
A Random Algorithm for Semidefinite Programming Problems

Jianjun Yuan and Andrew Lamperski

Abstract— We introduce a first-order method for solving
semidefinite programming problems. This method has low com-
putational complexity per iteration and is easy to implement.
In each iteration, it alternates in two steps: gradient-descent
to optimize the objective function, and random projection
to reduce the infeasibility of the constraints. Due to its low
computational complexity per iteration, it can be scaled to
large problems. We also prove the algorithm’s convergence and
demonstrate its performance in numerical examples.

I. INTRODUCTION

Semidefinite programming (SDP) is common in both the-
ory and practical applications. Many convex problems can be
converted to SDP problems, and many non-convex problems
can be relaxed to SDP problems. For example, controller ana-
lyis and design problems including H∞ performance, passiv-
ity analysis, and multiobjective synthesis can be transformed
into SDPs [1]. Many NP-hard combinatorial optimization
problems, like Boolean least-squares and Max-Cut, can be
approximated using SDP problems by Lagrangian relaxation
[2].

There are many algorithms for solving SDP problems.
The most famous class of algorithms uses the interior-point
method [3]. The basic idea behind it is to impose some
’barrier’ function to replace the constraints, and then it solve
a sequence of unconstrainted problems by Newton’s method.
Algorithms based on Newton iteration are called “second-
order” methods, because they utilize second derivatives. The
interior-point method is efficient for small SDP problems.
However, the Newton steps become prohibitively slow as
the problem dimension increases.

More recently, first-order methods have become popu-
lar due to their scalability to larger problems. First-order
methods only rely on gradient information. For example,
the algorithm Splitting Conic Solver (SCS) [4], is a first-
order algorithm for conic programming based on the alter-
nating direction method of multipliers (ADMM) [5], [6]. In
comparison to second-order methods, the iterations of first
order methods are significantly faster, but more iterations are
required for convergence.

In this paper, we develop a randomized first-order algo-
rithm for solving semidefinite programming problems. In
each iteration, our proposed algorithm alternates in two
steps: objective function optimization by gradient-descent,
and random projection onto constraints to reduce infeasi-
bility. Random feasbility updates have long been employed
in optimization problems. For example, [7] used this idea

The authors are with the Department of Electrical and Computer
Engineering, University of Minnesota, Minneapolis, MN, USA, 55455
yuanx270@umn.edu, alampers@umn.edu

to solve the convex feasibility problems while an inexact
projection method was proposed in [8].

The main idea of our proposed algorithm comes from
the paper [9]. That work describes the general random-
ized algorithm for solving convex optimization problems.
In this work, we view the linear matrix inequality arising
in a semidefinite program as an infinite collection of linear
constraints. While [9] gives convergence theory for the case
of infinite constraints, it does not explain how to create
a practical algorithm in this case. The key challenge with
infinite constraints is selecting the constraints for projection.
This paper introduces a selection mechanism based on ap-
proximate eigenvalue computations [10].

This paper is organized as follows. The problem formula-
tion and the motivation are discussed in Section II. Section III
presents the algorithm. The convergence proof is given in
Section IV. Section V describes numerical experiments.
Finally, Section VI contains some concluding remarks.

A. Notation

If x is a random variable, its expected value is denoted
by E[x]. P (A) is the probability of event A. For matrix M ,
its transpose is denoted by MT . Sk is the set of k × k
symmetric matrices. We denote M � 0 to denote that the
matrix M is symmetric and negative semidefinite. The 2-
norm of a vector x is denoted by ‖x‖2. The distance between
a vector x and a set X is denoted by dist(x,X), and is
defined mathematically by dist(x,X) = min

y∈X
‖x− y‖2. For

a scalar g, g+ is equal to max{g, 0}.

II. PROBLEM FORMULATION AND MOTIVATION

We focus on a general semidefinite programming problem
(SDP) of the form:

min
x∈X0

cTx (1a)

s.t. M(x) = M0 + x1M1 + ...+ xnMn � 0 (1b)
Ax = b (1c)
Fx ≤ g (1d)

where the inequality � represents a linear matrix inequality
(LMI), M0, M1, . . . ,Mn ∈ Sk, A ∈ Rp×n, F ∈ Rq×n,
and x = [x1, x2, . . . , xn]T ∈ Rn. Here X0 is a convex
set. In practice, X0 will typically be Rn, but for the formal
convergence proof we will assume that X0 is a compact set.

Semidefinite programming algorithms that scale to large
problems are desirable. As discussed in the introduction,
semidefinite programming is used in applications such as
control system design [11], and combinatorial optimization

[12], [13]. Currently, semidefinite programming has several
polynomial-time algorithms [4], [14]–[16]. However, the
computational complexity per iteration is high compared
to other convex problems such as linear programming and
quadratic programming.

For the semidefinite program from (1), the iteration
complexity of an interior point method will be of order
max{nk3, n2k2} [17]. For first-order methods such as SCS,
the iteration complexity is of order max{nk2, k3}, where
nk2 term comes from forming the matrix M(x), while the
k3 term comes from computing an eigenvalue decomposition
of M(x), [4], [16]. The randomized algorithm proposed
in this paper has iteration complexity of O(nk2), where
the cost of nk2 comes from constructing M(x). We avoid
the O(k3) complexity by utilizing a randomized eigenvalue
decomposition method with iteration complexity of O(k2).

III. A RANDOM ALGORITHM

Our proposed random algorithm is an iterative method
with gradient-based updates for the objective and random
projections for the constraints.

A. Reformulating the SDP

In this subsection, we show how to reformulate the orig-
inal SDP, (1), to a problem with only linear equalities
and inequalities. Applying the definition of a linear matrix
inequality, we get the following equivalent form:

min
x∈X0

cTx (2a)

s.t. vTM(x)v ≤ 0, for all v such that ‖v‖2 = 1 (2b)
Ax = b (2c)
Fx ≤ g. (2d)

Note that for each vector v, the quadratic form can be
expressed as vTM(x)v = (pv)Tx−qv , where pvi = vTi Mivi
and q = −vTM0v. Thus, we have reduced the problem of
checking a single linear matrix inequality, M(x) � 0, to
checking an infinite number of linear inequalities. We will
see that random projection of the constraints from (2) leads to
a convergent algorithm. However, naı̈vely randomizing over
v leads to slow convergence, as most values of v will not
correspond to active constraints.

In order to get a faster algorithm, we recognize that
M(x) � 0 is equivalent to requiring that all of eigenvalues
of M(x) are non-positive. Thus, it suffices to enforce the
constraint (2b) for only the eigenvectors of M(x). Denoting
the eigenvectors by v1, . . . , vk, we see that original SDP (1)
is equivalent to

min
x∈X0

cTx (3a)

s.t. vTi M(x)vi ≤ 0, i = 1, 2, . . . , k (3b)
Ax = b (3c)
Fx ≤ g. (3d)

B. Approximate Eigenvectors

Computing the exact eigenvectors of M(x) is computa-
tionally expensive. This subsection describes a variant of
Oja’s algorithm [10] to compute approximate eigenvectors
of a constant matrix M ∈ Sk. While the original theory
from [10] requires distinct eigenvalues, we will sketch how
that assumption can be relaxed. Later, we will incorporate
this procedure into a general semidefinite programming
algorithm. The procedure will converge to a collection of
eigenvectors, vi such with eigenvalues are ordered as:

λ1 ≥ λ2 ≥ · · · ≥ λk. (4)

Initialization: Initialize a random guess for the eigenvec-
tors:

V 0 =
[
v01 v02 · · · v0k

]
Here the vectors v0i are distributed independently and

uniformly over the unit sphere so that ‖v0i ‖2 = 1.
Vector Selection: At step t ≥ 1, we randomly select one

of the vectors vt−1i to update. Convergence is guaranteed as
long as all of the vectors have a positive probability of being
selected. For the application of semidefinite programming,
we are interested in testing if M � 0, and thus it is important
to get an accurate estimate of the highest eigenvalues. In
order to emphasize the higher eigenvalues, we compute the
approximate eigenvalues as:

λt−1i = (vt−1i)TMvt−1i . (5)

Then we select the vector vt−1i with probability proportional
to eλ

t−1
i /τ , where τ > 0 is a temperature parameter.

Vector Update: The selected vector vt−1i is updated as
follows:

Set U =

{[
vt−11 vt−12 · · · vt−1i−1

]
if i > 1

0 otherwise
(6a)

Set v = vt−1i − U(UT vt−1i) (6b)
Set v = v + βtMv (6c)

Set vti =
v

‖v‖2
(6d)

Here βt is a step size parameter which satisfies
∑∞
t=1 βt =

∞ and
∑∞
t=1 β

2
t <∞.

The other vectors are updated as vt−1j = vtj . The approx-
imate eigenvalues are updated by using (5) for the selected
index, i, and setting λtj = λt−1j for all of the other indices.

Proposition 1: With probability 1, the vectors vti converge
to an orthogonal collection of eigenvectors of M as t→∞
with corresponding eigenvalues ordered as in (4). Further-
more, each iteration has complexity O(k2).

Proof Sketch: Based on standard results of stochastic
approximation, [18], the step-size choice ensures that vt1 con-
verges to limσ→∞

eMσv01
‖eMσv01‖2

. Recall that v01 was uniformly
distributed over the unit sphere. Thus, with probability 1
the projection of v01 onto the the eigenspace of the highest

eigenvalue, λ1 is non-zero. Thus, with probability 1, vt1
converges to a vector in this eigenspace.

Now assume inductively that for i ≥ 2, vt1, . . . , v
t
i−1 con-

verge to eigenvectors v1, . . . , vi−1. The projection operation
from (6b) ensures that vti will converge to limσ→∞

eMσv
‖eMσv‖2 ,

for some v which is orthogonal to v1, . . . , vi−1. The random
initialization ensures that with probability 1, vti has a non-
zero projection onto the eigenspace of λi. It follows that vti
converges to an eigenvector vi corresponding to λi.

The iteration complexity is bounded by O(k2), based on
observation of the matrix-vector multiplications from (6).

C. Algorithm Overview

The pseudocode for the algorithm is shown in Algorithm 1.
The steps of the algorithm will be described in detail below.

Algorithm 1 A Random Algorithm for solving SDP
1: Initialize x0 = 0, and initialize V 0 randomly
2: for t = 1,2,... do
3: Do the gradient step from (9)
4: Implement randomized constraint selection
5: if An equality constraint is selected then
6: Do the projection as in (11)
7: else if An inequality constraint is selected then
8: Do the projection as in (12)
9: else

10: Randomly select an approximate eigenvector vt−1i

11: Update vt−1i as in (6)
12: Randomize vti as in (14)
13: Do the projection as in (13)
14: end if
15: end for

Step-size Parameters: In the algorithm, αt and βt are
step-size parameters. For convergence purposes, the step-size
parameters are chosen so that

∞∑
t=1

αt =∞,
∞∑
t=1

βt =∞, (7)

∞∑
t=1

(α2
t + β2

t) <∞, lim
t→∞

βt
αt

=∞ (8)

In the implementation, we used αt = 1
t and βt =

1
t0.51 . The ratio requirement βt/αt →∞ enables time-scale
separation argument, as in [19]. In particular, the dynamics
of the approximate eigenvectors vti will proceed faster than
those of xt and zt. Thus, for large t, it can be assumed that
vti are approximately equal to eigenvectors of M(zt).

Gradient Step: The gradient step to optimize the objective
function cTx is given by:

zt = ΠX0 [xt−1 − αtc] (9)

where xt−1 is the result of (t − 1)-th outer-loop iteration.
Here, the projection operation is defined by:

ΠX0
[y] = arg min

z∈X0

‖z − y‖. (10)

If X0 = Rn, then the projection operation has no effect.
However, for the sake of the convergence proof, X0 is
assumed to be compact with an easily computable projection.
For example, X0 could be taken to be a large box or large
ball. This will be discussed more in Section IV.

After we obtain the intermediate point zt, we project
onto a randomly selected constraint. We first describe the
projections, and then describe constraint selection methods.

Constraint Projections: Each row of the equality con-
straint Ax = b takes the form aTi x = bi. The projection
onto the set Xi = {x | aTi x = b} is given by

xt =

{
zt − aTi zt−bi

‖ai‖22
ai if aTi zt 6= bi

zt otherwise
(11)

Similarly, each row of the inequality constraint corre-
sponds to a single inequality, fTi x ≤ gi. In this case, the
projection onto the set {x | fTi x ≤ gi} is given by

xt =

{
zt − fTi zt−gi

‖fi‖22
fi if fTi zt > gi

zt otherwise
(12)

The algorithm maintains a collection of approximate
eigenvectors of M(xt) given by vti for i = 1, . . . , k. The
corresponding constraint has the form (vti)

TM(x)vti ≤ 0.
Recall from Subsection III-A that this constraint is equivalent
to a linear inequality of the form (pv

t
i)Tx ≤ qvti . Projecting

onto this constraint works the same way as (12):

xt =

zt −
(pv

t
i)T zt−qv

t
i

‖pv
t
i ‖22

pv
t
i if (pv

t
i)T zt − qv

t
i > 0

zt otherwise
(13)

Constraint Selection: The theory below ensures that the
algorithm will converge as long as each constraint is selected
with probability above a positive constant. Here we sketch
some heuristics which speed performance in practice while
satisfying the convergence requirements. For this discussion,
recall that zt is the value of the solution before projection
and xt is the value after projection.

The LMI constraint projection from (13) does not ensure
that M(xt) � 0. Repeated application of lines 10 – 13 will
converge to a solution with M(xt) � 0. Thus, if we find
that (vti)

TM(zt)v
t
i > 0, we select the LMI again on the

next iteration, with high probability.
To reduce effort wasted on inactive constraints, we pref-

erentially select constraints which change the solution. For
each constraint, we maintain a running average of how much
the projection changed the solution, denoted by dtj . We select
values with higher dtj values more often, while ensuring that
all constraints are selected with positive probability.

Randomizing the eigenvectors: For the formal conver-
gence proof below, a small amount of randomness must
be added to the approximate eigenvectors, on occasion. In
particular, with some small probability,

vti =
vti + εw

‖vti + εw‖2
. (14)

Here ε is a small constant and w is uniformly distributed
over the unit sphere.

IV. CONVERGENCE

This section proves convergence of our algorithm. In this
section Xsdp will denote the set defined by the constraints
of (1). We assume that the following hold.

Strict Feasibility: The inequality and LMI constraints
from (1) are strictly feasible.

Compactness: The set X0 is compact.
Strict feasibility is a common assumptions, as it allows

standard constraint qualifications [17]. In most applications,
X0 = Rn is the most natural choice. However, the perfor-
mance of the algorithm will not be altered significantly if we
set X0 to be a very large box or ball.

To prove convergence, we show that the required as-
sumptions from [9] are satisfied by the current problem. To
describe these assumptions, we first present some notation.
Collect all the variables xt, vti , and λti (along with auxiliary
variables, such as dti used in the constraint selection process)
into a single vector wt. Let hwt(x) be the constraint applied
at step t: hwt(x) = aTi x − bi, fTi x − bi, or (vti)

TM(x)vti .
The assumptions from [9] are:

Assumption 1:
• X0 is non-empty, closed, and convex
• The objective function and all constraint functions are

convex on X0

• The subgradients of the constraint functions are uni-
formly bounded on X0

Assumption 2: There exists a constant γ > 0, such that

dist2(x,X) ≤ γE
[
(h+wt(x))2 | Ft−1

]
for all x ∈ X0 and t ≥ 1. Here, Ft−1 is the sigma-field
generated by all of the variables of the algorithm, wk, up to
time t− 1.

The main challenge is proving Assumption 2, which will
be aided by two lemmas. The first lemma is drawn from the
proof of Proposition 8 in [20].

Lemma 1: Suppose X0, X1,. . . , XN are finitely many
closed convex sets such that X = ∩iXi 6= ∅ is strictly
feasible and compact. Then there exists ξ > 0, such that
dist2(x,X) ≤ ξmax

i≥1
dist2(x,Xi), ∀x ∈ X0.

Note that if we assume that X0 is compact, then we can
assume without loss of generality that the set Xsdp defined
by the constraints of (1) is also compact. Thus, the following
lemma, equivalent to Corollary 8 of [21], can be applied.

Lemma 2: If Xsdp is a compact set defined by an LMI,
Xsdp = {x | M(x) � 0}, then there is a constant κ ≥ 0
such that for all x ∈ Rn,

dist(x,X) ≤ κ max
‖v‖=1

(vTM(x)v)+. (15)

Proposition 2: Assumption 2 holds for Algorithm 1.
Proof: Analysis of the algorithm shows that wt forms

a Markov chain, so that wt only depends on wt−1. Thus,
E
[
(h+wt(x))2 | Ft−1

]
= E

[
(h+wt(x))2 | wt−1

]
.

It was shown in [9] that Assumption 2 holds for finite
number of linear equalities and inequalities, i.e. polyhedral

sets. Thus, Lemma 1 implies that without loss of generality,
we can consider the case of a constraint set given by Xsdp =
{x | M(x) � 0} = {x | vTM(x)v ≤ 0,∀ ‖v‖2 = 1}.
Indeed, once Assumption 2 is proved for LMIs, Lemma 1
can be used to prove the general case by intersecting the
LMI set with the polyhedral constraint set.

Lemma 2 implies that P (2κh+wt(x) ≥ dist(x,X)|wt−1) >
0 for all x and all wt−1. Indeed, positivity of the event then
holds by continuity of hwt(x) with respect to vti and the
fact that all points on the sphere have non-zero density of
selection, due to (14). Note that uniform randomness from
(14) ensures that the probability is continuous with respect
to wt−1 and x. Thus, compactness of X0 and the set of wt−1
will result in P (2κh+wt(x) ≥ dist(x,X)|wt−1) ≥ η > 0, for
some constant η. It follows that

4κ2E
[
(h+wt(x))2|wt−1

]
≥ ηdist(x,X)2. (16)

Thus Assumption 2 holds for a single LMI constraint, and
as discussed above this completes the proof.

We are now ready to prove convergence of the algorithm.
Theorem 1: Assume that the problem (1) has a nonempty

optimal set X∗. Then the iterates xk generated by Algorithm
1 converge almost surely to some random point in X∗.

Proof: In order to prove almost sure convergence, it
suffices to show that our proposed algorithm satisfies the
assumptions made in [9]. First, the step-size conditions on
αk from (7) satisfy the standard stochastic approximation
assumptions, as required in [9].

Now Assumption 1 will be shown. The first and second
items hold by assumption. For the third item, note that all of
the constraints are differentiable. Thus, the subgradients are
just the gradients. Boundedness of the gradients occurs by
compactness of X0 and the unit sphere of {v | ‖v‖2 = 1}.

Finally, Assumption 2 is proved in Proposition 2. Thus,
all of the assumptions required for convergence in [9] are
satisfied, which completes the proof.

V. NUMERICAL EXAMPLES

In this section, we will use four examples to show our
proposed algorithm’s effectiveness and efficiency in solving
SDP problems. Note that in our implementation, we set X0 to
be Rn, which does not satisfy the compactness assumption.
However, our algorithm still works in practice.

Example 1: Calculating the H∞ norm
Consider a linear system with state space representation:

ẋ = Ax+Bw
z = Cx+Dw

(17)

According to [22], when A is stable, the H∞ norm is can
be computed from the following SDP:

min
P,r

r

s.t.

ATP + PA PB CT

BTP −rI DT

C D −rI

 ≺ 0

P � 0

(18)

0 200 400 600 800 1000
of Steps

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

H
∞

 V
al

ue

Algorithm Trajectory
Optimal Value

Fig. 1. H∞ value trajectory

We tested our proposed algorithm using the state space

matrices: A =

−1 0 0
2 −5 0

1.5 3 −0.5

, B =

1
0
1

, C =[
0 1 0

]
, D =

[
2
]
.

Our proposed algorithm’s objective value trajectory is
shown in Figure 1. From that figure, we can see that our
proposed algorithm can converge to the optimal value in a
reasonable number of iterations.

Example 2: Boolean Least-Squares Consider the
Boolean least-squares problem defined by:

min ‖Ax− b‖22
s.t. x2i = 1, i = 1, . . . , n

(19)

According to [2], this non-convex problem is NP-hard. One
efficient way to deal with such problems is to do the
Lagrangian Relaxation, which produces the following SDP:

minX,x Tr(ATAX)− 2bTAx+ bT b

s.t.

[
X x
xT 1

]
� 0, Xii = 1, i = 1, . . . , n

(20)

Because the above SDP formulation removes the non-convex
constraint for the X , it only provides the lower bound.

In our test, the 30 × 15 matrix A and 30 × 1 vector
b are generated by a Gaussian distribution with zero mean
and identity covariance. Our proposed algorithm gives the
objective trajectory shown in Figure 2. From that figure, we
can see that our proposed algorithm can reach to the optimal
value, and then it stays near the optimal value. After that,
we use the randomization method of [2] to obtain the ’best’
feasible point with 1000 trials. The randomized feasible
solution obtained from both our solver and the existing SDP
solver gives an objective value of 158.93.

Example 3: Max-Cut
Consider the following problem:

max xTWx
s.t. x2i = 1, i = 1, . . . , n

(21)

where W is a symmetric matrix with Wii = 0 and Wij ≥ 0.
Following the same argument with Lagrangian Relaxation

as in Example 2, Problem (21) can be reformulated as an

0 2000 4000 6000 8000 10000
of Steps

−2000

−1800

−1600

−1400

−1200

−1000

−800

−600

−400

−200

Ob
jec

tiv
e V

alu
e

Algorithm Trajectory
Optimal Value

Fig. 2. Boolean Least-Squares SDP formulation objective value trajectory

0 1000 2000 3000 4000 5000
of Steps

−100

−90

−80

−70

−60

−50

−40

−30

−20

Ob
jec

tiv
e V

alu
e

Algorithm Trajectory
Optimal Value

Fig. 3. Max-Cut SDP formulation objective value trajectory

SDP as below:
min −Tr(WX)
s.t. X � 0, Xii = 1, i = 1, . . . , n

(22)

In our test, the 20 × 20 matrix W is generated by Gaussian
distribution with zero mean and identity covariance. We use
our proposed algorithm to solve the Problem (22), which
gives the objective trajectory as shown in Figure 3. From
that figure, we can see that our proposed algorithm reaches
and stays near the optimal value. After that, we use the
randomization method of [2] to obtain the ’best’ feasible
point with 1000 trials. The randomized feasible solution
obtained from both our solver and the existing SDP solver
gives an objective value of 352.

Example 4: Solver comparison
To compare solvers, we used random SDPs of the form:

min
x

cTx

s.t. M0 + x1M1 + ...+ xnMn � 0[
b xT

x I

]
� 0

(23)

where M0, M1, . . . , Mn ∈ Sn, x = [x1, x2, . . . , xn]T , b is
a scalar, and I is the n × n identity matrix.

For i = 1, . . . , n, the matrix Mi was generated as Mi =
H + HT , where H is a matrix with entries distributed
according to a standard Gaussian. The matrix is set to
M0 = λI , where λ is chosen so that the LMI is feasible for

0
100
200
300
400
500
600
700

T
im

e
 (

s)
CVXOPT - 100 iter.

SCS - 2500 iter.

Randomized - 50,000 iter.

160 180 200 220

variable dimension

0
5

10
15
20
25
30
35

%
 E

rr
o
r

Mean % Error

Median % Error

Fig. 4. Comparison of SDP solvers. The top graph shows the running time.
The markers denote the mean running time of 10 instances, while the error
bars denote ± one standard deviation. The bottom graph shows the percent
error. Here the mean error is significantly higher than the median error,
indicating that the error is domininated by relatively rare but significant
errors in the solution.

a randomly generated gaussian vector x̂. The matrix c has
entries generated by a standard Gaussian. Finally, b = 50a2,
where a is a standard Gaussian.

Figure 4 shows the comparison of our algorithm with
CVXOPT and SCS, for dimensions 160, 180, 200, and
220. For each dimension, 10 random instances were solved.
Examining the figure, we see that our algorithm can perform
significantly more iterations in the same running time as
CVXOPT and SCS. Also, our algorithm shows better scaling
with problem dimension.

However, we can see that our algorithm is occasionally
prone to making large errors. Here percent error was calcu-
lated as

%Error = 100× |valours − valCVXOPT |
|valCVXOPT |

.

In other words, we used CVXOPT as a “ground-truth” to
estimate the accuracy of our method. Note that there is a
wide gap between the mean percent error and the median.
Here the median value was always very low. This indicates
that the algorithm was typically accurate, but a small number
of inaccurate solutions produce an overall high mean error.
These errors could be reduced by increasing the iterations.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a first-order randomization-based
algorithm to solve the SDP problems. The general algorithm
is simple to implement, and can flexibly incorporate various
heuristic schemes to improve performance. In particular,
the randomized selection schemes admit a wide variety of
choices that all lead to a convergent algorithm. The algorithm
was tested on a variety of practical examples, showing
promising performance.

Future work will proceed along several directions. 1.
Larger experiments will be done to compare with different
SDP solvers. 2. Extensions to more general convex objective

functions seems straightforward. 3. Here, the convergence
proofs are asymptotic. Non-asymptotic convergence results
would be useful for practical analysis of the method.

REFERENCES

[1] C. Scherer, P. Gahinet, and M. Chilali, “Multiobjective output-
feedback control via lmi optimization,” IEEE Transactions on auto-
matic control, vol. 42, no. 7, pp. 896–911, 1997.

[2] A. d’Aspremont and S. Boyd, “Relaxations and randomized methods
for nonconvex qcqps,” EE392 Class Notes, Stanford University, no. 1,
pp. 1–16, 2003.

[3] Y. Nesterov and A. Nemirovskii, Interior-point polynomial algorithms
in convex programming. SIAM, 1994.

[4] B. O’Donoghue, E. Chu, N. Parikh, and S. Boyd, “Conic optimization
via operator splitting and homogeneous self-dual embedding,” Journal
of Optimization Theory and Applications, vol. 169, no. 3, pp. 1042–
1068, 2016.

[5] D. Gabay and B. Mercier, “A dual algorithm for the solution of
nonlinear variational problems via finite element approximation,”
Computers & Mathematics with Applications, vol. 2, no. 1, pp. 17–40,
1976.

[6] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction
method of multipliers,” Foundations and Trends R© in Machine Learn-
ing, vol. 3, no. 1, pp. 1–122, 2011.

[7] B. Polyak, “Random algorithms for solving convex inequalities,”
Studies in Computational Mathematics, vol. 8, pp. 409–422, 2001.

[8] U. M. Garcı́a-Palomares and F. J. González-Castaño, “Incomplete
projection algorithms for solving the convex feasibility problem,”
Numerical Algorithms, vol. 18, no. 2, pp. 177–193, 1998.

[9] A. Nedić, “Random algorithms for convex minimization problems,”
Mathematical programming, vol. 129, no. 2, pp. 225–253, 2011.

[10] E. Oja and J. Karhunen, “On stochastic approximation of the eigenvec-
tors and eigenvalues of the expectation of a random matrix,” Journal
of mathematical analysis and applications, vol. 106, no. 1, pp. 69–84,
1985.

[11] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear matrix
inequalities in system and control theory. SIAM, 1994.

[12] M. X. Goemans and D. P. Williamson, “Improved approximation algo-
rithms for maximum cut and satisfiability problems using semidefinite
programming,” Journal of the ACM (JACM), vol. 42, no. 6, pp. 1115–
1145, 1995.

[13] Z.-Q. Luo, W.-K. Ma, A. M.-C. So, Y. Ye, and S. Zhang, “Semidefinite
relaxation of quadratic optimization problems,” IEEE Signal Process-
ing Magazine, vol. 27, no. 3, pp. 20–34, 2010.

[14] F. Alizadeh, “Interior point methods in semidefinite programming
with applications to combinatorial optimization,” SIAM journal on
Optimization, vol. 5, no. 1, pp. 13–51, 1995.

[15] M. Grötschel, L. Lovász, and A. Schrijver, “The ellipsoid method
and its consequences in combinatorial optimization,” Combinatorica,
vol. 1, no. 2, pp. 169–197, 1981.

[16] Z. Wen, D. Goldfarb, and W. Yin, “Alternating direction augmented
lagrangian methods for semidefinite programming,” Mathematical
Programming Computation, vol. 2, no. 3, pp. 203–230, 2010.

[17] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[18] H. Kushner and G. G. Yin, Stochastic approximation and recursive
algorithms and applications, vol. 35. Springer Science & Business
Media, 2003.

[19] V. S. Borkar, “Stochastic approximation with two time scales,” Systems
& Control Letters, vol. 29, no. 5, pp. 291–294, 1997.

[20] A. Nedić, “Random projection algorithms for convex set intersection
problems,” in Decision and Control (CDC), 2010 49th IEEE Confer-
ence on, pp. 7655–7660, IEEE, 2010.

[21] A. Jourani and J. Ye, “Error bounds for eigenvalue and semidefinite
matrix inequality systems,” Mathematical programming, vol. 104,
no. 2-3, pp. 525–540, 2005.

[22] P. Gahinet and P. Apkarian, “A linear matrix inequality approach to
h∞ control,” International journal of robust and nonlinear control,
vol. 4, no. 4, pp. 421–448, 1994.

