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Abstract— This paper presents an approach to textureless
object detection and tracking of the 3D pose. Our detection
and tracking schemes are coherently integrated in a particle
filtering framework on the special Euclidean group, SE(3), in
which the visual tracking problem is tackled by maintaining
multiple hypotheses of the object pose. For textureless object
detection, an efficient chamfer matching is employed so that a
set of coarse pose hypotheses is estimated from the matching
between 2D edge templates of an object and a query image.
Particles are then initialized from the coarse pose hypotheses
by randomly drawing based on costs of the matching. To ensure
the initialized particles are at or close to the global optimum,
an annealing process is performed after the initialization.
While a standard edge-based tracking is employed after the
annealed initialization, we employ a refinement process to
establish improved correspondences between projected edge
points from the object model and edge points from an input
image. Comparative results for several image sequences with
clutter are shown to validate the effectiveness of our approach.

I. INTRODUCTION

In the last decade, object detection and recognition have
significantly progressed based on keypoint features [1]. Since
keypoints are invariant to geometric transformations and illu-
mination changes, they have been widely used for matching
similar images took from slightly different viewpoints [2].
Keypoint-based approaches are well suited for textured ob-
jects, but may not be effective for textureless objects because
the features lacks repeatability and stability on textureless
regions. Like keypoints, edges are also invariant to general
geometric transformations and illumination changes [3], and
they can be dependably detected for textureless objects.

In early computer vision research, an important problem
was to find the best alignment between two edge maps.
A set of edge templates of an object is known a priori,
and the templates are searched in an edge map of query
image. As a robust metric, the chamfer distance [4] was
proposed, and there were several variants to enhance the cost
functions by incorporating edge orientation [5], [6] and to
reduce complexity by organizing templates in a hierarchical
structure [7] or by employing integral images on linear
representations of edges [8].

While these matching methods are expected to find exact
shape matching, edges or contours have also been employed

Fig. 1. Example frames from our detection and tracking results. Our
approach combines detection and tracking for textureless objects in a particle
filtering framework, and it employs edges as key visual information. It is
capable of handling transparent objects, though it does not assume objects’
transparency. Mean of particles is drawn in yellow wireframe on each image.

to solve object categorization problems [9], [10] in which
the primary goal is to find a category over the intra-class
variations. These efforts have shown promising performance
on challenging image data. However, when a 3D geometric
representation of an object is available and the goal is to find
an exact object, the chamfer matching is generally preferred.

Visual tracking has also exploited edges [11] or con-
tours [12]. Following the seminal work of Harris [11], vari-
ous edge-based visual tracking systems [13], [14] have been
proposed. One drawback of using edges is that they are not
distinctive enough to provide effective discrimination. Since
this disadvantage leads to failure in complex background or
occlusions, there have been efforts to enhance the previous
one by unifying interest points [15], [16] or considering
multiple hypotheses on edge correspondences [17], [16]. But
these efforts typically only considered a small number of
hypotheses.

For consideration of multiple hypotheses in a more general
sense particle filters have been proposed. After Isard and
Blake [12] presented a particle filter method for a chal-



lenging 2D tracking problem, various particle filters have
widely been proposed in 2D affine tracking with incremental
measurement learning [18], [19] or 3D visual tracking [20],
[21], [22].

II. CONTRIBUTIONS

We propose an approach combining detection and tracking
for textureless objects that is developed within a particle
filtering framework. Especially, a particle filter on the SE(3)
group is considered because it is geometrically meaningful
and coordinate invariant, which means that noise distribu-
tion is independent of the choice of coordinates. Hence,
overall tracking performance does not depend on the coor-
dinates [23], [18].

Our key contributions are as follows:

• We employ an efficient chamfer matching to find a
set of starting states. Most particle filtering approaches
assume that an initial state is given or is searched from
scratch with the simulated annealing [21]. Several have
presented keypoint-based initialization [20], but key-
points are not usually applicable to textureless objects.
Thus we present a 3D pose estimation from a chamfer
matching [8] using a set of 2D edge templates.

• Although initial particles are assigned via the coarse
pose hypotheses, they would be occasionally stuck in
local optima right after the initialization. To ensure that
initial states are at or close to the global optimum, we
run a particle annealing method [24] right after the (re-
)initialization.

• We refine edge correspondences between the projected
model edges and the image edges via a RANSAC [25].
Most of the edge-based tracking approaches have used
the nearest edges without performing refining pro-
cess [13], [14], [11], except a few work [26], [22].
Considering the edge correspondences directly affect
the measurement likelihood and thus entire tracking per-
formance, we employ a RANSAC approach to ensure
consistent edge data associations.

This paper is organized as follows. We introduce our par-
ticle filtering framework in Section III-A and III-B. The ini-
tialization scheme is then presented as the chamfer matching-
based pose estimation, followed by the annealed particle
filtering in Section III-C. After explaining the measurement
refinement in Section III-D and particle optimization in
Section III-E, discussion about symmetric objects and the
re-initialization scheme are introduced in Section III-F and
Section III-G, respectively. Finally, experimental results on
various image sequences are shown in Section IV.

III. PARTICLE FILTER ON THE SE(3) GROUP

A. State Equations

The discrete system equation on the SE(3) group is
acquired via the first-order exponential Euler discretization

from the continuous general state equation [23]:

Xt = Xt−1 · exp (A(X, t)∆t+ dWt

√
∆t), (1)

dWt =

6∑
i=1

εt,iEi, εt ∼ N (06×1,Σw)

where Xt ∈ SE(3) is the state at time t, exp : se(3) 7→
SE(3) is the exponential map, A : SE(3) 7→ se(3) is a
possibly nonlinear map, dWt represents the Wiener process
noise on se(3) with a covariance Σw ∈ R6×6, Ei are the
ith basis element of se(3):

E1=

(
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

)
,E2=

(
0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

)
,E3=

(
0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

)
,

E4=

(
0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

)
,E5=

(
0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

)
,E6=

(
0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

)
. (2)

The corresponding measurement equation is:

Zt = g(Xt) + nt, nt ∼ N (0NZ×1,Σn) (3)

where g : Xt 7→ RNZ is a nonlinear measurement function
and nt is a Gaussian noise with a covariance Σn ∈ RNZ×NZ .

A dynamic model for state evolution is essential since it
has a significant impact on tracking performance. The first
order auto-regressive (AR) state dynamics is a simple yet
effective model as shown in [20], [18]. The term A(X, t) in
(1) determines the state dynamics. The first-order AR process
on the Lie group can be modeled as

Xt = Xt−1 · exp (At−1 + dWt

√
∆t), (4)

At−1 = λar log(X−1
t−2Xt−1) (5)

where λar is the AR process parameter and log : SE(3) 7→
se(3) is the logarithmic map.

B. Particle Filter

In a particle filtering framework, the posterior density
function p(Xt|Z1:t) is represented as a set of weighted
particles by

St = {(X(1)
t , π

(1)
t ), . . . , (X

(N)
t , π

(N)
t )} (6)

where the particles X
(n)
t ∈ SE(3) represent samples of the

true state Xt, the normalized weights π(n)
t are proportional

to the likelihood function p(Zt|X(n)
t ), and N is the number

of particles. The current state Xt could be estimated by the
weighted particle mean:

Xt = E [St] =

N∑
n=1

π
(n)
t X

(n)
t . (7)

When we apply the mean, however, there is a problem
where the average of X

(n)
t is not valid in the SE(3). More

specifically, let R
(n)
t ∈ SO(3) be the rotation part of the

X
(n)
t . Then the arithmetic mean Rt = 1

N

∑N
n=1 R

(n)
t is not

usually on the SO(3) group. As an alternative, Moakher [27]



Algorithm 1: Particle Filtering on the SE(3) group
Data: I = {I0, I1, · · · , II}, T = {T1, T2, · · · , TT }
Result: S = {S0,S1, · · · ,SI}
Params: Σw, λar , λv, λe

1: t← 0; init ← 1; A0 ← 04×4

2: while It 6= 0 do
3: if init = 1 then
4: St ← ChamferPose(It, T ) 〈2〉
5: St ← ParticleAnnealing(It,St) 〈3〉
6: init ← 0

else
7: for n← 1 to N do
8: X

∗(n)
t ← Propagate(X

(n)
t ,A

(n)
t−1,Σw) (4)

9: A
∗(n)
t ← AR vel(X

∗(n)
t ,X

∗(n)
t−1 , λar) (5)

10: Z
∗(n)
t ← Measurement(X

∗(n)
t , It) (3)

11: Z
∗(n)
t ← RANSAC(Z

∗(n)
t ) 〈4〉

12: π
∗(n)
t ← Likelihood(Z

∗(n)
t , λv , λe) (22)

13: X̂
∗(n)
t ← IRLS(X

∗(n)
t ,Z

∗(n)
t ) (23)(24)

14: Ẑ
∗(n)
t ← Measurement(X̂

∗(n)
t , It) (3)

15: Ẑ
∗(n)
t ← RANSAC(Ẑ

∗(n)
t ) 〈4〉

16: π̂
∗(n)
t ← Likelihood(Ẑ

∗(n)
t , λv , λe) (22)

17: S̃∗
t ← S

∗
t ∪ Ŝ

∗
t

18: for n← 1 to 2N do
19: π̃

∗(n)
t ← CorrectWeight(X̃

∗(n)
t , π̃

∗(n)
t )

20: π̃∗
t ← Normalize(π̃∗t ) (17)

21: N̂eff ← Neff(π̃∗t ) (30)
22: if N̂eff ≥ Nthres then
23: St ← Resampling(S̃∗t )

else
24: init ← 1

25: t← t+ 1

showed that a valid average of a set of rotations can be
calculated by the orthogonal projection of Rt as

Rt =

{
VUT when det(R

T

t ) > 0

VHUT otherwise,
(8)

where U and V are estimated via the singular value decom-
position of R

T

t (i.e. R
T

t = UΣVT) and H = diag[1, 1,−1].
Therefore, the valid arithmetic mean of the particles can be
determined as

Xt = ESE(3)[St] =

(
Rt Tt

01×3 1

)
(9)

where Tt = 1
N

∑N
n=1 T

(n)
t and T

(n)
t ∈ R3 is the translation

part of X
(n)
t .

The overall particle filtering algorithm is shown in Algo-
rithm 1 where referred algorithms and equations are cited
as 〈·〉 and (·) in the comments area, respectively. It requires
a sequence of images I and the edge templates T as an
input and estimates the posterior density as a set of weighted
particles S in each time t. Details of the algorithms and
underlying models will be explained in subsequent sections.

C. Initialization

To initialize particles, coarse poses are estimated by em-
ploying an efficient chamfer matching [8] that provides sub-
linear time for the matching and shows fewer false positive
rates via the piecewise smooth cost function. For this, a set

· · ·

T1 T2 T3 T4 T5 T6 T7 T48 T49

· · ·

· · ·

· · ·

(b)(a)

Fig. 2. Polygonal mesh models and edge templates. (a) We chose 4
IKEA objects so that replicating our experiments would be easier. From top
to bottom, REKO glass, FARGRIK glass, POKAL glass, and SVALKA red
wine glass. (b) Only visible edges were determined from the mesh models.
To handle pose variations, the objects were rotated in x and z axes. These
templates are used in the ChamferPose algorithm to estimate initial pose
hypotheses.

of edge templates is obtained offline from polygonal mesh
models as shown in Fig. 2.

1) Generating Edge Templates: We obtain edge templates
T = {T1, T2, · · · , TT } from the polygonal mesh models. To
generate these templates, the projection matrix in OpenGL
is set from the intrinsic camera parameters of the monocular
camera which will be used in real experiments. The model
is then rendered in OpenGL at a fixed depth Z0. To identify
visible edges, we use the face normal vectors from mesh
models under an assumption that sharp edges would be more
visible in real images. If the face normal vectors of two
adjacent faces are close to perpendicular, the edge shared by
the two faces is regarded as a sharp one. To determine if dull
edges constitute boundaries of the objects, inner products
of face normal vectors and the unit vector of z-axis of
camera coordinates are calculated. As appearances of the
models change with respect to rotational variations, multiple
templates are obtained as in Fig. 2 (b). To cover usual shape
variations, the objects are rotated in x and z axes per 10◦

and 5◦, respectively. Seven levels of rotations are sampled
in each axis so that 49 templates are obtained per object.

2) Coarse Pose Estimation: With these templates, the
chamfer matching is performed on an input image It across
multi-scales. Among detection windows from the matching,
we first consider windows under a threshold δth , then the
non-maximum suppression is performed to have the lowest
cost detection among the overlapped detection. As a result,
we have a set of detections D for m = 1, . . . ,M :

D = {x(m), y(m), δ(m),R(m), σ(m)} (10)

where x(m) and y(m) are the center location of the detected
template in the input image, δ(m) means the cost from the
chamfer matching, R(m) ∈ SO(3) is the corresponding rota-
tion matrix saved in the template generation, σ(m) represents
of the scale of the detected edge template, and M is the
number of detections. The set of detections is sorted in order
of increasing cost δ(m).



Algorithm 2: ChamferPose(I, T )
Data: I, T = {T1, T2, · · · , TT }
Result: S = {(X(1), π(1)), · · · , (X(N), π(N))}
Params: Z0, u0, v0, fx, fy , δth , λδ

1: D ← {x(ø), y(ø), δ(ø),R(ø), σ(ø)} (10)
2: for t← 1 to T do
3: for σ ← σmin to σmax do
4: {x′, y′, δ′,R′} ← ChamferMatch(I, Tt, σ, δth) [8]
5: D′ ← {x′, y′, δ′,R′} ∪ {σ}
6: D ← D ∪D′

7: Sort(D)
8: M ← length(D)
9: for m← 1 to M do

10: Z(m) ← Z0/σ(m) (11)
11: X(m) ← (x(m) − u0)Z(m)/fx (12)
12: Y (m) ← (y(m) − v0)Z(m)/fy (13)
13: P(m) ← CoarsePose(X(m), Y (m), Z(m),R(m)) (14)

14: for n← 1 to N do
15: X∗(n) ← P(n mod M+1) (15)
16: π∗(n) ← exp(−λδδ(n mod M+1)) (16)

17: π∗ ← Normalize(π∗) (17)
18: S ← Resampling(S∗)

From D, a set of coarse poses is estimated. As the edge
templates do not cover the entire appearance variations,
we can only approximate the current pose from the edge
templates. For this approximation, two assumptions are con-
sidered. The first assumption is that although the center
location (x(m), y(m)) might be slightly far from the principal
point (u0, v0), the rotation matrix can be adopted from the
one at the principal point. Thus rotation of the object can
be determined by R(m). The second assumption is that
the 3D center location of the object can be estimated via
similar triangles in the perspective projection. Under this
assumption, we can determine the z coordinate of the object
Z(m) with respect to the camera by

Z(m) =
Z0

σ(m)
. (11)

Once Z(m) is determined, it is straightforward to calculate
X(m) and Y (m) using similar triangles:

X(m) =
(x(m) − u0)

fx
Z(m) (12)

Y (m) =
(y(m) − v0)

fy
Z(m) (13)

where fx and fy are focal length in x and y directions of
the camera, respectively. If we apply (11) to (12) and (13),
we can represent the approximate pose hypothesis P(m) ∈
SE(3) of the object with respect to the camera coordinates
as follows

P(m) =

R(m)

(x(m)−u0)
fx

Z0

σ(m)

(y(m)−v0)
fy

Z0

σ(m)

Z0

σ(m)

01×3 1

 . (14)

Algorithm 3: ParticleAnnealing(I,S)

Data: I,S = {(X(1), π(1)), · · · , (X(N), π(N))}
Result: S0 = {(X(1)

0 , π
(1)
0 ), · · · , (X(N)

0 , π
(N)
0 )}

Params: α = {α0, · · · , αL}, β = {β0, · · · , βL},Σw,0

1: SL+1 ← S
2: for l← L to 0 do
3: for n← 1 to N do
4: X

∗(n)
l ← Propagate(X

(n)
l+1,Σw,l, α) (20)(21)

5: Z∗(n) ← Measurement(X
∗(n)
l , I) (3)

6: Ź∗(n) ← RANSAC(Z∗(n))

7: π
∗(n)
l ← Likelihood(Ź∗(n), λv , λe, βl) (22)(19)

8: π∗l ← Normalize(π∗l ) (17)
9: Sl ← Resampling(S∗l )

After P(m) is calculated for all M detection, the N particles
and their weights are initialized as

X∗(n) = P(n mod M+1) (15)

π∗(n) = exp(−λδδ(n mod M+1)) (16)

where λδ is a parameter which controls the sensitivity for
the costs. The weights are normalized via

π∗(n) =
π∗(n)∑N
i=1 π

∗(i)
. (17)

The particles are then randomly drawn with probability
proportional to these weights, and we finally have a set
of weighted particles St after the initialization. This pose
estimation procedure is presented in Algorithm 2 where
relevant paper and equations are cited as [·] and (·) in the
comments area, respectively.

3) Annealed Particle Filtering: Although our particle
filter starts with the most likely pose hypotheses, we cannot
always guarantee that the filter converges to the global
optimum. Since the sparse edge templates could not cover all
possible ranges of pose variations, the errors come from this
discrepancy might lead to local optima. Another limitation
comes from the low precision of the chamfer matching.
In cluttered backgrounds, the chamfer matching may return
false positives which lead to poor initial states. Aside from
these limitations, it is well known that even if a number of
particles are employed, the particle filter might be stuck in
local maxima.

To ensure that our particle filter starts near the global
maximum, a simulated annealing [24] is performed after
every initialization or re-initialization (Section III-G). The set
of weighted particles in (6) is augmented with the annealing
layer l as

St,l = {(X(1)
t,l , π

(1)
t,l ), . . . , (X

(N)
t,l , π

(N)
t,l )}. (18)

The annealing starts at layer l = L where L is the number
of annealing layers and the weights are determined by

π
(n)
t,l ∝ p(Zt|X

(n)
t )βl (19)

where βl (1 = β0 > β1 > · · · > βL) controls the
rate of annealing at each layer. After normalization of the



weights, N particles are randomly drawn from St,l with the
probability of their weights π(n)

t,l . The particles of the next
layer St,l−1 are then propagated as

X
(n)
t,l−1 = X

(n)
t,l · exp (dWt,l

√
∆t) (20)

where dWt,l is the Wiener process noise with covariance
Σw,l. This annealing process is iterated until it arrives at
X

(n)
t,0 . In [24], the Σw,l was defined by

Σw,l = Σw,0(αLαL−1 . . . αl) (21)

where αl represents the particle survival rate which is equiv-
alent to N̂eff /N in (30). They argued that α0 = α1 = · · · =
αL = 0.5 provide sufficient results. In the parameter βl, one
can determine to adjust an initial rate of αinit to αl using
a gradient descent method [24]. As a simple alternative, we
empirically found βl = (0.5)l shows good performance as
well. The annealing algorithm is shown in Algorithm 3.

D. Edge-based Measurement Likelihood

In edge-based tracking, a set of visible edges from a 3D
polygonal mesh model is projected according to a current
pose hypothesis. Then a set of points is sampled along the
visible edges per a fixed distance. The sampled points are
then matched to the nearest edge pixels from the image by
1D perpendicular search [20], [14]. Once these matches are
determined, the measurement likelihood is defined by the
number of matched sample points pm, the number of visible
sample points pv which pass a self-occlusion test, and the
arithmetic average distances ē between the matched sample
points and the edge pixels as in [20]:

p(Zt|X(n)
t ) ∝ exp(−λv (pv−pm)

pv
) exp(−λeē) (22)

where λv and λe control the sensitivity for each term.
Unfortunately, this nearest neighbor matching often results
in false matches due to background clutter, shadow, or non-
Lambertian reflectance. These false matches give wrong
measurement likelihood, and thus the false correspondences
result in a bad state hypothesis. Some efforts tried to enhance
these matches through maintaining multiple low-level edge
clusters [22] or applying a RANSAC on each 2D line
segments [26]. One drawback of both is the possibility of
inconsistent refinement because edge or line segments are
individually corrected.

For consistent refinement, we perform a RANSAC on
3D sampled points P and their corresponding 2D closest
edge points p. Our approach consistently discard outliers by
estimating the best 3D pose containing the largest number
of inliers Ĥ. The refining process is shown in Algorithm 4
where m is the minimum number of points to find a
hypothesis X̃, K is the 3 × 3 intrinsic camera matrix, and
the Projection means the general perspective projection.

E. Optimization using IRLS

Local optimization on particles is preferred when we
expect better accuracy with relatively a small number of
particles. We minimize the error e by performing Iterative

Algorithm 4: RANSAC(X,Z)
Data: X,Z = {p,P}
Result: Ĥ
Params: imax ,m,K, εth , ρ

1: i← 0; n̂← 0; κ←∞
2: Ĥ ← {φ}; H ← {φ}; nop← length(p)
3: while i < κ and i < imax do
4: Z̃← RandomSample(Z,m)
5: X̃← IRLS(X, Z̃) (23)(24)
6: ṕ← Projection(K, X̃, P)
7: H = {h | ‖p(h) − ṕ(h)‖2 < εth}
8: n← length(H)
9: if n > n̂ then

10: n̂← n; Ĥ ← H
11: κ← log(1− ρ)/ log(1− (n̂/nop)m)

12: i← i+ 1

Re-weighted Least Squares (IRLS) [14]. From IRLS, the
optimized particle X̂

∗(n)
t is calculated as

X̂
∗(n)
t = X

∗(n)
t · exp (

6∑
i=1

µiEi) (23)

µ = (JTWJ)−1JTWe (24)

where µ ∈ R6 is the motion velocity that minimizes the
error vector e ∈ RNZ , J ∈ RNZ×6 is a Jacobian matrix of e
with respect to µ obtained by computing partial derivatives
at the current pose, and W ∈ RNZ×NZ is a weighted diagonal
matrix. Detailed formulation can be found in [14].

After IRLS optimization, we have slightly different sam-
ples X̂∗t from X∗t . Since the new samples were not sampled
from the prior distribution p(Xt|Z1:t−1), they are required
to be corrected according to the importance sampling the-
ory [12]. This correction can be done by applying the
correction factor ft(X

∗(n)
t )/gt(X

∗(n)
t ) as in [28], [22]:

π
∗(n)
t ∝ ft(X

∗(n)
t )

gt(X
∗(n)
t )

p(Zt|X∗(n)
t ) (25)

where ft(X) is the approximated prior distribution as a
mixture of Gaussians, gt(X) is also the approximated dis-
tribution in which the prior samples are combined with the
optimized samples as

ft(X) =
1

N

N∑
n=1

N ((log(X
∗(n)
t ))∨,Σf )(X), (26)

f̂t(X) =
1

N

N∑
n=1

N ((log(X̂
∗(n)
t ))∨,Σf )(X), (27)

gt(X) =
1

2

(
ft(X) + f̂t(X)

)
(28)

where the mapping ∨ : se(3) 7→ R6 is defined as
(
∑6
i=1 xiEi)

∨ = (x1, x2, · · · , x6)T, and Σf ∈ R6×6 is a
covariance.



Fig. 3. Tracking results showing effectiveness of considering multiple hypotheses. Results with 100 particles (yellow wireframe) and 1 particle (red
wireframe) are shown in the sequence of the POKAL glass. Note that the yellow wireframe is well localized by calculating the mean of multiple hypotheses,
while the red wireframe is drifted during entire tracking. The frame number is shown in the top left corner of each image.

Fig. 4. Tracking results showing effectiveness of performing the RANSAC. Results with (yellow wireframe) and without (red wireframe) the refinement
are shown in the wine glass sequence. While the yellow wireframe well follows the wine glass, the red wireframe is severely miss aligned.

Fig. 5. Tracking results showing effectiveness of suppressing the rotating motion about the axis of symmetry. Results with (yellow wireframe)
and without (red wireframe) the suppression are shown in the sequence of the FARGRIK glass. Although they use the same number of particles and the
parameters, the red wireframe starts to drift before the frame number 698 due to larger search space.

F. Symmetric Objects

Some of our objects (Fig. 2) are symmetrical so that
rotation about the axis of symmetry, y-axis in our objects,
cannot be uniquely determined. It is problematic when our
particle filter searches the 6D pose space because it may
result in a ridge posterior distribution. Thus, it is more
efficient to search a 5D pose space instead of the full 6D
space. This can be easily modified through our Lie group
formulation. Recall that se(3) has 6 basis elements as shown
in (2), and exponentiating the term of the fifth basis E5

results in the rotation about y-axis in SE(3):

exp(γE5) =

(
cos γ 0 sin γ 0

0 1 0 0
− sin γ 0 cos γ 0

0 0 0 1

)
. (29)

Therefore, it is possible to suppress rotating motion about the
axis of symmetry by setting 0 in the fifth coefficient for E5

corresponding to the term A(X, t) and dWt in (1), dWt,l

in (20), and µ in (24).

G. Re-initialization

During visual tracking, it is quite common that the object
goes out of sight or is occluded by other objects. In these
cases, the tracker is required to re-initialize by itself. In [29],
the effective particle size N̂eff has been introduced as a
suitable measure of degeneracy:

N̂eff =
1∑N

i=1(π(i))2
. (30)

As shown in [20], it can be used as a measure to do re-
initialization. When the number of effective particles is below
a fixed threshold Nthres , the re-initialization procedure is
performed.

IV. EXPERIMENTAL RESULTS

In this section, we validate our proposed solution using
a number of comparative experiments. REKO, SVALKA,
POKAL glasses were chosen from the KIT ObjectModels
Web Database1 in which more than 100 object models of
household items are provided in 3D polygonal meshes and
stereo images, and FARGRIK glass model obtained from
Google 3D warehouse2. We only use the provided mesh
models in our experiments which are shown in Fig. 2 (a).
From these models, we prepare 49 edge templates per
object offline (Fig. 2 (b)). These templates are used in the
chamfer matching to initialize particles. To obtain test image
sequences, a calibrated monocular camera was placed around
the target objects, and the camera was moved so that the
resulted sequences of images shows significant variation in
translation, rotation, and velocity.

To validate our particle filtering approach, we first ex-
ecuted our system on the sequence of the POKAL glass
with 1 and 100 particles. For fair comparison, we set the
same parameters except the number of particles. In Fig. 3,
results of the system using 1 and 100 particles are depicted

1http://wwwiaim.ira.uka.de/ObjectModels/
2http://sketchup.google.com/3dwarehouse/



Fig. 6. Initialization and annealed particle filtering. The top-left image shows the chamfer matching results which are depicted in cyan bounding
boxes, except that the lowest cost window (i.e. best result) is drawn in the yellow box. The next image shows initial states in cyan wireframes determined
by the ChamferPose algorithm. The upper and lower rows of the center to right columns present results without and with the annealing, respectively.
Intermediate annealing results are shown in the bottom-left two images (annealing layer l is 4 and 2 from total L = 5 layers). The particle filter without
annealing is frequently stuck in local optima, and thus it could not recover to the global optimum, while our annealed particle filter can converge.

Fig. 7. Tracking results showing the re-initialization capability. Based on the value of N̂eff , our system can re-initialize when the object goes out of
the field of view.

in red and yellow wireframes, respectively. While the red
wireframes are suffered from drifting, the yellow ones are
well fitted to the object. Since the particle filter considers
multiple hypotheses, it is not stuck in local optima.

We also evaluated the effectiveness of the RANSAC by
executing our system with and without the refinement. Again,
for fair comparison we used the same parameters. From the
results in Fig. 4, we can verify that the RANSAC procedure
enhances edge correspondences. Hence our approach shows
more stable tracking than the one having no RANSAC.

To verify the effectiveness of suppressing the rotating
motion discussed in Section III-F, the proposed approach
was executed with and without the suppression. For fair
comparison, the suppression was only altered. The tracking
results are presented in Fig. 5. The tracking difference
is possibly due to different search spaces. With the same
number of particles (N = 100), the suppressed version only
searches for the global optimum in the 5D space, while the
version without the suppression fails to find the optimum in
the 6D space.

We prove the effectiveness of annealed particle filtering by
turning on and off the annealing stage after the initialization.
Again the experiment was executed with the same parameters

except the annealing. The comparison of the two tracking
results are presented in Fig. 6. It is clear that employing the
annealing process helps the tracker to start from the global
optimum.

As monitoring the effective number of particles N̂eff , the
proposed system can re-initialize by itself when it is required.
To verify this capability, we tested on a challenging image
sequence in which the object is often disappeared because of
the camera motion (Fig. 7). When these cases are occurred,
N̂eff falls significantly. Thus our system re-initializes the
tracking and successfully recovers from the failure cases.

V. CONCLUSIONS

We presented a particle filtering approach using edge
features for the textureless object detection and tracking.
Our approach started with possible pose hypotheses via the
chamfer matching followed by the coarse pose estimation.
The initial poses were further refined through the annealed
particle filtering to ensure they are close to the global maxi-
mum. In addition, to handle false edges from non-Lambertian
reflectance and clutter we employed the RANSAC refinement
process which gave improved edge correspondences. The
proposed approach was qualitatively validated in various
experiments.
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