
RGB-D Edge Detection and Edge-based Registration

Changhyun Choi, Alexander J. B. Trevor, and Henrik I. Christensen
Center for Robotics & Intelligent Machines

College of Computing
Georgia Institute of Technology

Atlanta, GA 30332, USA
{cchoi,atrevor,hic}@cc.gatech.edu

Abstract— We present a 3D edge detection approach for
RGB-D point clouds and its application in point cloud registra-
tion. Our approach detects several types of edges, and makes
use of both 3D shape information and photometric texture
information. Edges are categorized as occluding edges, occluded
edges, boundary edges, high-curvature edges, and RGB edges.
We exploit the organized structure of the RGB-D image to
efficiently detect edges, enabling near real-time performance.
We present two applications of these edge features: edge-
based pair-wise registration and a pose-graph SLAM approach
based on this registration, which we compare to state-of-the-art
methods. Experimental results demonstrate the performance of
edge detection and edge-based registration both quantitatively
and qualitatively.

I. INTRODUCTION

Visual features such as corners, keypoints, edges, and
color are widely used in computer vision and robotic per-
ception for applications such as object recognition and pose
estimation, visual odometry, and SLAM. Edge features are
of particular interest because they are applicable in both
textureless and textured environments. In computer vision,
edges features have been used in a variety of applications,
such as tracking and object recognition. Recently, RGB-D
sensors have become popular in many applications, including
object recognition [1], object pose estimation [2], [3], and
SLAM [4], [5], but edge features have so far seen limited
use in the RGB-D domain. In this paper, we present an edge
detection method for RGB-D point clouds, and explore the
application of these features for registration and SLAM.

Dense point cloud registration methods such as Iterative
Closest Point (ICP) [6] are omni-present in SLAM and
geometric matching today. The runtime of these algorithms
scales with the number of points, often necessitating down-
sampling for efficiency. In many environments, the bulk of
the important details of the scene are captured in edge points,
enabling us to use only these edge points for registration
rather than a full point cloud or a uniformly downsampled
point cloud. Edge detection can be viewed as a means of
intelligently selecting a small sample of points that will
be informative for registration. We will demonstrate that
this approach can be both faster and more accurate than
alternative approaches.

In 2D grayscale images, edges can be detected from image
gradient responses that capture the photometric texture of
a scene, as is done by the Canny edge-detector [7]. In

addition to traditional images, RGB-D cameras also provide
3D shape information, enabling edge detection using both
3D geometric information and photometric information. We
present detection methods for several types of edges that
occur in RGB-D data. Depth discontinuities in the 3D data
produce two related types of edges: occluding and occluded.
Another type of 3D edge occurs at areas of high-curvature
where surface normals change rapidly, which we call high
curvature edges. Edges detected on the 2D photometric data
can also be back-projected onto the 3D structure, yielding
RGB edges.

II. RELATED WORK

Edges have been widely used since the early age of
computer vision research. The Canny edge detector [7] is
one of the most widely employed methods to find edges
from 2D images due to its good localization and high recall.
Edges were used to find known templates in a search image
via the chamfer distance [8], [9] and further employed to
model-based visual tracking [10], [11] and object catego-
rization [12], [13].

3D edge detection has been mainly studied in computer
graphics community. Most of work has found edges or lines
from polygonal mesh models or point clouds. Ohtake et
al. [14] searched ridge-valley lines on mesh models via
curvature derivatives on shapes. While this work requires
polygonal meshes, several approaches [15], [16] found crease
edges directly from a point cloud. Although these approaches
could detect sharp 3D edges from 3D models, they were
computationally time-consuming because they relied on ex-
pensive curvature calculation and neighbor searching in 3D.
Hence these approaches may not be an ideal solution for
robotic applications where real-time constraints exist.

In 3D point cloud registration, the Iterative Closest Point
(ICP) algorithm [6] is the best known technique to align one
point cloud to another one. Several efforts have enhanced the
ICP algorithm by considering two sets of correspondences
to improve the point matching procedure [17] and by intro-
ducing a measure of rotational errors as one of the distance
metrics [18]. The most recent state-of-the-art technique was
shown by Segal et al. [19] who presented a probabilistic ap-
proach for plane-to-plane ICP. While these techniques were
originally designed for pair-wise registration, it is possible
to align multiple scans via the pair-wise alignment [20].



For large scale registration applications such as SLAM and
3D reconstruction, it is often required to perform a global
optimization over multiple scans. Recently, several popular
software packages have been released to solve such non-
linear optimization problems, including the g2o library [21],
the Google Ceres Solver [22], and GTSAM [23]. SLAM
pose-graphs have been well studied in the literature. The
6D SLAM [24] is one example of a pose-graph approach
using the ICP algorithm. Pose-graphs can also be constructed
by using features to compute relative transforms between
landmark measurements, as was done by Pathak et al. [25]
using planar features. Pose-graphs using RGB-D cameras
have also been studied previously. One approach is described
in [26], which making use of SURF keypoints detected in
2D, and then back-projected onto the 3D structure. These
are then used to compute a relative pose between frames
via RANSAC, refined by ICP, and optimized globally via
pose graph optimization using HOGMAN [27]. A related
approach was proposed by Henry et al. [4], which takes a
visual odometry approach between sequential poses, and uses
SIFT keypoint matches optimized using sparse bundle ad-
justment to compute loop closure constraints between these
frames. While these approaches were based on the sparse
features, Newcombe et al. [28] showed a dense approach
called KinectFusion. It builds a Truncated Signed Distance
Function (TSDF) [29] surface model of the environment
online, and the current camera pose is computed relative to
this by using point-to-plane ICP. This approach relies heavily
on access to high-end GPUs, which may not be realistic for
some mobile robots.

We present an efficient 3D edge detection algorithm from
an RGB-D point cloud by exploiting the organized structure
of RGB-D images. Our approach does not rely on time-
consuming curvature derivatives and thus is very efficient.
We also examine the performance of pair-wise registration
using our edge features and compare with several state-of-
the-art approaches. The edge-based pair-wise registration is
further applied to an RGB-D SLAM system which is based
on the efficient incremental smoothing and mapping [30].
To the best of our knowledge, this work is the first effort
to find 3D edges from organized RGB-D point clouds and
apply these edges to 3D point cloud registration. This paper
is organized as follows. We introduce our edge detection
from organized point clouds in Section III, including edges
from depth discontinuities in Section III-A, and edges from
photometric texture and geometric high curvature regions in
Section III-B. The usage of these edge features for pair-
wise registration is explained in Section IV, and usage in
SLAM is described in Section V. Quantitative and qualitative
results are presented in Section VI, followed by conclusions
in Section VII.

III. EDGE DETECTION FROM POINT CLOUDS

In this section, we describe our edge detection approach
for RGB-D point clouds. Geometric shape information from
the depth channel and photometric texture information from
the RGB channels are both considered to detect reliable

Algorithm 1: RGB-D Edge Detection (C,D)
Input: C,D
Output: L
Params: τrgb⊥ , τrgb> , τhc⊥ , τhc> , τdd , τsearch

1: I← RGB2GRAY(C)
2: Ergb ← CannyEdge(I, τrgb⊥ , τrgb>)
3: {Nx,Ny,Nz} ← NormalEstimation(D)
4: Ehc ← CannyEdge(Nx,Ny, τhc⊥ , τhc>)
5: {H,W} ← size(D)
6: for y ← 1 to H do
7: for x← 1 to W do
8: if D(x, y) = Nan then
9: continue

10: n← 8-Neighbor(D, x, y)
11: invalid← 0
12: for n← 1 to 8 do
13: if n(n) = Nan then
14: invalid← 1
15: break

else
16: d(n)← D(x, y)− n(n)

17: if invalid = 0 then
18: {d̂, îdx} ← max(abs(d))

19: if d̂ > τdd ·D(x, y) then
20: if d(îdx) > 0 then
21: L(x, y)← OCCLUDED EDGE

else
22: L(x, y)← OCCLUDING EDGE

else
23: {dx, dy} ← SearchDirection(D, x, y)
24: L(x, y)← BOUNDARY EDGE
25: for s← 1 to τsearch do
26: x̃← x+ bs · dxc
27: ỹ ← y + bs · dyc
28: if D(x̃, ỹ) 6= Nan then
29: d← D(x, y)−D(x̃, ỹ)
30: if abs(d) > τdd ·D(x, y) then
31: if d > 0 then
32: L(x, y)← OCCLUDED EDGE

else
33: L(x, y)← OCCLUDING EDGE

34: if Ergb(x, y) = 1 then
35: L(x, y)← RGB EDGE

36: if Ehc(x, y) = 1 then
37: L(x, y)← HIGH CURVATURE EDGE

3D edges. For shape information, we exploit depth discon-
tinuities and high curvature regions to search for salient
geometric edges. We also use the RGB image to detect
2D edges, which we back-project to get 3D points. Since
the point clouds from RGB-D sensors are organized as
images (rows and columns of pixels), neighbor search is
done with the row and column indices instead of performing
a time-consuming 3D search, as is necessary for general
unorganized point clouds. Algorithm 1 shows the procedure
of our edge detection which takes RGB color data C and
depth data D as input and returns edge labels L. Detailed
explanations of each edge type are provided below.



(a) Nx (b) Ny (c) Gx (d) Gy (e) High curvature edges

Fig. 1: Detecting high curvature edges. We employ a variant of Canny edge detector which takes the x and y components of normals,
Nx and Ny, as input images. The first-order normal gradient images, Gx and Gy, are then obtained by applying the Sobel operator on
each input image. Following the non-maximum suppression and the hysteresis thresholding, our method returns the high curvature edges.

A. Occluding, Occluded, and Boundary Edges

The depth channel provides reliable geometric information
for the scene. To detect reliable edges in the depth data,
we search for depth discontinuities, which are abrupt local
changes in depth values. From these depth discontinuities,
three types of edges are detected: occluding, occluded,
and boundary edges. Occluding edges are depth discontin-
uous points on foreground objects in a given point cloud,
whereas occluded edges are depth discontinuous points on
the background. To determine these edge points, local 8-
neighbor search is performed via 8− Neighbor(D, x, y) so
that the maximum depth difference d(îdx ) from the current
location to local neighbors is calculated. If the magnitude
of maximum depth difference d̂ is bigger than the depth
relative threshold value for depth discontinuities τdd ·D(x, y),
the center location is a candidate for one of the edges.
When the maximum depth difference is positive, the point is
regarded as an occluded edge point because the depth of the
center location is deeper than its neighbors. Similarly, if the
maximum depth difference is negative, the pose is regarded
as an occluding edge point. This procedure is presented in
line numbers from 10 to 22 in Algorithm 1.

Unfortunately, the occluded and occluding edges are
not always well defined. Since the depth sensor of RGB-
D cameras relies on reflected infra-red patterns for the
depth calculation, depth values of some surfaces where
their surface normals are nearly orthogonal to z-axis of
the sensor are not available. These unavailable depth values
make edge detection more difficult, and must be handled
appropriately. To handle this issue, our edge detection algo-
rithm searches for corresponding points by skipping across
these invalid points. The search direction is determined
by SearchDirection(N, x, y) which averages the relative
locations of the invalid points. If the current point and
its corresponding point are determined, they are classified
to either occluded or occluding edge points based on the
criterion described above. When there is no corresponding
point, the point is regarded as boundary edge point which
is part of outer boundaries of the point cloud. Algorithm 1
line numbers from 23 to 33 describe the edge detection
process around invalid points. The first row of Fig. 2 rep-
resents occluding, occluded, and boundary edges in green,
red, and blue points respectively. Note that our occluding
and occluded edges are similar to the obstacle and shadow

borders in [31] respectively. The veil points in [31] are com-
mon in Lidar sensors, but for RGB-D sensors these points
are typically invalid points instead of a point interpolated
between the two surfaces.

B. RGB and High Curvature Edges

RGB-D cameras provide not only depth data but also
aligned RGB data. Thus it is possible to detect 2D edges
from RGB data and back-project these to the 3D point cloud.
The Canny edge detector [7] is employed to find the edges
due to its good localization and high recall. Algorithm 1 line
numbers from 1 to 2 and from 34 to 35 show the RGB edge
detection.

High curvature edges occur where surface normals change
abruptly, such as a corner where two walls meet. These can
be thought of as “ridge” or “valley” edges, or “concave”
and “convex” edges. Such high curvature regions do not
necessarily correspond to depth discontinuities. In computer
graphics, several approaches [14], [15], [16] have been
proposed to search for high curvature edges in 3D mesh
models or point clouds. However, these require high quality
measurements and are usually computationally expensive,
making them unsuitable for our efficient use on noisy RGB-
D data.

To develop a suitable and efficient method, we utilize
the organized property of RGB-D point clouds so that high
curvature edges are detected using a variant of Canny edge
detection [7]. Recall that the Canny edge algorithm finds
first-order image gradients Gx in x and Gy in y directions
by applying a gradient operator to the input image, such as
Sobel. While the original Canny edge algorithm applies a
gradient operator to a gray scale image, our high curvature
edge algorithm applies the operator to a surface normal
image. Once normals N are estimated from the depth D,
we apply the Sobel operator to the x and y components of
the normals, Nx (Fig. 1a) and Ny (Fig. 1b), to detect regions
that have high responses in normal variations. After the first-
order normal gradients, Gx (Fig. 1c) and Gy (Fig. 1d), are
obtained, non-maximum suppression and hysteresis thresh-
olding are used to find sharp and well-linked high curvature
edges as shown in Fig. 1e. The high curvature detection is
related to Algorithm 1 line numbers from 3 to 4 and from
36 to 37. In Fig. 2, the center and bottom rows show RGB
(cyan) and high curvature (yellow) edges respectively.



Fig. 2: Detected edges in several example scenes. The first row shows occluding (green), occluded (red), and boundary (blue) edges.
And the middle row represents RGB edges in cyan points. The yellow points on the bottom row correspond to high curvature edges.
(Best viewed in color)

IV. EDGE-BASED PAIR-WISE REGISTRATION

Pair-wise registration—the process of aligning two point
clouds of a partially overlapping scene—is an essential task
for many 3D reconstruction and SLAM techniques. This is
typically done by using the Iterative Closest Point (ICP)
algorithm or one of its variants, using points or local planes
as measurements [6], [19]. However, these algorithms can
be quite computationally expensive for large point clouds,
which usually necessitates downsampling the data. With the
introduction of RGB-D sensors, 2D keypoints [32] and their
back-projected 3D points have become popular features [4],
[33] for pair-wise registration.

We propose using edge points as described above with the
ICP algorithm for registration. Edge points detected in many
indoor scenes are much sparser than the full point cloud,
yet still capture much of the important structure required for
3D registration. Instead of uniformly downsampling the point
cloud, the edge detection step can be viewed as an intelligent
downsampling step that favors points that retain more of the
important structure of the scene. Moreover, our occluding
or high curvature edges are applicable in textureless scenes,
while RGB edges can well represent textured scenes. To
verify this hypothesis, we perform extensive experiments to
compare the performance of ICP algorithms using our edge
features with other alternatives in Section VI-B.

V. EDGE-BASED SLAM
The above pair-wise registration algorithm can also be

used for SLAM problems by using a pose-graph approach.

Only the sensor trajectory will be optimized, by using only
constraints between poses. We use the GTSAM library in this
work, and in particular we use iSAM2 [30], which allows fast
incremental updates to the SAM problem.

Each time a new point cloud is received, we proceed
with edge detection as described in Section III and then
perform pair-wise registration using the parameters chosen
as described in Section VI-A and VI-B. A new pose Xn ∈
SE(3) is added to the pose graph, with a pose factor
connecting Xn−1 to Xn enforcing the relative transform
between these poses as given by ICP. To improve robustness,
we additionally add pose factors between Xn−2 to Xn and
Xn−3 to Xn.

In addition to adding pair-wise constraints between se-
quential poses, we also add loop-closure constraints between
other poses. For each new pose Xn, we examine poses
X0, · · · ,Xn−2, and compute the Euclidean distance between
the sensor positions. Pairs of poses are only considered for
a loop closure if the relative distance between them is less
than a specified threshold, 0.2 m for this work, the angular
difference is less than a specified threshold, and the pose
was more than a specified number of poses in the past (we
used 20 poses). If these conditions are met, we perform pair-
wise registration between the two poses. If the ICP algorithm
converges and the fitness score is less than a given threshold,
we add a pose factor between these two poses. Along with
the above factors to previous poses, this means each pose is
connected to at most 4 other poses.



TABLE I: RMSE of translation, rotation, and average time in Freiburg 1 sequences

Sequence SIFT keypoints Points Points down 0.01 Points down 0.02 Occluding edges RGB edges HC edges

FR1 360
14.1 ± 8.6 mm 18.6 ± 9.2 mm 21.7 ± 10.7 mm 22.9 ± 11.8 mm 23.0 ± 19.3 mm 11.2 ± 7.2† mm 20.5 ± 14.1 mm

1.27 ± 0.84 deg 0.95 ± 0.50 deg 0.95 ± 0.48 deg 1.01 ± 0.52 deg 1.03 ± 0.81 deg 0.55 ± 0.33† deg 0.77 ± 0.40 deg
410 ± 146 ms 14099 ± 6285 ms 3101 ± 2324 ms 913 ± 787 ms 132 ± 112† ms 321 ± 222 ms 606 ± 293 ms

FR1 desk
13.2 ± 8.6 mm 16.3 ± 8.0 mm 17.7 ± 8.9 mm 17.9 ± 8.6 mm 7.3 ± 4.5 mm 8.6 ± 5.2 mm 10.5 ± 6.1 mm

1.15 ± 0.78 deg 0.95 ± 0.50 deg 0.96 ± 0.51 deg 0.96 ± 0.51 deg 0.82 ± 0.48 deg 0.70 ± 0.42 deg 0.89 ± 0.48 deg
743 ± 223 ms 9742 ± 4646 ms 923 ± 824 ms 269 ± 265 ms 100 ± 67 ms 427 ± 270 ms 230 ± 124 ms

FR1 desk2
13.2 ± 8.2 mm 18.8 ± 9.9 mm 20.7 ± 10.7 mm 20.7 ± 10.7 mm 6.7 ± 3.6 mm 8.9 ± 5.4 mm 17.2 ± 13.8 mm

1.16 ± 0.74 deg 1.12 ± 0.60 deg 1.12 ± 0.59 deg 1.12 ± 0.60 deg 0.73 ± 0.37 deg 0.70 ± 0.43 deg 0.98 ± 0.55 deg
620 ± 209 ms 12058 ± 6389 ms 1356 ± 1089 ms 380 ± 328 ms 111 ± 71 ms 436 ± 268 ms 298 ± 161 ms

FR1 floor
18.1 ± 15.5 mm 16.9 ± 13.6 mm 16.9 ± 13.4 mm 16.9 ± 13.5 mm 112.9 ± 108.8 mm 15.7 ± 15.2 mm 124.8 ± 122.2 mm
0.76 ± 0.58 deg 0.65 ± 0.49 deg 0.65 ± 0.48 deg 0.72 ± 0.52 deg 8.16 ± 7.97 deg 0.47 ± 0.39 deg 13.84 ± 13.66 deg

595 ± 204 ms 6108 ± 3489 ms 474 ± 495 ms 125 ± 83 ms 46 ± 28 ms 232 ± 129 ms 140 ± 32 ms

FR1 plant
14.8 ± 8.7 mm 14.3 ± 7.1 mm 21.6 ± 11.0 mm 21.8 ± 11.2 mm 5.2 ± 3.0 mm 6.9 ± 3.6 mm 11.2 ± 6.3 mm

1.04 ± 0.64 deg 0.78 ± 0.38 deg 0.87 ± 0.42 deg 0.86 ± 0.42 deg 0.62 ± 0.32 deg 0.49 ± 0.27 deg 0.76 ± 0.38 deg
668 ± 152 ms 10890 ± 5242 ms 2589 ± 1374 ms 851 ± 460 ms 192 ± 132 ms 515 ± 283 ms 526 ± 234 ms

FR1 room
14.7 ± 11.4 mm 14.6 ± 6.9 mm 16.9 ± 8.3 mm 17.8 ± 9.0 mm 6.5 ± 3.9 mm 6.2 ± 3.6 mm 10.8 ± 6.7 mm
0.87 ± 0.59 deg 0.81 ± 0.42 deg 0.81 ± 0.42 deg 0.84 ± 0.44 deg 0.54 ± 0.27 deg 0.48 ± 0.27 deg 0.68 ± 0.36 deg

612 ± 201 ms 10410 ± 4482 ms 1703 ± 1353 ms 490 ± 460 ms 117 ± 82 ms 368 ± 210 ms 340 ± 207 ms

FR1 rpy
14.2 ± 10.3 mm 12.6 ± 7.9 mm 17.5 ± 11.3 mm 17.5 ± 11.7 mm 6.1 ± 3.4 mm 7.2 ± 4.3 mm 15.8 ± 11.4 mm
1.05 ± 0.66 deg 1.04 ± 0.55 deg 1.12 ± 0.59 deg 1.17 ± 0.63 deg 0.73 ± 0.37 deg 0.67 ± 0.39 deg 1.16 ± 0.62 deg

642 ± 184 ms 13503 ± 6057 ms 2024 ± 1810 ms 677 ± 675 ms 139 ± 90 ms 501 ± 281 ms 410 ± 251 ms

FR1 teddy
19.2 ± 13.0 mm 20.2 ± 11.4 mm 26.6 ± 14.9 mm 26.9 ± 15.1 mm 21.9 ± 20.4 mm 36.5 ± 35.3 mm 18.3 ± 12.6 mm
1.33 ± 0.88 deg 0.98 ± 0.58 deg 1.05 ± 0.61 deg 1.08 ± 0.63 deg 0.99 ± 0.63 deg 0.92 ± 0.74 deg 1.00 ± 0.54 deg

682 ± 211 ms 12864 ± 7904 ms 3647 ± 2315 ms 1194 ± 774 ms 187 ± 116 ms 667 ± 305 ms 676 ± 322 ms

FR1 xyz
8.3 ± 4.9 mm 8.7 ± 5.1 mm 9.8 ± 5.9 mm 11.2 ± 6.2 mm 4.3 ± 2.2 mm 4.7 ± 2.4 mm 6.3 ± 3.7 mm

0.66 ± 0.34 deg 0.50 ± 0.24 deg 0.53 ± 0.27 deg 0.58 ± 0.30 deg 0.51 ± 0.25 deg 0.41 ± 0.22 deg 0.55 ± 0.28 deg
840 ± 181 ms 8358 ± 3440 ms 699 ± 462 ms 217 ± 157 ms 96 ± 57 ms 352 ± 210 ms 195 ± 78 ms

† For each sequence, the first, second, and third lines represent translational, rotational, and time RMS errors, respectively. The best results are indicated
in bold type.

VI. EXPERIMENTS

In this section, we evaluate the performance of our edge
detection, pair-wise registration using the edges, and edge-
based pose-graph SLAM. For the evaluations, we use a
publicly available standard dataset for RGB-D SLAM sys-
tems [5] which provides a number of RGB-D sequences with
their corresponding ground truth trajectories, which come
from an external motion tracking system. While the dataset
was originally created for SLAM system evaluation, we use
this dataset for the evaluations of edge detection and pair-
wise registration as well. All of the experiments reported
below are done in a standard laptop computer with an Intel
Core i7 CPU and 8GB memory.

A. Edge Detection

TABLE II: Average computation time of edges in Freiburg
1 sequences

Sequence Occluding edges† RGB edges HC edges

FR1 360 23.66 ± 1.03 ms 12.05 ± 0.99 ms 101.24 ± 5.28 ms
FR1 desk 24.06 ± 1.22 ms 13.04 ± 0.93 ms 96.24 ± 4.97 ms
FR1 desk2 24.71 ± 0.79 ms 12.76 ± 0.89 ms 99.55 ± 5.22 ms
FR1 floor 24.08 ± 1.87 ms 12.04 ± 0.94 ms 102.09 ± 5.03 ms
FR1 plant 24.61 ± 1.71 ms 13.04 ± 1.13 ms 99.25 ± 6.89 ms
FR1 room 23.86 ± 1.47 ms 13.07 ± 1.35 ms 100.91 ± 9.27 ms
FR1 rpy 23.89 ± 0.99 ms 12.87 ± 0.73 ms 98.33 ± 2.61 ms
FR1 teddy 25.20 ± 2.57 ms 13.14 ± 1.22 ms 103.70 ± 7.15 ms
FR1 xyz 24.45 ± 1.36 ms 13.27 ± 0.87 ms 98.85 ± 5.31 ms

† Please note that the computation time for occluding edges includes the
time taken for both occluded and boundary edges as well, since our
edge detection algorithm detects these three edges at the same time.

We evaluate the proposed edge detection both qualitatively
and quantitatively. Our edge detection code is publicly avail-
able in the Point Cloud Library (PCL) [34]. The code in
PCL was implemented as explained in this paper, but at the
time the experiments were performed, PCL did not include
an efficient canny implementation, so we adopted OpenCV
Canny edge implementation for the following experiments.
PCL now includes an efficient Canny implementation, which
is used in the available code. As edge detection parameters,
we empirically determined the following to work well for the
RGB-D sensor used: τrgb⊥ = 40 and τrgb> = 100 for RGB
edges, τhc⊥ = 0.6 and τhc> = 1.2 for high curvature edges,
and τdd = 0.04 and τsearch = 100 for occluding edges.

Fig. 2 presents detected edges from four example scenes.
The point clouds are displayed in grayscale for clarity, with
detected edges highlighted in their own colors. In the top row,
occluding and occluded edges clearly show the boundaries
of the occluding objects and their corresponding shadow
edges. These edges are obtained from depth discontinuities
and well capture the geometric characteristics of the scenes.
High curvature edges on the bottom row are also computed
from geometric information but rely on high normal variation
from the surfaces. These edges well represent the ridge or
valley areas via our normal-based Canny edge variation.

Many applications, such as robotics, require near real-time
performance. Table II shows the average computation time
and standard deviation of edge detection in the nine Freiburg
1 sequences of the RGB-D SLAM benchmark dataset [5].
According to the table, detecting occluding edges per frame



−1 0 1 2
−1

−0.5

0

0.5

1

1.5
FR1 desk + keypoint

x [m]

y 
[m

]

−1 0 1 2
−1

−0.5

0

0.5

1

1.5
FR1 desk + point

x [m]

y 
[m

]

−1 0 1 2
−1

−0.5

0

0.5

1

1.5
FR1 desk + occluding edge

x [m]

y 
[m

]

−1 0 1 2
−1

−0.5

0

0.5

1

1.5
FR1 desk + rgb edge

x [m]

y 
[m

]

−1 0 1 2
−1

−0.5

0

0.5

1

1.5
FR1 desk + hc edge

x [m]

y 
[m

]

−1 0 1
−1

−0.5

0

0.5

1

FR1 desk2 + keypoint

x [m]

y 
[m

]

−1 0 1
−1

−0.5

0

0.5

1

FR1 desk2 + point

x [m]

y
 [
m

]

−1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

FR1 desk2 + occluding edge

x [m]

y 
[m

]

−1 0 1
−1

−0.5

0

0.5

1

FR1 desk2 + rgb edge

x [m]

y 
[m

]

−1 0 1
−1

−0.5

0

0.5

1

FR1 desk2 + hc edge

x [m]

y 
[m

]

−0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

FR1 plant + keypoint

x [m]

y 
[m

]

−0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

FR1 plant + point

x [m]

y 
[m

]

−0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

FR1 plant + occluding edge

x [m]

y 
[m

]

−0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

FR1 plant + rgb edge

x [m]

y 
[m

]

−0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

FR1 plant + hc edge

x [m]

y 
[m

]

−1 0 1 2

−1.5

−1

−0.5

0

0.5

1

1.5

FR1 room + keypoint

x [m]

y 
[m

]

−1 0 1 2

−1.5

−1

−0.5

0

0.5

1

1.5

FR1 room + point

x [m]

y 
[m

]

−1 0 1 2

−1.5

−1

−0.5

0

0.5

1

1.5

FR1 room + occluding edge

x [m]

y 
[m

]

−1 0 1 2

−1.5

−1

−0.5

0

0.5

1

1.5

FR1 room + rgb edge

x [m]

y 
[m

]

−1 0 1 2

−1.5

−1

−0.5

0

0.5

1

1.5

FR1 room + hc edge

x [m]

y 
[m

]

 

 
Ground Truth
Estimated
Difference

Fig. 3: Plots of trajectories from pair-wise registrations. Since resulting trajectories are estimated solely from pair-wise ICP, no loop closures
were performed. In spite of that, our edge-based registrations report outstanding results, especially with occluding and RGB edges.

takes about 24 ms with no more than 3 ms standard deviation.
The most efficient edge detection is RGB edges as it only
takes about 13 ms per frame. But please note that our edge
detection finds occluding, occluded, and boundary edges at
the same time, and hence the reported time for occluding
edges includes the computation time taken for both occluded
and boundary edges as well. High curvature edge detection
takes about 100 ms due to the additional computation cost
of surface normals.

B. Pair-wise Registration

To examine the performance of our edges when used for
the ICP algorithm, we compare our solution with SIFT key-
points and general point-based ICP algorithms. As evaluation
metrics, [5] introduced the relative pose error (RPE):

Ei := (Q−1
i Qi+∆)−1(P−1

i Pi+∆) (1)

where Qi ∈ SE(3) and Pi ∈ SE(3) are i-th ground truth
and estimated poses respectively. When the length of camera
poses is n, m = n − ∆ relative pose errors are calculated
over the sequence. While [5] used the root mean squared
error (RMSE) by averaging over all possible time intervals
∆ for the evaluation of SLAM systems, we fix ∆ = 1 since
we are only interested in pair-wise pose errors here.

SIFT keypoints, full-resolution point clouds, and down-
sampled point clouds are compared with our edge points

for use with ICP algorithms. For SIFT keypoint-based ICP,
we used the implementation of [33] that employed SIFT
keypoint and Generalized-ICP [19] and kept their best pa-
rameters for a fair comparison. They [33] originally reported
their performance with SIFTGPU [35] for faster computa-
tion, but for a fair comparison we ran with SIFT (CPU only)
because all other approaches do not rely on parallel power
of GPU. For points, Generalized-ICP was also employed
since it shows the state-of-the-art performance on general
point clouds. As the size of original resolution point clouds
from RGB-D camera is huge (640 × 480 = 307200 in
maximum), we downsampled the original point clouds via
voxel grid filtering to evaluate how it affects its accuracy
and computation time. Two different leaf sizes, 0.01 and
0.02 m, were tested for the voxel grid. For edge-based ICP,
Generalized-ICP does not outperform the standard ICP [6]
since locally smooth surface assumption is not valid for edge
points, and thus the standard ICP is employed for edges.
We used the same edge detection parameters used in the
previous edge detection experiment in Section VI-A. Except
the SIFT-based ICP, all ICPs are based on the implementation
of PCL. To ensure fair comparison, we set the same max
correspondence distance (0.1 m) and termination criteria (50
for the maximum number of iterations and 10−4 for the
transformation epsilon) for all tests.



TABLE III: Performance of RGB-D SLAM [33] and our edge-based SLAM over some of Freiburg 1 sequences

Sequence SIFT-based RGB-D SLAM [33] Edge-based Pose-graph SLAM

Transl. RMSE Rot. RMSE Total Runtime Transl. RMSE Rot. RMSE Total Runtime

FR1 desk 0.049 m 2.43 deg 199 s 0.153 m 7.47 deg 65 s
FR1 desk2 0.102 m 3.81 deg 176 s 0.115 m 5.87 deg 92 s
FR1 plant 0.142 m 6.34 deg 424 s 0.078 m 5.01 deg 187 s
FR1 room 0.219 m 9.04 deg 423 s 0.198 m 6.55 deg 172 s
FR1 rpy 0.042 m 2.50 deg 243 s 0.059 m 8.79 deg 95 s
FR1 xyz 0.021 m 0.90 deg 365 s 0.021 m 1.62 deg 111 s

−0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

FR1 plant + GTSAM

x [m]

y
 [

m
]

−0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

FR1 plant + RGB−D SLAM

x [m]

y 
[m

]

−1 0 1 2

−1.5

−1

−0.5

0

0.5

1

1.5

FR1 room + GTSAM

x [m]

y
 [

m
]

−1 0 1 2

−1.5

−1

−0.5

0

0.5

1

1.5

FR1 room + RGB−D SLAM

x [m]

y
 [

m
]

 

 
Ground Truth

Estimated

Difference

Fig. 4: Plots of trajectories from two SLAM approaches.

Table I represents RMSE of translation, rotation, and aver-
age run time of the seven approaches over the nine Freiburg
1 sequences. For each sequence, the first, second, and third
lines show translational RMSE, rotational RMSE, and run
time, respectively. The best results among the seven ICP
approaches are shown in bold type. According to the reported
RMSE, our edge-based ICP outperforms both SIFT keypoint-
based and point-based ICP. ICP with occluding and RGB
edges showed the best results. Interestingly, occluding edges
report smaller translational errors, while RGB edges are
slightly better for rotational errors. In terms of computational
cost, the ICP with occluding edges was more efficient. We
found high curvature edges to be slightly worse than the other
edges, but this of course depends on the input sequences.
Surprisingly, using all available points does not guarantee
better performance, and actually reports nearly the worst
performance over the nine sequences. This implies that some
non-edge points are getting incorrectly matched, and are
increasing the error, yielding less accurate results at high
run times. One exception is “FR1 floor” sequence, in which
using all points reports reasonable performance compared
to other approaches. The sequence is mainly composed of
wooden floor scenes in an office, so there are few occluding
or high curvature edges. As one would expect, this sequence
is challenging for occluding and high curvature edge-based
ICP, but the texture from the wooden floor is well suited to
RGB edge-based ICP, which yields the best result on this
sequence. It is also worth noting that downsampling points
greatly speeds up the runtime, but at the cost of a reduction in
accuracy. It is even faster than the ICP with RGB edges, but
the accuracy is the worst. And yet, it turns out that occluding
edge-based ICP is the most efficient pair-wise registration
method for the tested datasets.

It is also of interest to compare visual odometry style
trajectories from the pair-wise registration to the ground
truth trajectories. Although one large error in the middle

of the sequence may seriously distort the shape of the
trajectory, examining the accumulated errors over time can
help us examine differences between these ICP methods.
The estimated trajectories of “FR1 desk”, “FR1 desk2”,
“FR1 plant”, and “FR1 room” are plotted with their ground
truth trajectories in Fig. 3. The plot data was generated
via the benchmark tool of RGB-D SLAM dataset [5], in
which the ground truth and estimated trajectories are aligned
via [36] since their coordinate frames may differ. Based on
the plots, the trajectories from points are the worst results
and do not correlate with the ground truth trajectories. The
trajectories from keypoints reasonably follow the ground
truth but exhibits non trivial differences. As the best results
in terms of RMSE, occluding and RGB edges result in clear
trajectories which are close to the ground truth . These edges
are quite powerful features for visual odometry style RGB-
D point cloud registration and are also very promising if
they are coupled with full SLAM approaches. The high
curvature edge results show bigger translational errors, but
the trajectories seem reasonable results which are comparable
to those of keypoints and much better than those of points.

C. Edge-based SLAM

As described in section V, our edge-based registration
can be applied to pose-graph SLAM. Some of the Freiburg
1 datasets used in Section VI-B were used for evaluation.
For this experiment, we employed only occluding edges,
since this type of edges is the most efficient yet effective
as shown in Section VI-B. Table III presents RMSE and
total computation times of both RGB-D SLAM [33] and our
edge-based SLAM powered by GTSAM [23]. The results
imply that our edge-based pose-graph SLAM is comparable
to the state-of-the-art RGB-D SLAM in terms of accuracy.
It even reported better results in “FR1 plant” and “FR1
room” sequences. For computational efficiency, the edge-
based SLAM is quite efficient. Thanks to the faster pair-wise



ICP with the occluding edges, the total runtime of our SLAM
system is about three times faster than the reported runtime
of [33], though we could not directly compare the total
runtime because both SLAM systems were run on different
computers. Fig. 4 shows two trajectory plots of “FR1 plant”
and “FR1 room” sequences where our SLAM reported better
results. According to the plots, it is clear that trajectories of
the edge-based SLAM are smoother as well as more accurate.
These results indicate that the occluding edges are promising
yet efficient measurement for SLAM problems.

VII. CONCLUSIONS

We presented an efficient edge detection approach for
RGB-D point clouds which detects several types of edges,
including depth discontinuities, high surface curvature, and
photometric texture. Because some of these edge features
are based on geometry rather than image features, they are
applicable to textureless domains that are challenging for
keypoints. These edges were applied to pair-wise registration,
and it was found that edge-based ICP outperformed both
SIFT keypoint-based and downsampled point cloud ICP. We
further investigated the application of these edge features in a
pose-graph SLAM problem, which showed comparable per-
formance to a state-of-the-art SLAM system while providing
efficient performance.

VIII. ACKNOWLEDGMENTS

This work was mainly funded and initiated as a project of
Google Summer of Code 2012 and the Point Cloud Library
(PCL). The work has further been sponsored by the Boeing
Corporation. The support is gratefully acknowledged.

REFERENCES

[1] K. Lai, L. Bo, X. Ren, and D. Fox, “Sparse distance learning for
object recognition combining RGB and depth information,” in Proc.
IEEE Int’l Conf. Robotics Automation (ICRA), 2011, pp. 4007–4013.

[2] A. Aldoma, M. Vincze, N. Blodow, D. Gossow, S. Gedikli, R. Rusu,
and G. Bradski, “CAD-model recognition and 6DOF pose estimation
using 3D cues,” in ICCV Workshops, 2011, pp. 585–592.

[3] C. Choi and H. I. Christensen, “3D pose estimation of daily objects
using an RGB-D camera,” in Proc. IEEE/RSJ Int’l Conf. Intelligent
Robots Systems (IROS), 2012, pp. 3342–3349.

[4] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, “RGB-D
mapping: Using depth cameras for dense 3D modeling of indoor
environments,” in Proc. Int’l Symposium on Experimental Robotics
(ISER), 2010.

[5] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A
benchmark for the evaluation of RGB-D SLAM systems,” in Proc.
IEEE/RSJ Int’l Conf. Intelligent Robots Systems (IROS), Oct. 2012.

[6] P. J. Besl and N. D. McKay, “A method for registration of 3-D shapes,”
IEEE Trans. Pattern Anal. Mach. Intell., pp. 239–256, 1992.

[7] J. Canny, “A computational approach to edge detection,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 8, no. 6, pp. 679–698, Nov. 1986.

[8] H. Barrow, J. Tenenbaum, R. Bolles, and H. Wolf, “Parametric
correspondence and chamfer matching: Two new techniques for image
matching,” in Proc. Int’l Joint Conf. Artificial Intelligence (IJCAI),
1977, pp. 659–663.

[9] C. Olson and D. Huttenlocher, “Automatic target recognition by
matching oriented edge pixels,” IEEE Trans. Image Proc., vol. 6, no. 1,
pp. 103–113, 1997.

[10] C. Harris, Tracking with Rigid Objects. MIT Press, 1992.
[11] M. Isard and A. Blake, “Condensation–conditional density propagation

for visual tracking,” Int’l J. Computer Vision, vol. 29, no. 1, pp. 5–28,
1998.

[12] V. Ferrari, L. Fevrier, F. Jurie, and C. Schmid, “Groups of adjacent
contour segments for object detection,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 30, no. 1, pp. 36–51, 2008.

[13] J. Shotton, A. Blake, and R. Cipolla, “Multiscale categorical object
recognition using contour fragments,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 30, no. 7, pp. 1270–1281, 2008.

[14] Y. Ohtake, A. Belyaev, and H. P. Seidel, “Ridge-valley lines on meshes
via implicit surface fitting,” in ACM Trans. Graphics, vol. 23, 2004,
pp. 609–612.

[15] S. Gumhold, X. Wang, and R. MacLeod, “Feature extraction from
point clouds,” in Proc. 10th Int. Meshing Roundtable, 2001, pp. 293–
305.

[16] M. Pauly, R. Keiser, and M. Gross, “Multi-scale feature extraction on
point-sampled surfaces,” in Computer Graphics Forum, vol. 22, 2003,
pp. 281–289.

[17] F. Lu and E. Milios, “Robot pose estimation in unknown environments
by matching 2D range scans,” Journal of intelligent & robotic systems,
vol. 18, no. 3, pp. 249–275, 1997.

[18] J. Minguez, F. Lamiraux, and L. Montesano, “Metric-based scan
matching algorithms for mobile robot displacement estimation,” in
Proc. IEEE Int’l Conf. Robotics Automation (ICRA), vol. 4, 2005,
pp. 3557–3563.

[19] A. Segal, D. Haehnel, and S. Thrun, “Generalized-ICP,” in Proc.
Robotics: Science and Systems (RSS), 2009.

[20] K. Pulli, “Multiview registration for large data sets,” in Proc. Int’l
Conf. 3-D Digital Imaging and Modeling (3DIM), 1999, pp. 160–168.

[21] R. Kummerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard,
“g2o: A general framework for graph optimization,” in Proc. IEEE
Int’l Conf. Robotics Automation (ICRA), 2011, pp. 3607–3613.

[22] S. Agarwal and K. Mierle, Ceres Solver: Tutorial & Reference, Google
Inc.

[23] F. Dellaert and M. Kaess, “Square root SAM: Simultaneous local-
ization and mapping via square root information smoothing,” Int’l J.
Robotics Research, vol. 25, no. 12, pp. 1181–1204, 2006.

[24] A. Nüchter, K. Lingemann, J. Hertzberg, and H. Surmann, “6D
SLAM—3D mapping outdoor environments,” Journal of Field
Robotics, vol. 24, no. 8-9, pp. 699–722, 2007.

[25] K. Pathak, A. Birk, N. Vaskevicius, and J. Poppinga, “Fast registra-
tion based on noisy planes with unknown correspondences for 3-D
mapping,” IEEE Trans. Robotics, vol. 26, no. 3, pp. 424–441, 2010.

[26] N. Engelhard, F. Endres, J. Hess, J. Sturm, and W. Burgard, “Real-
time 3D visual SLAM with a hand-held camera,” in Proceedings of
the RGB-D Workshop on 3D Perception in Robotics at the European
Robotics Forum, Vasteras, Sweden, April 2011.

[27] G. Grisetti, R. Kummerle, C. Stachniss, U. Frese, and C. Hertzberg,
“Hierarchical optimization on manifolds for online 2D and 3D map-
ping,” in Proc. IEEE Int’l Conf. Robotics Automation (ICRA), 2010,
pp. 273–278.

[28] R. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. Davi-
son, P. Kohli, J. Shotton, S. Hodges, and A. Fitzgibbon, “KinectFusion:
Real-time dense surface mapping and tracking,” in Proc. Int’l Sympo-
sium on Mixed and Augmented Reality (ISMAR), 2011, pp. 127–136.

[29] B. Curless and M. Levoy, “A volumetric method for building com-
plex models from range images,” in ACM Transactions on Graphics
(SIGGRAPH), 1996.

[30] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard, and F. Del-
laert, “iSAM2: Incremental smoothing and mapping using the Bayes
tree,” Int’l J. Robotics Research, 2012.

[31] B. Steder, R. Rusu, K. Konolige, and W. Burgard, “Point feature
extraction on 3D range scans taking into account object boundaries,” in
Proc. IEEE Int’l Conf. Robotics Automation (ICRA), 2011, pp. 2601–
2608.

[32] D. G. Lowe, “Distinctive image features from scale-invariant key-
points,” Int’l J. Computer Vision, vol. 60, no. 2, pp. 91–110, 2004.

[33] F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers, and W. Bur-
gard, “An evaluation of the RGB-D SLAM system,” in Proc. IEEE
Int’l Conf. Robotics Automation (ICRA), May 2012, pp. 1691–1696.

[34] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),”
in Proc. IEEE Int’l Conf. Robotics Automation (ICRA), 2011, pp. 1–4.

[35] C. Wu, SiftGPU: A GPU implementation of scale invariant feature
transform (SIFT), 2007.

[36] B. K. Horn et al., “Closed-form solution of absolute orientation using
unit quaternions,” Journal of the Optical Society of America A, vol. 4,
no. 4, pp. 629–642, 1987.


