
Real-time 3D Object Pose Estimation and Tracking for Natural
Landmark Based Visual Servo

Changhyun Choi, Seung-Min Baek and Sukhan Lee, Fellow Member, IEEE

Abstract— A real-time solution for estimating and tracking
the 3D pose of a rigid object is presented for image-based
visual servo with natural landmarks. The many state-of-the-art
technologies that are available for recognizing the 3D pose of an
object in a natural setting are not suitable for real-time servo
due to their time lags. This paper demonstrates that a real-time
solution of 3D pose estimation become feasible by combining a
fast tracker such as KLT [7] [8] with a method of determining
the 3D coordinates of tracking points on an object at the time
of SIFT based tracking point initiation, assuming that a 3D
geometric model with SIFT description of an object is known
a-priori. Keeping track of tracking points with KLT, removing
the tracking point outliers automatically, and reinitiating the
tracking points using SIFT once deteriorated, the 3D pose of an
object can be estimated and tracked in real-time. This method
can be applied to both mono and stereo camera based 3D
pose estimation and tracking. The former guarantees higher
frame rates with about 1 ms of local pose estimation, while
the latter assures of more precise pose results but with about
16 ms of local pose estimation. The experimental investigations
have shown the effectiveness of the proposed approach with
real-time performance.

I. INTRODUCTION

In visual servo control, real-time performance of object
recognition with pose has been regarded as one of the most
important issues for several decades. Especially the literature
has required three dimensional (3D) pose estimation in order
to handle a target object in 3D space. While modern recog-
nition methods, such as SIFT and structured light, which are
applicable to accurate pose estimation have been recently
proposed, these are still inappropriate to be applied to vision-
based manipulation due to the high computational burden.
For natural control of robot manipulators, we propose a real-
time solution for tracking 3D rigid objects using a mono or
stereo camera that combines scale invariant feature based
matching [1] [2] with Kande-Lucas-Tomasi (KLT) tracker
[6] [7] [8] [9]. Since there is no need for a stereo matching
process, mono mode using a mono camera promises better
computational performance. In contrast, stereo mode using
a stereo camera shows more accurate pose results. We
expect that mono mode can be applied when coarse pose
results are accepted, for example, a robot approaches a target
object. Conversely, when truthful pose are necessary, such as
grasping a target object, stereo mode will be available.
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II. RELATED WORK

Papanikolopoulos and Kanade proposed algorithms for
robotic real-time visual tracking using sum-of-squared differ-
ences (SSD) optical flow [5]. Combining vision and control,
the system feeds discrete displacements calculated from
SSD optical flow to controllers or a discrete Kalman filter.
Considering that the vision process was taken about 100 ms
in 1993, this work showed the possibility of optical flow
as a real-time tracker. However, the constraints, such as an
assumption of given depth and manual selection of tracking
points, used in the work are not acceptable to modern robots.
For dependable pose tracking, the depth calculation and
the tracking points generation should be fully automatic
processes. Moreover, the system only considered roll angle
of a target object. Visual servoing system should know not
only 3D position (x, y, z) but also 3D orientation (roll, pitch,
yaw) of it.

As CPU becomes faster for a decade, the tracking methods
using local feature points are recently proposed. Vacchetti
and Lepetit suggested a real-time solution, which does not
have jitter or drift, for tracking objects in 3D by using
standard corner features with a single camera [4]. Their
approach is robust to large camera displacements, drastic
aspect changes, and partial occlusions. Drawbacks of the
system are that the camera should be close enough to one
of keyframes which is a kind of prior knowledge. This
limited starting condition makes practical limitations on pose
tracking applications in visual servo control. For more robust
tracking, tracking systems need a recognition scheme which
is invariant to scale, rotation, affine distortion, and change in
3D viewpoint.

The work of Panin and Knoll aptly complemented the
disadvantages of Vacchetti and Lepetit’s work [3]. They
proposed a fully automatic real-time solution for 3D object
pose tracking with SIFT feature matching and contour-based
object tracking. The solution is primarily organized into two
parts: global initialization module and local curve fitting
algorithm. The former recognizes the initial pose of the
object on the whole incoming image through SIFT feature
matching. The latter estimates pose of a target object through
contour matching on an online color image stream with
the calculated initial pose and a given contour model. The
approach could track the pose of objects having insufficient
texture on the surfaces since it uses the contour information
of objects. But, when the colors of a target object and
background are similar, it has potential risk of failing of
pose tracking because Contracting Curve Density (CCD) al-
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gorithm used for object contour tracking principally relies on
color statistics near the boundary of the object. In addition,
there is rotational ambiguity on the pose results according to
the shape of contour models such as cylindrical objects or
spherical objects.

III. PROPOSED APPROACH

In order to overcome the disadvantages of the related
works discussed above, we propose a method that combines
scale invariant features matching with optical flow based
tracking, KLT tracker, for real-time 3D pose tracking. Since
SIFT features are invariant to scale, rotation, illumination,
and partial change in 3D viewpoint, SIFT feature matching
makes our system robustly estimate an initial pose of a target
object. However, the speed of SIFT feature matching on
modern CPU is not so fast enough to be utilized in robotic
arm control1. To overcome this difficulty, our approach
adopts KLT tracker to calculate 3D pose consecutively from
initially estimated pose with cheap computational cost.

KLT tracker is already well established and its implemen-
tation is available in public computer vision library [10] [9].
The advantages of the KLT tracker are in that it is free from
prior knowledge and computationally cheap. Like other area
correlation-based methods, however, this tracker shows poor
performance in significant change of scene, illumination, and
occlusions. In addition, KLT tracking points are likely to
drift due to the aperture problem of optical flow. Our system
automatically remove outliers to get accurate pose results.

1It takes about 300 ms in our test with 640 × 480 RGB image to
determine a 3D pose of an object.

A. Problem Definition: Mono and Stereo

Our method is applicable to both mono camera and stereo
camera. Fig. 2 illustrates two camera settings and coordinate
frames. {C} and {C ′} represent camera coordinate frames,
and {M} describes model coordinate frame. Large crosses
depict 3D model points with respect to the model coordinate,
small crosses indicate 2D model points which are projected
3D model points on image plane S or S′. The problem of
mono mode can be defined as,

Given 2D-3D correspondences and a calibrated
mono camera, find the pose of the object with
respect to the camera.

Similarly, the problem of stereo mode can be defined as,

Given 3D-3D correspondences and a calibrated
stereo camera, find the pose of the object with
respect to the camera.

B. System Overview

As depicted in Fig. 1 the proposed method is mainly clas-
sified into two parts: initial pose estimation and local pose
estimation. For SIFT feature matching, the system retains
BMP images of a target object and 3D points calculated
from structured light system as prior knowledge. The off-line
information is utilized in the initial pose estimation. Once an
initial pose is determined, the system automatically generates
KLT tracking points around the matched SIFT points, and it
saves 3D reference points for further use after calculating
the 3D points of the tracking points. In the local pose
estimation, the system quickly tracks 3D pose of the target
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Fig. 2. Camera coordinate frame {C} and model coordinate frame {M} with 3D model points. (a) Mono camera (b) Stereo camera

Algorithm 1 MONO 3D POSE TRACKING
Input: model images I1:k(x, y), 3D model points JM

1:k(x, y),
a current scene image S(x, y)
Initialize:

1) Extract m SIFT feature points pC
1:m globally on the

S(x, y) and get m 3D model points PM
1:m correspond-

ing to the extracted SIFT feature points by looking up
JM

1:k(x, y)
2) Determine the initial pose ΦC

0 of the object by using
POSIT algorithm in which pC

1:m and PM
1:m are served

as parameters
3) Generate n 2D KLT tracking points tC

1:n within the
convex hull of a set of pC

1:m

4) Calculate n 3D reference points TM
1:n corresponding to

tC
1:n by using the plane approximation based on tC

1:n,
PM

1:m, and ΦC
0

Loop:
1) Track tC

1:n by using KLT tracker
2) Remove outliers by applying RANSAC to produce

tC
1:n′ and TM

1:n′

3) If the number of remained tracking points n′ is fewer
than τmono, go to Initialize

4) Determine the current pose ΦC of the object by using
POSIT algorithm in which tC

1:n′ and TM
1:n′ are served

as parameters.
Output: the pose ΦC of the object

object by using the 3D reference points and KLT tracking
points. Outliers are eliminated by RANSAC algorithm until
the number of remained tracking points is fewer than a
certain threshold value. When the number of tracking points
is fewer than the threshold, the system goes to the initial pose
estimation and restarts SIFT matching globally, otherwise the
system repeats the local pose estimation.

C. Algorithm

For clarity, Algorithm 1 and 2 are given to illus-
trate the core of our approach. In Algorithm 1 and 2,

Algorithm 2 STEREO 3D POSE TRACKING
Input: model images I1:k(x, y), 3D model points JM

1:k(x, y),
a current scene image S(x, y) and S′(x, y)
Initialize:

1) Extract m SIFT feature points pC
1:m globally on the

S(x, y)
2) Generate n 2D KLT tracking points tC

1:n within the
convex hull of a set of pC

1:m

3) Determine n 3D reference points TM
1:n corresponding

to tC
1:n by looking up JM

1:k(x, y)
4) Calculate n 3D points TC

1:n corresponding to tC
1:n by

stereo matching on S(x, y) and S′(x, y)
Loop:

1) Track tC
1:n by using KLT tracker

2) Remove outliers by applying RANSAC to produce
tC
1:n′ and TM

1:n′

3) If the number of remained tracking points n′ is fewer
than τstereo, go to Initialize

4) Calculate TC
1:n′ by stereo matching

5) Determine the current pose ΦC of the object by closed-
form solution using unit quaternions in which TC

1:n′

and TM
1:n′ are served as parameters.

Output: the pose ΦC of the object

I1:k(x, y) = {I1(x, y), I2(x, y), ..., Ik(x, y)} are k RGB
model images in which a target object is taken, and
JM

1:k(x, y) = {JM
1 (x, y), JM

2 (x, y), ..., JM
k (x, y)} represents

the 3D points corresponding to each pixel (x, y) of the
RGB model images with respect to the model coordinate
frame {M}. S(x, y) and S′(x, y) denote the current in-
put images. All images used are 640 × 480 resolution.
pC

1:m = {pC
1 ,p

C
2 , ...,p

C
m}, tC

1:n = {tC
1 , t

C
2 , ..., t

C
n }, tC

1:n′ =
{tC

1 , t
C
2 , ..., t

C
n′}, and ΦC are point vectors or pose vector

of the object with respect to the camera coordinate frame
{C}. Similarly PM

1:m, TM
1:n, and TM

1:n′ are point vectors in
the model coordinate frame {M}.

Although the minimum number of corresponding points
are 4 points in POSIT algorithm [13] and 3 points in the



closed-from solution using unit quaternions [14], the thresh-
old for the minimum number of correspondences, τmono

(≥ 4) and τstereo (≥ 3), should be adjusted according to
the accuracy the application needs.

D. Generating Tracking Points

(a) (b) (c)

Fig. 3. The target object and the region for generating 2D KLT tracking
points. The tracking points are only generated within the convex hull of a
set of the matched SIFT points. In mono mode, for calculating the 3D point
of each tracking point the algorithm uses three nearest neighboring matched
SIFT points. (a) Target object (b) Matched SIFT points and the convex hull
of a set of them on the surface of the target object (c) 2D KLT tracking
points (bold points) within the convex hull

To track a moving 3D object by using KLT tracker,
we have to generate tracking points on the area of the
target object. We employ the matched SIFT points used in
the initial pose estimation for allocating tracking points on
the region of the target object. As shown in Fig. 3 (b),
our algorithm generates the tracking points only inside the
convex hull of a set of the matched SIFT points with the
criteria proposed by Jianbo Shi and Carlo Tomasi [8]. In
addition to these criteria, in stereo mode we regard the
tracking points that have 3D points by the stereo matching
as good features to 3D track.

S

X C

Y C

Z C

X M

Y M

Z M

Pi1M

Pi3M

Pi2M

pi1C

pi3C

TiM

{ C }

{ M }

tiC
pi2C

Fig. 4. Plane Approximation. A 3D point TM
i corresponding to tC

i on
the image plane S is determined from the 3D plane Π that three 3D points
PM

i1
,PM

i2
,PM

i3
of the nearest neighboring matched SIFT points form.

When the algorithm generates tracking points, it also deter-
mines 3D reference points and saves them for the subsequent
pose estimation. In stereo mode we directly calculate the 3D
points by the stereo matching in which Sum of Absolute

Differences (SAD) stereo correlation is used. Alternatively,
in mono mode, we trickily determine 3D points from the
approximation with the 3D points of prior knowledge. The
key idea of the approximation is to treat the surface as locally
flat. Fig. 3 (c) and Fig. 4 illustrate the approximation. In
Fig. 3 (c), bold points indicate 2D KLT tracking points,
and crosses represent the matched SIFT points. Since we
already know the 3D points of the matched SIFT points
from prior knowledge, each 3D point of the tracking point
can be estimated under the assumption that the 3D tracking
point lies on the 3D plane the 3D points of the three nearest
neighboring matched SIFT points make.

Fig. 4 represents a 2D KLT tracking point tC
i , its 3D

point TM
i and 3D points PM

i1
,PM

i2
,PM

i3
of the three nearest

neighboring matched SIFT points with coordinate frames,
where the subscripts i1 , i2 , and i3 are the selected indices
from 1, 2, ...,m. First, the equation of plane Π can be written
as

ax+ by + cz + d = 0 (1)

Since our goal is determining the 3D point TM
i correspond-

ing to tC
i , we start from estimating the plane equation Eq.

1. The normal vector n of the plane can be determined as

n = (PM
i2 −PM

i1 )× (PM
i3 −PM

i1 ) (2)

where n = (a, b, c)T . The remained coefficient d of the plane
equation is then expressed as

d = −n ·PM
i1 (3)

To scrutinize the relationship between the 2D point tC
i and

the 3D point TM
i of the KLT tracking point, let’s consider

in perspective projection. Note that TM
i is in the model

coordinate frame, so we have to transform TM
i into TC

i

according to the initial pose ΦC
0 . Using the homogeneous

representation of those points, a linear projection equation
can be written asuv

1

 ∼=
wuwv
w

 =

fx 0 cx 0
0 fy cy 0
0 0 1 0



x
y
z
1

 (4)

where fx and fy represent the focal length (in pixels) in the x
and y direction respectively, TC

i = (x, y, z)T , tC
i = (u, v)T ,

and cx and cy are the principal point. Since our current goal
is determining the 3D point TC

i corresponding to tC
i , Eq. 4

can be expressed as (x, y, z) with respect to (u, v)

u =
wu

w
=
fxx+ cxz

z
= fx

x

z
+ cx

v =
wv

w
=
fyy + cyz

z
= fy

y

z
+ cy

(5)

x

z
=

1
fx

(u− cx)

y

z
=

1
fy

(v − cy)
(6)

If Eq. 1 is divided by z then the equation becomes

a
x

z
+ b

y

z
+ c+

d

z
= 0 (7)
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Fig. 5. Pose tracking results of the experiment. The results of pose and KLT tracking points are represented on the sequence of input images. Pose is
depicted as a green rectangular parallelepiped. (a) Tracking results of mono mode (b) Tracking results of stereo mode (From left to right) 2nd frame, 69th
frame, 136th frame, 203rd frame, and 270th frame.

Therefore, by applying Eq. 6 to Eq. 7 and developing, we
can get

z =
d

a
fx

(cx − u) + b
fy

(cy − v)− c

x =
z

fx
(u− cx)

y =
z

fy
(v − cy)

(8)

With Eq. 8, we can determine TC
1:n and reversely trans-

form TC
1:n into TM

1:n according to ΦC
0 . Therefore, we can

get the approximate 3D points TM
1:n corresponding to the

2D KLT tracking points tC
1:n.

E. Outlier Handling

The KLT tracking points have a tendency to drift due to
abrupt illumination change, occlusion, and aperture problem.
We regard drifting points as outliers, and try to eliminate
the outliers because they influence the accuracy of resulting
poses. We adopt RANSAC algorithm [11] to remove the
outliers during tracking. If the number of remained tracking
points is fewer than a certain number, τmono and τstereo

in mono mode and stereo mode respectively, the algorithm
goes back to the initial pose estimation and restarts the SIFT
feature matching.

IV. EXPERIMENT

In this section, we present an experimental result that
shows abilities of our method to track a 3D object. As
shown in Fig. 3 (a), the target object was a white mug
that has partial texture on the side surface, and the prior
knowledge of it was prepared in advance. The system has
been implemented in C/C++ using OpenCV and OpenGL
libraries on a modern PC (Pentium IV 2.4GHz) and a
Bumblebee R© stereo camera of the Point Grey Research Inc
with the TriclopsTMStereo SDK2. We used the stereo camera

2http://www.ptgrey.com/products/stereo.asp

as mono mode or stereo mode. Since we needed ground truth,
real trajectories of 3D pose, to evaluate tracking results, we
used an ARToolkit marker3. After estimating the pose of
the marker we transformed the pose data from the marker
coordinate system to the object coordinate system.

A. Tracking Results

Fig. 5 shows pose tracking results of the object, and the
trajectories are plotted with ground truth in Fig. 6. Note that
the positions with respect to x and y are well tracked in both
modes, while the position of z has some errors with respect to
the ground truth. In rotation, mono mode shows bigger errors
than stereo mode especially in pitch and yaw angles. Table. I
describes RMS errors for all frames of input images. In mode
mode the maximum positional errors are within about 3 cm,
and the maximum rotational errors are inside approximately
16 degrees. In stereo mode the maximum positional errors
are within about 2 cm, and the maximum rotational errors
are inside around 6 degrees.

TABLE I
RMS ERRORS OVER THE WHOLE SEQUENCE OF IMAGE.

Mono mode Stereo mode

X (cm) 1.04 0.88
Y (cm) 1.74 1.39
Y (cm) 3.10 2.02
Roll (deg) 5.50 4.78
Pitch (deg) 15.83 5.23
Yaw (deg) 16.22 5.87

B. Real-time Performance

In order to show our method is capable of being a real-time
solution, we present the computation times of the experiment.
Fig. 7 demonstrates the computation times of the proposed

3http://www.hitl.washington.edu/artoolkit/
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Fig. 6. Estimated trajectories of the object against ground truth. (a) X position (b) Y position (c) Z position (d) Roll angle (e) Pitch angle (f) Yaw angle
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Fig. 7. Computation times of the proposed algorithm on the experiment.

algorithm. The experiment takes below average 1 ms per
frame in mono mode and average 16 ms per frame in stereo
mode on a modern PC. The peak at the initial frame is caused
by SIFT feature extraction and matching.

TABLE II
COMPUTATION TIMES OF OUR ALGORITHM ON A MODERN PC, PENTIUM

IV 2.4GHZ, ON 640 × 480 IMAGES.

Mono mode Stereo mode

Image(s) acquisition 35 ms 70 ms
Stereo matching - 210 ms
Initial pose estimation (SIFT) 300 ms 300 ms
Local pose estimation (KLT) 1 ms 16 ms

Table. II describes the computational cost of each part
of the algorithm. According to the table, we know that

the initial pose estimation in mono mode and the initial
pose estimation with the stereo matching in stereo mode are
bottlenecks in our system. Since the current stereo matching
calculates all 3D points on each input frame, it takes amount
of computation. We expect a significant improvement of
computation time in the stereo matching if it calculates 3D
points only on the 2D KLT tracking points.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a method for tracking 3D
roto-translation of rigid objects using scale invariant feature
based matching and Kande-Lucas-Tomasi (KLT) tracker. The
method has two mode, mono mode using a mono camera and
stereo mode using a stereo camera. Mono mode guarantees
higher frame rate performance, and stereo mode shows better
pose results. In the initial pose estimation, our system used
prior knowledge of target objects for SIFT feature matching.
In addition, to be used in the local pose estimation, 3D
reference points are calculated by the plane approximation
in mono mode and the stereo matching in stereo mode.

Future work will be mainly focused on decreasing the
computational burden of the initial pose estimation. Our
approach using KLT tracker has to do SIFT feature extraction
and matching, which needs amount of computation, again if
the KLT tracking points are disappeared or drifted. This can
be further improved by unifying the contour based tracking
in order to generate KLT tracking points again inside the
tracking contour without SIFT feature matching. Moreover,
recent GPU-based implementation of KLT tracker and SIFT,
GPU KLT and SiftGPU, respectively, will enhance the frame
rate of our method significantly.
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