EE5583: Homework . 10/01/2013

Total points: 37. Due date: 10/10/2013 (before class starts)

(1) Linear codes.
 (a) Suppose, the generator matrix of a q-ary $[n, k, d]$ linear code is given
 by

 $$G = [I_k \mid A],$$

 where I_k is a $k \times k$ identity matrix and A is an $k \times n - k$ matrix. Provide a
 parity check matrix for this code (remember the code is q-ary). Justify. 3
 (b) Consider the parity check matrix of the code C below:

 $$\begin{pmatrix}
 0 & 1 & 1 & 0 & 1 & 1 \\
 0 & 1 & 0 & 1 & 1 & 0 \\
 1 & 1 & 1 & 1 & 0 & 0
 \end{pmatrix}$$

 Provide the parameters $[n, k, d]$ of the code C. Is this code a perfect code? 3
 (c) Draw the standard array of the code C above. Draw the syndrome table of it. 3+2
 (d) Assume you receive the vector (111000). Decode it for the code C
 with the help of the above syndrome table. 3

(2) Finite fields.
 (a) Show that $f(x) \equiv x^4 + x^3 + 1$ is an irreducible polynomial over \mathbb{F}_2. 2
 (b) Assuming the root of $f(x)$ to be $\alpha \in \mathbb{F}_{2^4}$, construct the field \mathbb{F}_{16}
 as an algebraic extension of \mathbb{F}_2. Namely, provide the table that shows all the
 elements of the field in exponential, polynomial and vector forms. 4
 (c) Find all the cyclotomic cosets and the corresponding minimal polynomials of the field you have constructed above. 4

(3) BCH codes.
 (a) Write the binary parity check matrix of a 2-error correcting binary
 BCH code of length 15 with the help of above problem. 3
 (b) Assume, you receive the vector 111010001000011 as a result of trans-
 mission of a 2-error correcting binary BCH codeword (as above). Decode
 it. 4
 (c) If the received word is 110000000000000 then what was transmitted? 1
 (d) In the above code, find the location of the errors if the syndrome is
 10010110. 2

(4) Reed Solomon Codes.
 Design a 5-ary Reed Solomon code of length 4 and dimension 2. That is,
 write all the codewords in a table. 4