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Abstract— Policy gradient algorithms are useful reinforce-
ment learning methods which optimize a control policy by per-
forming stochastic gradient descent with respect to controller
parameters. In this paper, we extend actor-critic algorithms by
adding an `1 norm regularization on the actor part, which
makes our algorithm automatically select and optimize the
useful controller basis functions. Our method is closely related
to existing approaches to sparse controller design and actuator
selection, but in contrast to these, our approach runs online
and does not require a plant model. In order to utilize `1 regu-
larization online, the actor updates are extended to include an
iterative soft-thresholding step. Convergence of the algorithm
is proved using methods from stochastic approximation. The
effectiveness of our algorithm for control basis and actuator
selection is demonstrated on numerical examples.

I. INTRODUCTION

Reinforcement learning is a class of online algorithms in
which an agent learns to make optimal decisions through
trial-and-error interactions with a dynamic environment [1]
[2]. Many algorithms have been proposed for this problem,
including actor-only methods [3] [4], critic-only methods [5]
[6], and actor-critic algorithm [7] [8].

In actor-critic methods, the actor performs a stochastic gra-
dient descent using gradient estimates computed by the critic.
The result that enables the gradient estimation is known as
the policy gradient theorem [9], which demonstrates that the
gradient with respect to control policy parameters may be
computed from the state-action value function. This function
is closely related to the cost-to-go function from classical
dynamic programming.

In policy gradient methods, such as actor critic algorithms,
it is commonly assumed that the control action is computed
from a linear combination of basis functions [10]. In linear
quadratic Gaussian control, it is sensible to let the basis
functions be linear in the state. However, for non-linear
or non-Gaussian control, the selection of a good choice of
basis function is not obvious, and requires extra insight into
the problem. In order to automate the process of controller
parameterization, we pose the problem of control basis
selection, which aims to choose a small collection of basis
functions for control. This problem is closely related to the
feature selection problem, commonly studied in statistics and
machine learning [11]–[13]. In reinforcement learning, regu-
larization has been used to compute sparse state-action value
/ cost-to-go functions [11] [14]. In actor-critic terminology,
these methods focus on designing a sparse critic, while the
current paper focuses on designing a sparse actor.
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The control basis selection problem studied in this paper
is closely related to methods for designing sparse linear
controllers [15]. As in our work, sparse design is achieved
by `1 regularization. Other closely related problems involve
sensor and actuator selection [16]–[20]. Sensor or actuator
selection can be achieved via a sum-of-norms regularization
which can be used to drive entire rows or columns of gain
matrices to zero. We demonstrate that our control basis
selection framework also extends to the actuator selection
problem.

All of the methods including sparse design, actuator selec-
tion, or controller selection require a system model [15]–[20].
In this paper, we propose an online, model-free approach
to sparse design and actuator selection. The method can be
applied to to find locally optimal solutions for nonlinear and
non-Gaussian systems.

To achieve online regularization for the actor critic meth-
ods, we utilize iterative soft-thresholding [21] over the con-
troller parameters. In general, the controller parameters con-
verge to values near a local minimum. Convergence is proved
using stochastic approximation methods [22] analogous to
those from [23].

A. Notation

If x is a random variable, its expected value is denoted
by E[x]. If M is a matrix, its transpose is denoted by MT ,
and M > 0 means M is postive definite matrix. The gradient
with respect to a vector θ is denoted by ∇θ. For a vector x,
its i-th item is denoted by [x]i.

II. PROBLEM FORMULATION AND MOTIVATION

Consider an average cost-per-stage stochastic control prob-
lem problem [24], [25]:

min
θ∈Θ

J(θ) = lim
N→∞

1
NE[

∑N−1
k=0 r(xk, uk)]

s.t. xk+1 = f(xk, uk, wk)
uk = g(θ, xk, vk)

(1)

where xk is the state, uk is the input, wk is independent,
identically distributed (iid) process noise and vk is iid
exploration noise.

Typically, the input function has the form

g(θ, xk, vk) =

q∑
i=1

ψi(xk, vk)θi. (2)

The functions ψi are called basis functions, and θ is the
parameter vector. Possible choices of basis functions include
linear functions, sigmoids, and Gaussian radial basis func-
tions. The set of allowable parameter variables is given by Θ.



We will assume that Θ is the Cartesian product of compact
intervals

Θ = [a1, b1]× [a2, b2]× · · · × [aq, bq]. (3)

Note that if the system dynamic equation is linear-time-
invariant (LTI), which can be described as xk+1 = Axk +
B1uk + B2wk, this will become the traditional infinite-
horizon LQR problem, which has closed-form solution as
a linear relation between uk and xk1.

Note that in (1), the state and input functions implicitly
induce probability densities of the form p(xk+1|xk, uk) and
πθ(uk|xk). Thus, the problem can be interpreted as a Markov
decision process (MDP), as studied in reinforcement learning
[2].

Standard ergodicity assumptions [26] guarantee that xk
converges to a stationary distribution, which we will denote
by dθ(x). In particular, if the state space is finite, then it
suffices that the Markov chain be irreducible and aperiodic.
If the dynamic system and controller are linear, it suffices
that the system be controllable via the noise inputs.

In the case that the xk converges to a stationary distribu-
tion for each θ ∈ Θ, our original problem can be described
as the following simple form:

min
θ∈Θ

J(θ) =

∫
dθ(x)

∫
πθ(u|x)r(x, u)dxdu. (4)

For the control basis selection problem, we aim to select
a small number of parameters that can be used to achieve
good control performance. In other words, we aim to make
J(θ) small using a vector θ which is as sparse as possible.
The trade-off between control performance and parameter
sparsity motivates the following modified objective:

min
θ
J(θ) + λ ‖θ‖1 (5)

where ‖�‖1 represents the `1-norm.
The ideal sparsity penalty is the `0-norm, which counts the

number of non-zeros. However, minimizing the `0 norm is
NP hard [27], and computationally intractable for large-scale
problems. Thus, `1-norm constraint is introduced to replace
the `0-norm, and it has been proved in [28] [29] that `1-
norm minimization is equivalent to the `0 minimization with
high probability under some technical conditions. In the next
section, we will show the details on how to solve this `1-
norm regularized average cost-per-stage reinforcement learn-
ing problem using a novel regularized actor-critic algorithm.

III. REGULARIZED ACTOR-CRITIC ALGORITHM AND ITS
CONVERGENCE

If J(θ) is convex in θ, the problem can be solved by the
Iterative Soft-Thresholding Algorithm, which is proved to
converge in [21]. The algorithm is outlined in Algorithm 1.

But for our concerned problem (5), we cannot apply the
above algorithm directly, because we are assuming no plant
model. In particular, J(θ) and its gradient cannot be directly
computed without a model.

1This assumes that the constraint set Θ is sufficiently big to contain the
optimal controller.

Algorithm 1 Algorithm to solve problem (5) with convex
J(θ) and no constraint

Initialize θ0, µ < 1
L where L is the Lipschitz constant of

∇θJ
while not converge do

1. zk = θk−1 − µ∇θJ(θ
k−1);

2. [θk]i = [zk]i − µλ, if [zk]i ≥ µλ;
3. [θk]i = [zk]i + µλ, if [zk]i ≤ −µλ;
4. [θk]i = 0, otherwise;

end while

However, we will see that Algorithm 1 can be combined
with policy gradient methods to solve problem (5), using
approximate gradients. Previous work [9] has shown that
under ergodicity assumptions, the gradient is given by:

∇θJ(θ) =

∫
dθ(x)

∫
∇θπθ(u|x)Qθ(x, u)dxdu. (6)

Here Qθ(x, u) is called the differential action-value function
and is defined as:

Qθ(x, u) =

∞∑
k=0

E[r(xk, uk)− J(θ)|x0 = x, x0 = x, θ] (7)

From [30], the gradient of the average cost can also be
written as:

∇θJ(θ) =

∫
dθ(x)

∫
∇θπθ(u|x)[Qθ(x, u)± b(x)]dxdu.

(8)
where b(x) is any function of the state only. The reason is
from the following equation:∫

∇θπθ(u|x)du = ∇θ

∫
πθ(u|x)du = ∇θ1 = 0 (9)

As is shown in [23], to obtain the minimum variance
baseline of the estimated gradient, b(x) can be set to be
equal to Vθ(x) =

∫
π(u|x)Qθ(x, u)du.

Define the advantage function, by Aθ(x, u) =
Qθ(x, u) − Vθ(x). Using the identity, ∇θπθ(u|x) =
πθ(u|x)∇θ log πθ(u|x), the gradient has the following form:

∇θJ(θ)=

∫
dθ(x)

∫
πθ(u|x)∇θ log πθ(u|x)Aθ(x, u)dxdu

(10)
It follows that for a fixed value of θ, ∇θ log πθ(a|s)Aθ(s, a)
is an unbiased estimate of the gradient ∇θJ(θ).

The lemma below shows how to estimate the advantage
function Aθ(s, a) from the critic part as shown in [23].

Lemma 1: Let Ĵk+1 and V̂ (x) be unbiased estimates of
J(θ) and Vθ(x), respectively. Define the temporal difference
error by

δk = r(xk, uk)− Ĵk+1 + V̂ (xk+1)− V̂ (xk) (11)

Under the given policy πθ, we have

E[δk|xk, uk, θ] = Aθ(xk, uk) (12)
The proof can be found in [23]. With the Lemma 1, we
can get an unbiased estimate of the gradient to be equal to
∇θ log πθ(uk|xk)δk.



The term ∇θ log πθ(uk|xk) can be calculated, because we
know the current state xk, the current action uk, and the
policy configuration parameterized by θ.

For the temporal difference error δk, we need to know
r(xk, uk), and estimate J(θ) and V (x). The term r(xk, uk)
is the known single stage cost. The cost J(θ) can be
estimated by taking averages of the single-stage cost.

The biggest estimation challenge is for the state-value
function V . For this term, we utilize function approximation.
As in [31], we use linear basis expansion Vθ(x, v) ≈ vTφ(x).
If the state space is finite, with n states, this can also be
written as Vθ(v) ≈ Φv, where Φ is an n × d matrix whose
kth column (k = 1, 2, ..., d) is φ(k).

The parameter vector v is estimated through the tempo-
ral difference learning which is updated in the critic part.
Interested readers can refer to [2] for more technical details.

For the learning algorithm, let αk, βk, and ηk be step sizes
that satisfy the same requirements as in [23].

The incremental regularized actor-critic algorithm that is
used to solve our problem is summarized in Algorithm 2.

The function Γi clips the value to remain in the interval,
[ai, bi] as required from (3).

The critic update part in Algorithm 2 can alternatively
utilize least-squares temporal difference learning, as in [32]
[33]. Due to space limits, we omit the details on this
variation.

Algorithm 2 Incremental Regularized Actor Critic Algo-
rithm

Initialize state x0 from p(x0), function approximation
parameter v0, policy parameter θ0, and the eligibility
vector χ0 = 0
Initialize step sizes α0, β0, η0, the decay parameter γ, and
the sparsity regularization parameter λ
for k = 0,1,2,... do

1. Obtain the action uk from g(θk, xk, vk);
2. Observe the next state xk+1 from f(xk, uk, wk);
3. Observe the single stage cost rk = r(xk, uk);
4. Average cost update: Jk+1 = (1− ηk)Jk + ηkrk;
5. Calculate the Temporal Difference error: δk = rk −
Jk+1 + vTk φ(xk+1)− vTk φ(xk);
6. Critic update:
vk+1 = vk + αkδkχk;
Eligibility vector update: χk+1 = γχk + φ(xk);

7. Actor update: y = θk − βk∇θ log πθ(uk|xk)δk,

[θk+1]i =


Γi

(
[y]i − λβk

)
if [y]i ≥ λβk

Γi

(
[y]i + λβk

)
if [y]i ≤ −λβk

0 otherwise

end for

IV. CONVERGENCE

This section discusses convergence of the algorithm. For
simplicity, our convergence proof focuses on the finite state

case. Thus, we will use sums instead of integrals to empha-
size the distinction. Extension to the general case should be
possible using methods from [26], [34]. Before presenting
the convergence theorem, there are some assumptions that
need to be clarified as described in [35].

In order to prove the convergence of the actor update, we
extend the method of [23]. For any set-valued vector field,
h(θ) Define the new vector field Γ̂ by:

Γ̂(h(θ)) = lim
0<η→0

(Γ(θ + ηh(θ))− θ

η

)
(13)

Then consider the differential inclusion associated with the
subgradient of Problem (5):

θ̇ ∈ Γ̂(−∇θJ(θ)− λg(θ)) (14)

where g(θ) is the subgradient of ‖θ‖1 defined as:

[g(θ)]i =


+1 if [θ]i > 0

−1 if [θ]i < 0

[−1, 1] otherwise
(15)

Let Λ be the set of the asymptotically stable equilibria for
(14), i.e., the local minima of Problem (5), and let Λε be the
ε neighborhood of Λ, i.e., Λε = {θ̂|

∥∥∥θ̂ − θ∗
∥∥∥ < ε, θ∗ ∈ Λ}.

The function approximator can introduce bias into the
estimates of Vθ(x) and its gradient. The bias can be quan-
tified using time-scale separation. Specifically, if the critic
converges faster than the actor, then for each fixed θ, the
parameter vk converges to a steady steady value v∞. The
temporal difference after critic convergence is given by:

δ̂k = r(xk, uk)− Ĵk + vT∞φ(xk+1)− vT∞φ(xk). (16)

According to [23], the estimated gradient using δ̂k is given
by:

E[δ̂k∇θ log πθ(uk|xk)] = ∇θJ(θ) + bθ, (17)

where bθ is a bias term.
Theorem 1: For any ε > 0, there exists ζ > 0 such that

supθk ‖bθk‖ < ζ, such that θk will converge to Λε as k → ∞
with probability one.
Proof: First, we need a background lemma, which is proved
in [35]. In this lemma P denotes the transition matrix
induced by parameter θ: Pi,j = pθ(xk+1 = j|xk = i), and e
denotes the vector of all ones.

Lemma 2: For any γ ∈ [0, 1), the average cost update of
Jk and the critic update of vk in Algorithm 2 converge to
J(θ) and vθ with probability one, respectively, where

J(θ) =
∑
x∈X

dθ(x)
∑
u∈U

πθ(u|x)r(x, u) (18)

is the average cost under policy πθ, and vθ is the unique
solution of the equation

ΠT γ(Φvθ) = Φvθ (19)

where T γ(Φv) is defined as:

T γ(Φv)=(1− γ)

∞∑
m=0

γm
( m∑

k=0

P k(r − J(θ)e) + P k+1Φv
)

(20)



Thus, according to Lemma 2, our average cost update
and critic update will converge to the above value with
probability one.

The analysis below mainly follows the ordinary differen-
tial equation (ODE) method [22]. Recall that the function
approximation introduces bias into the gradient estimate,
which is described in (17). To analyze this biased estimate,
define a separate differential inclusion by:

θ̇ = Γ̂(−∇θJ(θ)− λg(θ)− bθ), (21)

and let Ξ be the set of the asymptotically stable equilibria
of (21).

Like the ODE method used in [23], we have the following
equation:

θk+1 = Γ
(
θk − βkE[δ̂k,∞∇θ log πθ(uk|xk)|F1(k)]

−βkω1(k)− βkω2(k) + g(θk+1)λ)
(22)

where F1(k) = σ(θl, l < k) denotes the sequence of σ-fields
generated by θl,l ≥ 0, and ω1(k), ω2(k) are defined in (23)
and (24):

ω1(k) = δ̂k∇θ log πθ(uk|xk)− E[δ̂k∇θ log πθ(uk|xk)|F1(k)]
(23)

ω2(k) = E[(δ̂k − δk)∇θ log πθ(uk|xk)|F1(k)] (24)

where δk and δ̂k are the temporal differences from the
algorithm and (16), respectively.

By the step size assumptions, the critic will converge
faster than the actor, so ω2(k) = o(1). And let M1(k) =
k−1∑
l=0

βlω1(l), k ≥ 1. Then according to [23], {M1(k)}

is a convergent martingale sequence, and
nT∑
l=n

βlω2(l) →

0 as n → ∞ for nT = min{m ≥ n|
m∑
l=n

βl ≥

T} with any T > 0. The argument in [23] shows
that E[δ̂k∇θ log πθ(uk|xk)|F1(k)] converges to ∇θJ(θ) as
supθk ‖bθk‖ → 0. Thus, the solutions (21) will converge to
those of (14) as the bias goes to 0. �

V. NUMERICAL EXAMPLES

In this section, we will use a simple example to show the
effectiveness of our algorithm. Consider the problem:

min
θ

J(θ) + λ ‖θ‖1
s.t. xk+1 = 0.9xk + 0.05(uk + 0.1wk)

uk = g(θ, xk, vk)

(25)

where J(θ) = limk→∞ E[xTkQxk + uTkRuk], Q = 10, R =
0.1.

First, we will show the effectiveness of the Actor Critic
algorithm in finding the optimal solution when λ = 0, and
controller configuration is uk = θ1xk + θ2vk.

According to [36], the optimal solution for this LQR prob-
lem has the optimal linear form uk = Kxk with optimal gain
K∗ = −6.24. Thus, the optimal solution θ∗ = [θ∗1 θ∗2 ]

T is
θ∗1 = −6.24 and θ∗2 = 0.
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Fig. 1. θ1 trajectories by Algorithm 2 and the optimal value line
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Fig. 2. Exploration noise variable θ2 trajectories by Algorithm 2 and the
optimal value line. The noise is constrained to a small positive value, to
which it converges.

We use Algorithm 2 to solve this problem. The parameter
configurations are as follows: θ0 = [0 2]T , x0 is randomlly
obtained from the Gaussian distribution with mean equal to
0 and variance equal to 2. αk = 0.5

10�4k+30 , βk = 0.3
10�2k+90 ,

ηk = 1
k+1 , and the decay parameter γ = 0.9.

θ1 and θ2 trajectories are shown in Fig.1 and Fig.2,
respectively. From Fig.1 and 2, we can see that θ1 and θ2
ultimately converge near the optimal value.

Next, we use linear-nonlinear mixed controller configura-
tion with the form:

uk = ϕ̃(xk, vk)
T θ

ϕ̃(xk, vk)
T = [ϕ(xk)

T xTk vTk ]
(26)

And each item in the vector ϕ(xk) is defined as:

[ϕ(xk)]i = exp(− (xk − ιi)
T (xk − ιi)

l
) (27)

where in our experiment, we set l = 2, and ι is generated
uniformly in the range [−10, 10] with 15 items.

The parameter setup is the same except for the stepsizes:
αk = 1

10�4k+100 , βk = 1
10�2k+300 , and λ = 0.1. θ

trajectories are shown in Fig.3 and 4, respectively. From
Fig.3, we can see final solution that is obtained is where there
are only 3 non-zero variables. The largest value for θ, by far,
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Fig. 4. Exploration noise variable trajectories by Algorithm 2

corresponds to the linear term. This makes sense, since the
original problem has a linear linear optimal solution.

Finally, we will vary λ to see the process for the number
of non-zeros obtained by our algorithm. This result is shown
in Fig.5. We can see from Fig.5 that when λ increases, the
number of non-zeros decreases as it should do.

Modification for Actuator Selection: We consider the
regularized LQR problem for actuator selection, as in [20].
In this problem, a group-Lasso regularization [37] is used
to select columns of a gain matrix for state feedback. The
problem is given formally by:

min
θ
J(θ) + λ

L∑
l=1

‖θl‖2
s.t. xk+1 = Axk +B1uk +B2wk

(28)

where θl represents the items belonging to group l. Note
that in this problem, the number of groups L is equal to the
number of actuators.

Our algorithm admits a straightforward modification to im-
plement group-Lasso regularization in place of the standard
Lasso. The primary change is that the subgradient is taken
for the sum-of-norms penalty, rather than the `1 penalty.

We tested the modification using system matrices: Q =[
10 0
0 10

]
, R =

[
0.1 0
0 0.1

]
, A =

[
0.72 0.5
0 0.05

]
, B1 =[

0.05 0
0 0.05

]
, B2 =

[
0.005 0
0 0.005

]
. According to [36],
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Fig. 5. Number of non-zero variables’ trajectories by Algorithm 2 for
different λ
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Fig. 6. θ trajectories except exploration noise variable

the optimal gain matrix is: K∗ =

[
4.02 2.84
0.80 0.80

]
The Actuator Selection Problem (28) is solved with λ =

0.01, stepsizes: αk = 0.7
10�4k+100 , βk = 0.5

10�2k+300 , and the
decay parameter γ = 0.9. The controller configuration is:

uk = ϕ(xk, vk)
T θ, where ϕ(xk, vk) =

xTk 0 0
0 xTk 0
0 0 vk

 In

this case, the groups are given by:[
θ1
θ2

]
,

[
θ3
θ4

]
, θ5, (29)

where θ5 corresponds to exploration noise.
Fig.6 and 7 show the trajectories for our parameter θ. We

can see that θ3 and θ4 stay near 0 all the time, while θ1
and θ2 reach to some non-zero values, which means that it
chooses the first actuator. We also run the algorithm in [20],
which gives us the same actuator selection result.

VI. CONCLUSION AND FUTURE WORK

In this paper, we deal with the problem of control basis
selection in the case when the system model is unavailable.
We propose a regularized actor-critic algorithms to select and
optimize the sparse controller configuration. Furthermore,
possible modification is performed to solve the actuator
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selection problem. Numerical examples show the effective-
ness of our proposed algorithms. In the future, we plan to
accelerate the gradient estimation to reduce the estimate’s
variance. Our methodology may also be useful for online
sensor selection.
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