
we consider the real frame rates the PCL tracking would
have much higher errors due to the lost frames.

C. Real Sequences

We ran both tracking approaches in a set of real image
sequences which exhibits significant noise and more variable
object motions compared to the synthetic sequences. Fig. 7
shows the pose tracking results on the ‘Tide’ and ‘Milk’
sequences. For clear visualization, the RGB channels from
the RGB-D sequences were converted to gray scale, and each
rendered object model was drawn on top of them. Invalid
depth points (also known as Nan points) were shown as
black points. For both sequences, N = 1600 particles were
employed. As the objects experience significant variations in
rotations, the PCL tracking (lower rows in each sequence)
often loses its tracking. Thanks to employing the 3D object
model and rendering it in multiple views, our tracking
dependably tracks the object in spite of the challenging
rotational motions.

VII. CONCLUSIONS

We presented an approach for RGB-D object tracking
which is based on a particle filter on a GPU. Rich visual
features were employed to evaluate the likelihood of each
particle, and this process, which is a typical bottleneck in
most particle filters, was parallelized on the GPU so that our
proposed solution achieves real-time performance. Through
a set of extensive experiments with both synthetic and real
RGB-D sequences, we verified that our approach is not only
faster but also more accurate than the PCL tracking.
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