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Abstract— In this paper, we present a 3D model-based object
tracking approach using edge and keypoint features in a parti-
cle filtering framework. Edge points provide 1D information
for pose estimation and it is natural to consider multiple
hypotheses. Recently, particle filtering based approaches have
been proposed to integrate multiple hypotheses and have
shown good performance, but most of the work has made
an assumption that an initial pose is given. To remove this
assumption, we employ keypoint features for initialization of
the filter. Given 2D-3D keypoint correspondences, we choose a
set of minimum correspondences to calculate a set of possible
pose hypotheses. Based on the inlier ratio of correspondences,
the set of poses are drawn to initialize particles. For better
performance, we employ an autoregressive state dynamics and
apply it to a coordinate-invariant particle filter on the SE(3)

group. Based on the number of effective particles calculated
during tracking, the proposed system re-initializes particles
when the tracked object goes out of sight or is occluded. The
robustness and accuracy of our approach is demonstrated via
comparative experiments.

I. INTRODUCTION

From robotic manipulation to augmented reality, estimat-

ing poses of objects is a key task. Since Harris [1] proposed

his early system which tracks an object by projecting a 3D

CAD model into a 2D image and aligning the projected

model edges to image edges, there have been active efforts

to enhance the early edge-based tracking system [2], [3].

Edges are employed because they are easy to compute

and invariant to illumination and pose changes. However,

a critical disadvantage of using edges in visual tracking

is that they look similar to each other. In general, edge

correspondences are determined by local search based on

a prior pose estimate. So the tracking performance of an

edge-based tracker directly depends on correct pose priors.

To improve pose priors, there have been attempts to enhance

the pose accuracy between frames by incorporating interest

points [4], [5], [6] or employing additional sensors [7].

Since interest points and their rich descriptors [8], [9] can

be extracted and matched well under illumination, scale,

rotation changes, and reasonable projection transformation,

keypoint features complement edges well.

Considering multiple edge correspondences was another

interest in edge-based tracking. Since edges are ambiguous

and false edge correspondences directly lead the tracker

to false pose estimates, some approaches have considered

multiple edge correspondences [5], [10]. However, their

work was still limited because only one or two hypotheses

were maintained from the multiple correspondences during

tracking.

Multiple hypotheses tracking has been implemented using

a particle filtering framework. Isard and Blake [11] applied

a particle filter to 2D visual edge tracking and have shown

great potential. Affine 2D visual trackers have also been

proposed in a particle filter framework with incremental

measurement learning [12], [13]. Among them, Kwon et

al. [13] proposed a particle filter on a 2D affine Lie group,

Aff(2), in a coordinate-invariant way. For 3D visual tracking,

Pupilli and Calway [14] have shown the possibility of

applying a particle filter to 3D edge tracking. While [14]

demonstrated the tracking of simple 3D objects, Klein and

Murray [15] implemented a particle filtering approach which

tracks complex full 3D objects in real-time by exploiting

the GPU. Mörwald et al. [16] also exploited the parallel

power of GPU to implement a fast model-based 3D visual

tracker. With edges from 3D CAD, they also employed edges

from texture which possibly contributes to avoid false edge

correspondences as well as to enhance the accuracy of pose

estimates. Teulière et al. [17] recently addressed a similar

problem by maintaining multiple hypotheses from low-level

edge correspondences.

With a few exceptions [18], most of the work has made an

assumption in which trackers start from a given pose. Several

efforts [15], [14] used annealed particle filters to find the

true pose from scratch without performing an appropriate

initialization, but the search space might be too large to

converge to the true pose in reasonable time, and even it

might not converge to the pose after enough time elapses.

It is thus more desirable to employ other information for

initialization. The BLORT [18] employed SIFT keypoints [8]

to recognize objects and used them for particle initialization.

In this paper we utilize a particle filtering technique on

the SE(3) group that is based on [19]. For robust 3D visual

tracking, we employ keypoint features in initialization and

edges in the calculation of measurement likelihoods. Like

[15], our system can track complex objects by performing a

self-occlusion test. By maintaining multiple hypotheses, our

algorithm can reliably track an object on challenging image

sequences that have complex background and heavy clutter.

Our key contributions are as follows:

• We employ keypoint features as additional visual infor-

mation. While [15], [14] have used annealing particle

filter to find the initial pose, we initialize particles to



highly probable states based on pose estimates calcu-

lated from keypoint correspondences. The initialized

particles tend to converge faster than the usual annealed

particle filtering.

• While previous edge-based trackers [15], [17] have

employed random walk models as a motion model, we

apply a first-order autoregressive (AR) state dynamics

on the SE(3) group to be more effective.

• To be fully automatic and reliable in practical settings,

our approach monitors the number of effective particles

and use the value to decide when the tracker requires

re-initialization.

This paper is organized as follows. In Section II, we intro-

duce a particle filtering framework with state and measure-

ment equations. The AR state dynamics is then represented

in Section II-B. After explaining how particles are initialized

and their likelihoods are evaluated in Section II-C and II-

D, respectively, the re-initialization scheme is represented in

II-E. Experimental results on various image sequences are

shown in Section III.

II. PARTICLE FILTER ON THE SE(3) GROUP

In 3D visual tracking, a state represents a 6-DOF pose of

a tracked object, and tracking estimates time-varying change

of coordinates. It is well known that the trajectory is not

on general vector space, rather it is on Lie groups – in

general, the Special Euclidean group SE(3) and the affine

group Aff(2) in 3D and 2D visual tracking, respectively. Since

the trajectory we want to estimate is on a Lie group, the

particle filter should be applied on Lie groups. Monte Carlo

filtering on Lie groups is explicitly addressed in [20], [19],

[13]. As argued in [19] and [13], filtering performance and

noise distribution of local coordinate-based particle filtering

approaches are dependent on the choice of the local coor-

dinates, while particle filtering on Lie groups is coordinate-

invariant.

A. State and Measurement Equations

From the continuous general state equations on the SE(3)

group, discrete system equations is acquired via the first-

order exponential Euler discretization [19]:

Xt = Xt−1 · exp(A(X, t)∆t + dWt

√
∆t), (1)

dWt =

6∑

i=1

ǫt,iEi,

ǫt = (ǫt,1, . . . , ǫt,6)
T ∼ N (06×1,Σw)

where Xt ∈ SE(3) is the state at time t, A : SE(3) → se(3)
is a possibly nonlinear map, dWt represents the Wiener

process noise on se(3) with a covariance Σw ∈ R
6×6,

Ei are the i-th basis elements of se(3). The corresponding

measurement equation is then:

yt = g(Xt) + nt, nt ∼ N (0Ny×1,Σn) (2)

where g : Xt → R
Ny is a nonlinear measurement function

and nt is a Gaussian noise with a covariance Σn ∈ R
Ny×Ny .

B. AR State Dynamics

The dynamic model for state evolution is an essential

part that has a significant impact on tracker performance.

However, many particle filter-based trackers have been based

on a random walk model because of its simplicity [15], [17].

AR state dynamics is a good alternative since it is flexible,

yet simple to implement. In (1), the term A(X, t) determines

the state dynamics. A trivial case, A(X, t) = 0, is a random

walk model. [13] modeled this via the first-order AR process

on the Aff(2) as:

Xt = Xt−1 · exp(At−1 + dWt

√
∆t), (3)

At−1 = a log(X−1
t−2Xt−1) (4)

where a is the AR process parameter. Since the SE(3) is a

compact connected Lie group, the AR process model also

holds on the SE(3) group [21].

C. Particle Initialization using keypoint Correspondences

Most of the particle filter-based trackers assume that initial

states are given. In practice, initial particles are crucial to

ensure convergence to a true state. Several trackers [15], [14]

search for the true state from scratch, but it is desirable to

initialize particle states by using other information. Using

keypoints allows for direct estimation of 3D pose, but due

to the need for a significant number of correspondences it is

either slow or inaccurate. As such, keypoint correspondences

are well suited for the filter initialization.

For initialization, we use so-called keyframes which are

composed of 2D images and keypoints coordinates (2D and

3D) that have been saved offline. An input image coming

from a monocular camera is matched with the keyframes by

extracting keypoints and comparing them. To find keypoint

correspondences efficiently, we employ the Best-Bin-First

(BBF) algorithm using kd-tree data structure [22] that allows

execution of the search in O(n log n). As described in [8],

the ratio test is then performed to find distinctive feature

matches. While we used RANSAC [23] after determining

putative correspondences in our previous work [24], we skip

this procedure because in the particle filter framework we can

initialize particles in an alternative way in which the basic

idea is similar to RANSAC. Instead of explicitly performing

RANSAC, we randomly select a set of correspondences

from the given putative correspondences and estimate a

possible set of poses calculated from them. Since we have

3D coordinates of keypoints in keyframes, we get 2D-3D

correspondences from the matching process described above.

So we can regard this problem as the Perspective-n-Point

(PnP) problem, in which the pose of a calibrated monocular

camera is estimated from n 2D-3D point correspondences,

on each set of correspondences. To find a pose from the

correspondences, we use the EPnP algorithm [25] that pro-

vide a O(n) time non-iterative solution for the PnP problem.

After all particle poses are initialized from randomly selected

minimum correspondences, weights of particles are assigned

from the number of remaining correspondences cr and the

number of inlier correspondences ci which coincide with



Algorithm 1 Overall algorithm

Initialization

1) Set t := 0.

2) Set number of particles as N

3) For i := 1, . . . , N , set X
∗(i)
0 via EPnP, π

∗(i)
0 via (5),

and A
(i)
0 := 04×4.

4) For i := 1, . . . , N , normalize weights π̃
(i)
0 by (6).

5) For i := 1, . . . , N , draw from X
∗(i)
0 according to π̃

(i)
0

to produce X
(i)
0 .

Importance Sampling

1) Set t := t + 1.

2) For i := 1, . . . , N , draw X
∗(i)
t ∼ P (Xt|X(i)

t−1,Σw) by

a) Generate the Gaussian ǫt ∼ N (0,Σw), and prop-

agate X
(i)
t−1 to X

∗(i)
t with A

(i)
t−1 via (3).

b) Compute A
∗(i)
t with (4).

3) For i := 1, . . . , N , optimize X
∗(i)
t to X

′
∗(i)

t with IRLS

via (9) and (10).

4) For i := 1, . . . , N , evaluate the importance weights

π
∗(i)
t via (8) and (11).

5) For i := 1, . . . , N , normalize the importance weights

π̃
(i)
t by (12).

6) Evaluate N̂eff by (13)

Resampling

1) If N̂eff < Nthres

a) Go to Initialization 3) and initialize X
(i)
t , π̃

(i)
t ,

and A
(i)
t for i := 1, . . . , N .

2) Otherwise

a) For i := 1, . . . , N , resample from X
∗(i)
t and

A
∗(i)
t with probability proportional to π̃

(i)
t to

produce i.i.d. random samples X
(i)
t and A

(i)
t .

b) For i := 1, . . . , N , set π
(i)
t := π̃

(i)
t := 1

N
.

c) Go to Importance Sampling.

the pose calculated from the randomly selected set. For

i = 1, . . . , N where N is the number of particles, the initial

weights of particles are assigned as:

π
∗(i)
0 ∝ p(y0|X∗(i)

0 ) ∝ e(−λc
cr−ci

cr
) (5)

where λc is a parameter. Then the weights π
∗(i)
0 are normal-

ized by:

π̃
(i)
0 =

π
∗(i)
0∑N

j=1 π
∗(j)
0

(6)

After weights are normalized, particles are randomly drawn

with probability proportional to these weights. By doing

so, we can generate probable initial pose hypotheses. We

initialize particles when the number of correspondences is

bigger or equal to 9, and the number of randomly selected

minimum correspondences is 7.

D. Measurement Likelihood and Optimization using IRLS

Once each particle is initialized and propagated according

to AR process and Gaussian noise, it has to be evaluated

based on its measurement likelihood. In edge-based tracking,

a 3D wireframe model is projected to a 2D image according

to a particle state X
∗(i)
t . Then a set of points is sampled

along edges in the wireframe model per a fixed distance.

The sampled points are matched to nearest edge pixels from

the image by 1D perpendicular search [2], [24]. Then the

measurement likelihood can be calculated from the ratio

between the number of matched sample points pm and

the number of visible sample points pv which pass a self-

occlusion test as:

p(yt|Xt) ∝ e(−λv
(pv−pm)

pv
) (7)

where λv is a parameter. This likelihood has been similarly

used in [15]. Another choice is taking arithmetic average

distances (error) ē between the matched sample points and

the edge pixels [17]:

p(yt|Xt) ∝ e(−λeē)

where λe is also a parameter to be tuned. We noticed that

both likelihoods are valid, and we empirically found that

using both terms shows better results. Therefore, in our

approach the measurement likelihood is evaluated as:

p(yt|Xt) ∝ e(−λv
(pv−pm)

pv
)e(−λeē) (8)

One of the challenges in particle filtering for 3D visual

tracking is the large state space, so a large number of particles

is usually required for reliable tracking performance. To

reduce the number of particles, [15] has used an annealed

particle filter, and [26], [17] have selectively employed local

optimizations in a subset of particles. For more accurate

results, we optimize particles as well, in which Iterative Re-

weighted Least Squares (IRLS) is employed [24], [2]. From

IRLS, the optimized particle X
′
∗(i)

t is calculated as follows:

X
′
∗(i)

t = X
∗(i)
t · exp(

6∑

i=1

µiEi) (9)

µ = (JTWJ)−1JTWe (10)

where µ ∈ R
6 is the motion velocity that minimizes the

error vector e ∈ R
Ny , J ∈ R

Ny×6 is a Jacobian matrix of e

with respect to µ obtained by computing partial derivatives at

the current pose, and W ∈ R
Ny×Ny is a weighted diagonal

matrix. The diagonal element in W is wi = 1
c+ei

where c

is a constant and ei is i-th element of e. (For more detail

information about J and IRLS, please refer to [24], [2]).

Note that the measurement likelihood in (8) is calculated

before the IRLS optimization. To assign weights of particles,

we have to evaluate the likelihood again with the optimized

state X
′
∗(i)

t . However, computing the likelihood of every

particle again is computationally expensive. Since every

particle is optimized at the same time, we can approximate

p(yt|X
′
∗(i)

t ) as:

π
∗(i)
t ∝ p(yt|X

′
∗(i)

t ) ≈ p(yt|X∗(i)
t ) (11)



Fig. 1. Tracking results with (yellow wireframe) and without (red wireframe) our particle filter for the four targeted objects. From top to
bottom, teabox, book, cup and car door. From left to right, t < 10, t = 100, t = 200, t = 300, t = 400 and t = 500 where t is the frame
number. The very left images are results of the pose initialization. Note that yellow wireframes are well fitted to the tracking objects,
while red wireframes are frequently mislocalized. 100 particles are used for the particle filter. (i.e. N = 100)

Then the weight π
∗(i)
t is normalized to π̃

(i)
t by:

π̃
(i)
t =

π
∗(i)
t∑N

j=1 π
∗(j)
t

(12)

E. Re-initialization based on N̂eff

Ideally a tracked object should be visible during an entire

tracking session. In reality, however, it is quite common

that the object goes out of frame or is occluded by other

objects. In these cases, the tracker is required to re-initialize

the tracking. In general sequential Monte Carlo methods, the

effective particle size Neff has been introduced as a suitable

measure of degeneracy [27]. Since it is hard to evaluate Neff

exactly, an alternative estimate N̂eff is defined [27]:

N̂eff =
1

∑N

i=1(π̃
(i))2

(13)

Often it has been used as a measure to execute the resampling

procedure. But, in our tracker we resample particles every

frame, and hence we use N̂eff as a measure to do re-

initialization. When the number of effective particles is below

a fixed threshold Nthres, the re-initialization procedure is

performed. The overall algorithm is shown in Algorithm 1.

III. EXPERIMENTAL RESULTS

In this section, we validate our proposed particle filter-

based tracker via various experiments. First, we compare

the performance of our approach with the previous single

hypothesis tracker [24] which was based on IRLS. For

the comparison, we use new challenging image sequences

TABLE I

RMS ERRORS IN THE GENERAL TRACKING

RMS Errors⋆

x y z roll pitch yaw

Teabox
0.0033† 0.0018 0.0068 3.27 4.32 3.95

0.0027‡ 0.0020 0.0031 1.68 1.13 2.13

Book
0.0026 0.0021 0.0042 1.73 1.58 0.95

0.0016 0.0012 0.0055 0.87 0.82 1.11

Cup
0.0083 0.0092 0.0272 2.09 1.83 5.05
0.0078 0.0084 0.0216 1.20 1.00 3.57

Car door
0.0211 0.0122 0.0411 1.73 3.72 3.73
0.0104 0.0135 0.0352 0.89 3.16 1.96

⋆ The error units of translation and rotation are meter and degree,
respectively.

† The upper rows are the results of the previous approach [24].
‡ The lower rows are the results of the proposed approach. In both

upper and lower rows, better results are indicated in bold numbers.

as well as image sequences used in [24]. To verify the

effectiveness of the AR state dynamics, we show the results

of our proposed tracker with and without the AR state

dynamics.

A. Experiment 1: Image Sequences from Choi and Chris-

tensen [24]

In [24], the sequences of images were captured from

a monocular camera in static object and moving camera

setting. A set of image sequences used in Section III-A.1

are acquired to test tracking performance in general setting,

i.e. no occlusion, relatively simple background, reasonable

clutter, and smooth movements of the camera. To test re-

initialization capability, a sequence of images is captured
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Fig. 2. Pose plots of the teabox object in the general tracking test. The proposed approach (PF+IRLS) shows superior accuracy than the
previous approach (IRLS). Especially, using our particle filter significantly enhances rotational accuracy.
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Fig. 3. Normalized residual plots of the teabox object in the general tracking test. In general, the proposed approach (PF+IRLS) shows
lower residual and more consistent results than the previous one (IRLS).

with fast camera motion and occlusions. This sequence is

tested in Section III-A.2.

1) General Tracking: The single hypothesis tracker in

[24] has shown reasonable tracking results on the general

tracking sequences. To show quantitative results, AR markers

are employed to gather ground truth pose estimates. To

compare our proposed approach with the previous one, we

executed our new approach on the same image sequences.

The tracking results are shown in Fig. 1. In the proposed

approach, 100 particles are maintained, and the mean of

particles is depicted in the figures. To calculate the mean

of particles, we follow the mean rotation evaluation of the

special orthogonal group SO(3) by Moakher [28] that is also

considered in [19], [17]. To clearly show the difference of

the two approaches, both of the pose results are depicted in

the same image sequences. The yellow and red wireframes

are projected to images with respect to the pose results

estimated by the proposed approach and previous approach,

respectively. We can easily verify that the proposed approach

shows more accurate results. To decompose pose results,

6-DOF pose and residual plots of the teabox object are

represented in Fig. 2 and 3, respectively. Based on the plots,

we can easily see the difference where the proposed approach

(PF+IRLS) shows much better results than the previous

approach (IRLS). Note that the considerable differences in

orientation estimates. This is due to some false edge corre-

spondences that lead to errors in pose, mainly in orientation.

Since our particle filter considers multiple hypotheses and

resamples based on measurement likelihood, it is quite robust

to false edge correspondences from which the single hypoth-

esis tracker is often suffered. A quantitative analysis of these

tests is represented in Table I which shows the root mean

square (RMS) errors. For each object, the upper rows are the

results of the previous approach and the lower rows are the

results of the proposed approach. With a few exceptions, the

proposed approach outperforms the previous one in terms

of accuracy. As mentioned earlier, the proposed approach

shows better orientation estimates. Although there are a few

exceptions, the difference is about 1 mm in translation and

0.16 deg in rotation. Since the ground truth was measured

via the AR marker and the displacement between the object

and the AR marker was measured manually, that errors might

come from these measures.

2) Re-initialization: In our previous system, we used a

simple heuristic in which the difference in position of the

object between frames and the number of valid sample

points are monitored to trigger re-initialization [24]. While

that heuristic works well when the pose hypothesis drifts

fast, it might not always be the case when the hypothesis

stuck in local minima. Here we propose another way for re-

initialization by taking advantage of multiple hypotheses. As

in Algorithm 1, our system re-initializes when the number of

effective particles N̂eff is below a threshold. To verify this

method, we run the proposed tracker on the re-initialization

sequence. The tracking results are shown in Fig. 4 and the

number of effective particles is plotted over the frame num-

bers in Fig. 5. The gray line represents the threshold value

Nthres. When the tracked object goes out of frames, images

are blurred because of camera shaking, or the object is

occluded with a paper, the N̂eff decreases significantly, and

that triggers the re-initialization. During re-initialization, the

tracker matches keypoints until it has at least the minimum



Fig. 4. Tracking results on the re-initialization sequence. From top-left to bottom-right, the frame numbers are t = 0, 100, 200, 275,
300, 328, 400, 500, 589, 600, 627, 700, 800, 900, 984, 1000, 1036, and 1100. The green wireframes represent particles and the yellow
thick wireframe shows the mean of particles on each image. When the tracked object goes out of frames, images are blurred because of
camera shaking, and the object is occluded with a paper, our tracker re-initialize. (N = 100)
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Fig. 5. The N̂eff plot for the re-initialization sequence. (N = 100)

number of keypoint correspondences. Once enough point

correspondences are acquired, the proposed system initializes

particles.

B. Experiment 2: More Challenging Image Sequences

Since the aforementioned image sequences were prepared

for the previous approach, it is relatively easy to track objects

in these sequences. Therefore, we need other datasets to

compare our new approach. So we prepared more challeng-

ing image sequences in which a complex background is

considered.

1) Effectiveness of Particle Filter: When the background

is relatively simple, single hypothesis edge-based tracking

works reasonably. But it is quite challenging to reliably

track an object when the background is complex or there

is an amount of clutter. These challenging situations often

make erratic edge correspondences, hence single hypothesis

tracking can be a fragile solution in these cases. To validate

this argument, we compare our proposed tracker with the

single hypothesis tracker. We captured two image sequences

for the book and cup objects. To make the background

complex, we put these objects on a camera calibration plate

in which the grid pattern is likely to generate false edge

correspondences. The comparative tracking results are shown

in Fig. 6. The grid pattern and the background texture play

a role as strong clutter, hence the previous approach suffers

from the local minima. However, our approach dependably

tracks objects in spite of the clutter.

2) Effectiveness of AR State Dynamics: To verify the

effect of the AR state dynamics, we execute the proposed

approach with and without the AR state dynamics. To disable

the dynamics, we set the parameter a in (4) as 0 which is

equivalent to a random walk model. For fair comparison, we

use the same parameters except the AR parameter. We test

on a sequence of the book object used in the previous experi-

ment. The tracking results are represented in Fig. 7. Although

both use the same number of particles, Gaussian noise, and

measurement likelihood, the tracking performances are quite

distinctive. This difference is mainly due to the AR state

dynamics which propagates particles according to the camera

motion.

IV. CONCLUSIONS

We have presented an approach to 3D visual object track-

ing based on a particle filtering algorithm on the SE(3) group.

For fast particle convergence, we employed keypoint features

and initialized particles by using a linear time non-iterative

solution for the PnP problem. Particles are propagated by

the state dynamics which is given by an AR process on

the SE(3), and the state dynamics distributed particles more

effectively. Measurement likelihood was calculated from

both the residual and the number of valid sample points of

the edge correspondences. During the tracking, the proposed

system appropriately re-initialized by itself when the number

of effective particles is below a threshold. Our approach has

been tested via various experiments in which our multiple

hypotheses tracker has shown notable performance on chal-

lenging background and clutter.

One of the possibilities for future work is exploiting

the parallel power of GPU for real-time performance [15],

[16]. Another interest is in multiple object recognition and

tracking [29] which is necessary for a realistic scenario.



Fig. 6. Tracking results on more challenging image sequences. Top and bottom rows represent selected frames from book and cup
sequences, respectively. For comparison, the poses estimated by the proposed (PF+IRLS) and the previous (IRLS) approaches are depicted
in yellow and red wireframes, respectively. Because of background texture, the previous approach is often misled to local minima, while
the proposed approach robustly estimates poses of objects under ambiguous background texture and fast camera motions. (N = 100)

Fig. 7. Tracking results for the proposed approach with (yellow wireframe) and without (red wireframe) the AR state dynamics. It shows
that the AR state dynamics contributes to propagate particles more effectively. (N = 100)
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