
On Cooperative Local Repair in Distributed Storage
Ankit Singh Rawat
Department of ECE

The University of Texas at Austin
Austin, TX 78712

Email: ankitsr@utexas.edu.

Arya Mazumdar
Department of ECE

University of Minnesota – Twin Cities
Minneapolis, MN 55455
Email: arya@umn.edu.

Sriram Vishwanath
Department of ECE

The University of Texas at Austin
Austin, TX 78712

Email: sriram@utexas.edu.

Abstract—Erasure-correcting codes, that support local repair
of codeword symbols, have attracted substantial attention re-
cently for their application in distributed storage systems. In this
paper we study a generalization of the usual locally recoverable
codes. We consider such codes that any small set of codeword
symbols is recoverable from a small number of other symbols.
We call this cooperative local repair. We present bounds on the
dimension of such codes as well as give explicit constructions of
families of codes. Some other results regarding cooperative local
repair are also presented, including an analysis for the Hadamard
codes.

I. INTRODUCTION

In this paper we explore a new class of codes that enable
efficient recovery from the failure (erasure) of a small number
of code symbols. In particular, we study codes with (r, `)-
locality which allow for any r failed codes symbols to be
recovered by contacting ` other intact code symbols. Our study
of such codes is motivated by their application in distributed
storage systems a.k.a. cloud storage, where information is
stored over a network of storage nodes (disks). In distributed
storage systems, one has to introduce redundancy in order to
protect the stored information against inevitable node (disk)
failures.

The traditional erasure codes are highly sub-optimal for
distributed storage setting as these codes incur high cost of
code repair [1]. Recently, multiple classes of erasure codes
have been proposed to optimize the performance of code
repair process with respect to various metrics. In particular,
the codes that minimize repair-bandwidth, i.e., the number of
bits communicated during a node repair, are studied in [1]–[4]
and references therein. Another family of erasure codes that
focus on small locality, i.e., enabling repair of single code
symbol by contacting a small number of other code symbols,
are presented in [5]–[9].

A code is said to have all-symbol locality of r if every
code symbol is a function of at most r other code symbols.
This ensures local repair of each code symbol by contacting
at most r other code symbols. In this paper we generalize the
notion of codes with all-symbol locality to codes with (r, `)-
locality: any set of ` code symbols are functions of at most r
other code symbols. This allows for cooperative local repair
of code symbols, where a groups of ` code symbols is repaired
by contacting at most r other code symbols. The approach of
cooperative code repair has been previously explored in the

context of repair-bandwidth efficient codes in [10], [11] and
references therein.

In this paper we address two important issues regarding
codes with (r, `)-locality: 1) obtaining trade-offs among min-
imum distance, dimension, and locality parameters (r, `) for
such code; and 2) presenting explicit constructions for codes
with (r, `)-locality that are close to the obtained trade-offs.
We present a formal definition of codes with (r, `)-locality in
Section II. In Section III, we obtain an upper bound on the
minimum distance of a code with (r, `)-locality which encodes
k information symbols to n symbols long codewords. We then
bound the best possible rate for a code with (r, `)-locality. In
Section IV we present two constructions for the codes that
have (r, `)-locality and comment on their rates with respect to
the bound obtained in Section III. In Section IV-D, we study
the punctured Hadamard codes (a.k.a. Simplex codes) in the
context of cooperative local repair. In Section IV-E we gen-
eralize the Partition code framework from Section IV-A. We
briefly consider the setting of random erasures in Section IV-F.

A short note on notation: we use bold lower case letters
to denote vectors. For an integer n ≥ 1, [n] denotes the set
{1, 2, . . . , n}.

II. CODES WITH (r, `)-LOCALITY

Definition 1. Let C be an (n, k) code. We call C to be an (n, k)
code with (r, `)-locality if for each S ⊂ [n] with |S| = `, we
have a set ΓS ⊆ [n]\S such that

1) |ΓS | ≤ r,
2) For any codeword c = (c1, c2, . . . , cn) ∈ C, the ` code

symbols cS := {ci : i ∈ S} are functions of the code
symbols symbols cΓS := {ci : i ∈ ΓS}.

Note that Definition 1 ensures that any ` code symbols can
be cooperatively repaired from at most r other code symbols.
This generalizes the notion of codes with all-symbol locality
r [5], [6], [12], [13], where locality is defined with respect to
one code symbol, i.e., ` = 1.

Remark 1. For a code C with all-symbol locality r, we have
the following bound on its minimum distance [5], [6].

dmin(C) ≤ n− k −
⌈
k

r

⌉
+ 2. (1)

The code attaining the bound in (1) are presented in [6]–[9]
and references therein.

III. RATE VS. DISTANCE TRADE-OFF FOR CODES WITH
(r, `)-LOCALITY

In this section, for given r and `, we present a trade-off
between the rate and the minimum distance of a code with
(r, `)-locality (cf. Definition 1). We employ the general proof
technique introduced in [5], [14], [15] to obtain the following
result.

Theorem 1. Let C be an (n, k) code (linear, or non-linear)
with (r, `)-locality. Then, the minimum distance of C satisfies

dmin(C) ≤ n− k + 1− `
(⌈k

r

⌉
− 1
)
. (2)

Algorithm: Construction of sub-code C′ ⊂ C.

Input: (n, k) code C ⊆ Fn
q with (r, `)-locality.

1: C0 = C
2: j = 0
3: while |Cj | > q` do
4: j = j + 1.
5: Choose ij1, i

j
2, . . . , i

j
` ∈ [n] such that, for every m ∈ [`],

there exist at least two codewords in Cj−1 that differ at
ijm-th coordinate.

6: Let Rj = Γ{ij1,...,i
j
`}

be the index of at most r

code symbols that cooperatively repair ` code symbols
indexed by {ij1, . . . , ij`}.

7: Let y ∈ F|Rj |
q be the most frequent element in the

multi-set {xRj
: x ∈ Cj−1 ⊂ Fn

q }.
8: Define Cj := {x : x ∈ Cj−1 ⊂ Fn

q and xRj
= y}.

9: if 1 < |Cj | ≤ q then
10: C′ = Cj .
11: end while
12: else if |Cj | = 1 then
13: Pick a maximal subset R̃j ⊆ Rj such that |C̃j | > 1,

where C̃j := {x : x ∈ Cj−1 ⊂ Fn
q ,xR̃j

= ỹj}
and ỹ j ∈ F|R̃j |

q be the most frequent element in the
multi-set {xR̃j

: x ∈ Cj−1 ⊂ Fn
q }.

14: C′ = C̃j .
15: end while.
16: end if
17: end while
Output: C′.

Fig. 1: Construction of sub-code C′ ⊂ C.

Proof: The proof involves construction of a subcode C′ ⊂
C such that all but a small number of coordinates in every
codeword of C′ are fixed. Note that we have

dmin(C) ≤ dmin(C′). (3)

Given C′, one can obtain a code C′′ with |C′′| = |C′| by
removing fixed coordinates from all the codeword in C′. This

implies that dmin(C′′) = dmin(C′), which along with (3) give
us the following.

dmin(C) ≤ dmin(C′′). (4)

We describe the construction of the subcode C′ in Fig. 1.
Before proceeding with the analysis, we argue the correctness
of the algorithm in Fig. 1. Note that it is always possible
to find ` coordinates {ij1, ij2, . . . , ij`} at line 5. When the
algorithm reaches line 5, the subcode Cj−1 has more than
q` codewords. Therefore, there must be at least ` coordinates
in the codewords in Cj−1 that are not fixed in the previous
iterations. This also implies that, for m ∈ [`],

ijm /∈ Ij−1 :=
⋃

j′∈[j−1]

(
Rj′ ∪ {ij

′

1 , . . . , i
j′

` }
)
⊂ [n]. (5)

Note that the code symbols indexed by Ij−1 are fixed in Cj−1.
Thus, we must have

Rj = Γ{ij1,...,i
j
`}
6⊂ Ij−1.

Otherwise, {ij1, . . . , ij`} would have been fixed in the previous
iterations. Assuming that the construction in Fig. 1 ends in
t-th iteration, we obtain in Appendix A that

t ≥
⌈
k

r

⌉
− 1. (6)

and

logq |C′| ≥ k − |It|+ t`. (7)

Now, we define C′′ = C′|It which denotes the code obtained
by puncturing the codewords in C′ at the coordinates associ-
ated with the set It. We have |C′′| = |C′| and dmin(C′′) =
dmin(C′). Moreover, the length of the codewords in C′′ is
n− |I`|. Next, applying the Singleton bound on C′′ gives us

dmin(C) ≤ dmin(C′′) ≤ n− |It| − logq |C′′|+ 1

≤ n− |It| − (k − |It|+ t`) + 1

= n− k − t`+ 1, (8)

It follows from (8) and (6) that

dmin(C) ≤ n− k + 1− `
(⌈k

r

⌉
− 1
)
. (9)

The analysis of the minimum distance when the construction
in Fig 1 ends at line 15 is presented in Appendix A. This
completes the proof.

Note that an (n, k) code with (r, `)-locality has its minimum
distance at least `+1 as it can recover from the erasure of any
` code symbols (cf. Definition 1). Combining this observation
with Theorem 1, we obtain the following result.

Corollary 1. The rate of an (n, k) code with (r, `)-locality is
bounded as

k

n
≤ r

r + `
. (10)

Proof: It follows from (2) and the fact dmin(C) ≥ ` + 1
that

`+ 1 ≤ dmin(C) ≤ n− k + 1− `
(⌈k

r

⌉
− 1
)
. (11)

Using
⌈
k
r

⌉
− 1 ≥ k

r − 1, we get

k + `
k

r
≤ n,

or
k

n
≤ r

r + `
.

IV. CONSTRUCTION OF CODES WITH (r, `)-LOCALITY

In this section we address the issue of constructing high
rate codes that have (r, `)-locality. In particular, we describe
two simple constructions that ensure cooperative local repair
for the failure of any ` code symbols: 1) Partition code and 2)
Product code. In Partition code, we partition the information
symbols in groups of r

` symbol and encode each group with
an (r

` +`, r`)-MDS code (cf. Section IV-A. On the other hand,
a product code is obtained by arranging k =

(
r
`

)`
informa-

tion symbols in an `-dimensional array and then introducing
parity symbols along different dimensions of the array (cf.
Section IV-B).

A. Partition Code

For the ease of exposition, we assume that `|r, r
` ≤ `,

and
(
r
`

)
|k. Given k information symbol over Fq , a Partition

code encodes these symbols into n = k r+`2

r symbols long
codewords as follows (see Fig. 2):

1) Partition k information symbols into g = k`
r groups of

size r
` each.

2) Encode the symbols in each of the g groups using an
(r
` +`, r`)-MDS code over Fq . We refer to the r+` code

symbols obtained by encoding r information symbol in
the i-th group as i-th local group.

As it is clear from the construction, Partition code has rate
k
n = r

r+`2 . Moreover, a code symbol can be recovered from
any r

` other code symbol from its local group. In the worst
case, when ` failed code symbols belong to ` distinct local
group, we can recover all ` symbols from ` r` = r code
symbols, downloading r

` symbols from each of the ` local
groups containing one failed code symbol.

B. Product Code

Product codes are a well known family of codes in the
coding theory literature. Given k =

(
r
`

)`
information symbols

and `|r, we first arrange k =
(
r
`

)`
information symbols in

an `-dimensional array with index of each dimension of the
array ranging in the set [r`]. These information symbols are
then encoded to obtain an n =

(
r
` + 1

)`
symbols long code

word. In the following we describe the encoding process for
` = 2-dimensional array (see Fig. 3). The generalization of the
encoding process for higher dimensions is straightforward.

1) Arrange k =
(
r
2

)2
information symbols in an r

2 × r
2

array.
2) For each row of the array, add a parity symbol by

summing all r
2 symbols in the row and append these

symbols to their respective rows.
3) For each of the r

2 +1 columns of the updated array, add
a parity by summing all r

2 symbols in the column.

m1 m2 · · · m r
2 pr1

m r
2
+1 m r

2
+2 · · · m2 r

2 pr2
...

...
. . .

...
...

mγ+1 mγ+2 · · · m r2

4
prr

2

pc1 pc2 · · · pcr
2

pcr
2
+1

Fig. 3: Description of Product code construction with ` =
2. {pr1, pr2, . . . , prr

2
} denote the parity nodes associated with

each row of the two dimensional array of information sym-
bols. {pc1, pc2, . . . , prr

2 +1} represent the parity symbols for the
columns of the updated array. We use γ to denote (r

2 − 1) r
2 .

C. Comparison between Partition and Product code
We now compare the rate of Partition code and Product

code with the bound in (10). For any ` ≥ 1, we have(r

r + `

)` ≤ r

r + `2
. (12)

Note that (12) follows from the fact that

r`(r+ `2) ≤ r(r` + `r`−1`) + r
(∑̀
i=2

(
`

i

)
r`−i`i

)
= r(r+ `)`.

Therefore, Partition code approach provides (r, `)-locality with
a better rate. However, for all system parameters, the rate of
Partition code is smaller than the known bound (10), i.e.,

r

r + `2
≤ r

r + `
.

Here, we would like to note that the difference between the
rate achieved by the Partition code and the bound in (10) gets
smaller as the parameter r becomes large as compared to the
parameter `. It is an interesting problem to either tighten the
bound in (10) or present a construction for codes with (r, `)-
locality which have higher rate than that of Partition code.

D. Cooperative Local Repair for Hadamard Codes
Here, we comment on the local repairability of punctured

Hadamard codes. Punctured Hadamard codes are also referred
to as Simplex codes, which are the dual codes of Hamming
codes. In particular, we show that an [n = 2k − 1, k, 2k−1]2
punctured Hadamard code has (r = ` + 1, `) locality for any
` ≤ n−1

2 . An [n = 2k − 1, k, 2k−1]2 punctured Hadamard
code encodes a k bits long message (m1,m2, . . . ,mk) to an
n = 2k − 1 codeword c = (c1, c2, . . . , cn=2k−1 such that

ci =

k∑
j=1

mjb
i
j (mod) 2.

m = (m1,m2, . . . ,mk) ∈ Fkq

m1 m2 m r
`

m r
`
+1 m r

`
+2 m2 r

`
mk− r

`
+1mk− r

`
+2 mk

(r
`
+ `, r

`
)-MDS code (r

`
+ `, r

`
)-MDS code (r

`
+ `, r

`
)-MDS code

c1 c2 c r
`

c r
`
+`

local group 1

c r
`
+`+1 c r

`
+`+2 c2 r

`
+` c2 r

`
+2`

local group 2

cτ+1 cτ+2 cn−` cn

local group g

Fig. 2: Illustration of the encoding process of Partition code.

Here bi = (bi1, b
i
2, . . . , b

i
k) ∈ Fk

2 denotes the binary represen-
tation of the integer i ∈ [2k − 1]. In an [n = 2k − 1, k, 2k−1]2
punctured Hadamard code, we have ci + c2j = ci+2j , where
1 ≤ j ≤ k − 1 and i ∈ [2j − 1]. Moreover, we note that
an [n = 2k − 1, k, 2k−1]2 punctured Hadamard code has
a particular structural property: for any 2 ≤ k̃ < k, the
prefix of length 2k̃ − 1 of each codeword is a codeword of
the [ñ = 2k̃ − 1, k̃, 2k̃−1]2 punctured Hadamard code which
encodes the message (m1,m2, . . . ,mk̃). We now present the
main result of this subsection:

Lemma 1. In an [n = 2k− 1, k, 2k−1]2 punctured Hadamard
code, any 1 ≤ ` ≤ n−1

2 erasures can be corrected by
contacting at most `+ 1 other code symbols.

Proof: We prove the Lemma by using induction over
k. For base case, we consider k = 2, where the [n = 3 =
22 − 1, 2, 2]2 punctured Hadamard code encodes the message
(m1,m2) to a codeword (c1, c2, c3) = (m1,m2,m1 +m2). In
this case any 1 ≤ ` ≤ 3−1

2 = 1 erasure can be recovered by
contacting other ` + 1 = 2 code symbols. For example, one
can recover c2 = m2 from (c1, c3) = (m1,m1 +m3).

For inductive step, we assume that the Lemma holds for
any punctured code of dimension up to k − 1. Consider the
[n = 2k−1, k, 2k−1]2 punctured Hadamard code of dimension
k, and two cases regarding the positions of ` erased code
symbols.

• Case 1: There are x ≤ 2k−2 − 1 erasures among the
first n̂ = 2k−1 − 1 code symbols. Note that the first
n̂ = 2k−1 − 1 code symbols constitute a codeword of
an [n̂ = 2k−1 − 1, k − 1, 2k−2]2 punctured Hadamard
code. Therefore, from the inductive hypothesis, one can
correct the x erasures among the first n̂ code symbols
by contacting x + 1 other code symbols out of these n̂
code symbols. Now, if the symbol c2k−1 in erasure, we
can recover it by contacting one of the unerased symbol
among {c2k−1+1, c2k−1+2, . . . , cn=2k−1} say c2k−1+j and
the corresponding code symbol cj from the first n̂ code
symbols. Now, we can repair the remaining erased sym-
bols among {c2k−1+1, c2k−1+2, . . . , cn=2k−1} from c2k−1

and the corresponding code symbol among the first n̂
code symbols. For example, if we want to recover the
symbol c2k−1+m, we can use c2k−1 and cm to reconstruct

c2k−1+m. In the worst case, we contact `+1 code symbols
during the repair of all ` erasures.

• Case 2: There are x ≥ 2k−2 erasures among the first
n̂ = 2k−1−1 code symbols. In this case, we first recover
the code symbol c2k−1 , if it is in erasure. Without loss of
generality we assume that c2k−1 is in erasure. Note that
there are n−1

2 = 2k−1 distinct pairs of code symbols
{ci, c2k−1+i}i∈[2k−1] that can recover c2k−1 . Since we
have at most n−1

2 − 1 = 2k−1 − 1 erasures apart from
c2k−1 , one of the 2k−1 pairs {ci, c2k−1+i}i∈[2k−1] must
be intact. This pair allows us to recover c2k−1 .
Now that we know the symbol c2k−1 = mk, we can
remove the contribution of mk from any of the last 2k−
1 − 2k code symbols {c2k−1+1, c2k−1+2, . . . , cn=2k−1}.
Similarly, we can add mk to any of the first n̂ = 2k−1−
1 code symbols {c1, c2, . . . , c2k−1}. Therefore, we can
reduce the Case 2 to Case 1 of the proof, and repair any
`1 erasures by contacting at most `1 + 1 code symbols.

Combining both cases completes the proof.

E. Generalization of Partition Code Approach

In the construction of the Partition codes, as described in
Section IV-A, we use an (r

` + `, r`) MDS code to encode
disjoint groups of r

` message symbols. Note that the rate of
this MDS code governs the rate of the overall code.

One can potentially use another code Clocal of minimum
distance at least `+ 1 to encode disjoint groups of r

` message
symbols. Now, we use r (x), x ∈ [`] to denote the number of
symbols that needs to be contacted to repair x erasure in one
local group. For the case when an (r

` + `, r`) MDS code is
used, we have r (x) = r

` for x ∈ [`]. Let r ∗(x) denote the
upper concave envelope of r (x) on the interval [1, `] ∈ R.
Assume that we have g disjoint local groups, then a pattern of
` erasures can be represented by a vector (l1, l2, . . . , lg). Here,
li denotes the number of erasures within i-th local group. Note
that we have

∑g
i=1 li = `.

For a given local code Clocal, one needs to access
∑g

i=1 r (li)
number of intact code symbols to repair the erasure pattern
(l1, l2, . . . , lg). Now, we use concavity of r ∗(·), the fact that
r ∗(x) ≥ r (x) for x ∈ [`], and Jensen’s inequality to obtain the

following.
g∑

i=1

r (li) ≤
g∑

i=1

r ∗(li) ≤ gr ∗
(∑g

i=1 li
g

)
= gr ∗

(`
g

)
(13)

Since the rate of the Partition code is agnostic to the number
of local groups, we can use the value of g which minimizes
the R.H.S. of (13). This approach optimizes the value of r for
a given choice of ` and Clocal.

F. Comment of Random Erasures

The constructions in Section IV-A & IV-B are designed to
allow for the cooperative local repairs in the case of adversarial
erasure patterns. One can consider the setting where erasures
occur according to a random model. Here, we briefly comment
on the setting where ` erasures are uniformly distributed
among the code symbols. Moreover, we assume r and ` to be
large enough. We consider the construction of Section IV-A,
that is, the Partition codes. In this case, with reasonably high
probability (depending on r and `), each local group (a total
g of them) experiences about t ≡ Θ

(
`
g

)
number of erasures.

Therefore, with high probability, one can perform cooperative
local repair of ` random erasures even if an

(
r
` + t, r`)-MDS

code in employed in the construction of the Partition code
(cf. Section IV-A). This translates to a coding scheme with
the overall rate of r

r+`t . One can take g large enough to
optimize this value. Indeed, using the techniques of [16], it
can be shown that, for random erasures, the partition codes
are asymptotically optimal.

REFERENCES

[1] A. Dimakis, P. Godfrey, Y. Wu, M. Wainwright, and K. Ramchandran.
Network coding for distributed storage systems. IEEE Trans. Inf. Theory,
56(9):4539–4551, 2010.

[2] K. Rashmi, N. Shah, and P. Kumar. Optimal exact-regenerating codes
for distributed storage at the MSR and MBR points via a product-matrix
construction. IEEE Trans. Inf. Theory, 57:5227–5239, 2011.

[3] I. Tamo, Z. Wang, and J. Bruck. Zigzag codes: Mds array codes with
optimal rebuilding. IEEE Trans. Inf. Theory, 59(3):1597–1616, 2013.

[4] D. Papailiopoulos, A. Dimakis, and V. Cadambe. Repair optimal erasure
codes through hadamard designs. IEEE Trans. Inf. Theory, 59(5):3021–
3037, 2013.

[5] P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin. On the locality of
codeword symbols. IEEE Trans. Inf. Theory, 58(11):6925–6934, 2012.

[6] D. Papailiopoulos and A. Dimakis. Locally repairable codes. In Proc.
of IEEE ISIT, 2012.

[7] A. S. Rawat, O. O. Koyluoglu, N. Silberstein, and S. Vishwanath.
Optimal locally repairable and secure codes for distributed storage
systems. IEEE Trans. Inf. Theory, 60(1):212–236, 2014.

[8] G. Kamath, N. Prakash, V. Lalitha, and P. Kumar. Codes with local
regeneration. CoRR, abs/1211.1932, 2012.

[9] I. Tamo and A. Barg. A family of optimal locally recoverable codes.
CoRR, abs/1311.3284, 2013.

[10] N. Le Scouarnec A.-M. Kermarrec and G. Straub. Repairing multiple
failures with coordinated and adaptive regenerating codes. In Proc.
International Symposium on Network Coding, 2011.

[11] K. W. Shum and Y. Hu. Cooperative regenerating codes. IEEE Trans.
Inf. Theory, 59(11):7229–7258, 2013.

[12] F. Oggier and A. Datta. Self-repairing homomorphic codes for dis-
tributed storage systems. In Proc. of INFOCOM, 2011.

[13] N. Prakash, G. Kamath, V. Lalitha, and P. Kumar. Optimal linear codes
with a local-error-correction property. In Proc. of IEEE ISIT, 2012.

[14] V. R. Cadambe and A. Mazumdar. An upper bound on the size of locally
recoverable codes. CoRR, abs/1308.3200, abs/1308.3200, 2013.

[15] M. Forbes and S. Yekhanin. On the locality of codeword symbols in
non-linear codes. CoRR, abs/1303.3921, 2013.

[16] A. Mazumdar, V. Chandar, and G. W. Wornell. Local recovery properties
of capacity achieving codes. In Information Theory and Applications
Workshop (ITA), 2013, pages 1–3. IEEE, 2013.

APPENDIX A
PART OF THE PROOF OF THEOREM 1

For the construction of a subcode as described in Fig. 1,
we define Aj = Ij\Ij−1 ⊆ Rj ∪ {ij1, . . . , ij`} and aj = |Aj |.
Assuming that the while loop in Fig. 1 ends with j = t, for
j ∈ [t], we have

Ij =
⋃

j′∈[j]

Aj′ ,

where we take union of the disjoint sets

Aj′ , j
′ ∈ [j].

Note that the code symbols indexed by the set {ij1, . . . , ij`}
are functions of the code symbols indexed by the set Rj =
Γ{ij1,...,i

j
`}

. Therefore, at line 7, there are at most qaj−`

possibilities for y j . This implies that

|Cj | ≥ |Cj−1|/qaj−`. (14)

The construction of the subcode C′ can end at either line 11 or
line 15. Here we anlyze only the case when the construction
ends at line 11. In this case, we have |Ct| ≤ q, or

1 ≥ logq |Ct| ≥ k −
t−1∑
j=0

(aj+1 − `) . (15)

Now, using that aj ≤ |Aj | ≤ |Rj ∪ {ij1, . . . , ij`}| ≤ r + `, we
get

k − 1 ≤
t−1∑
j=0

(aj+1 − `) ≤ tr, (16)

which gives us that

t ≥
⌈
k

r

⌉
− 1. (17)

Note that sub-code C′ = Ct. Therefore,

logq |C′| = logq |Ct|

≥ logq |C| −
t−1∑
j=0

(aj+1 − `)

= k −
t−1∑
j=0

aj+1 + t`

(a)
= k − |It|+ t` (18)

where (a) follows from the fact that It is union of the disjoint
sets Aj .

