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Abstract—This paper develops a novel algorithm, termed
SPARse Truncated Amplitude flow (SPARTA), to reconstruct a
sparse signal from a small number of magnitude-only measure-
ments. It deals with what is also known as sparse phase retrieval
(PR), which is NP-hard in general and emerges in many science
and engineering applications. Upon formulating sparse PR as an
amplitude-based nonconvex optimization task, SPARTA works it-
eratively in two stages: In stage one, the support of the underlying
sparse signal is recovered using an analytically well-justified rule,
and subsequently a sparse orthogonality-promoting initialization
is obtained via power iterations restricted on the support; and in
the second stage, the initialization is successively refined by means
of hard thresholding based gradient-type iterations. SPARTA is
a simple yet effective, scalable, and fast sparse PR solver. On the
theoretical side, for any n-dimensional k-sparse (k � n) signal
x with minimum (in modulus) nonzero entries on the order of
(1/

√
k)‖x‖2 , SPARTA recovers the signal exactly (up to a global

unimodular constant) from about k2 log n random Gaussian mea-
surements with high probability. Furthermore, SPARTA incurs
computational complexity on the order of k2n log n with total
runtime proportional to the time required to read the data, which
improves upon the state of the art by at least a factor of k. Fi-
nally, SPARTA is robust against additive noise of bounded sup-
port. Extensive numerical tests corroborate markedly improved
recovery performance and speedups of SPARTA relative to existing
alternatives.

Index Terms—Nonconvex optimization, support recovery, itera-
tive hard thresholding, compressive sampling, linear convergence
to the global optimum.
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L. Zhang, G. B. Giannakis, and M. Akçakaya are with the Digital Technology
Center and the Department of Electrical and Computer Engineering, University
of Minnesota, Minneapolis, MN 55455 USA (e-mail: zhan3523@umn.edu;
georgios@umn.edu; akcakaya@umn.edu).

J. Chen is with the School of Automation and the State Key Laboratory
of Intelligent Control and Decision of Complex Systems, Beijing Institute of
Technology, Beijing 100081, China (e-mail: chenjie@bit.edu.cn).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSP.2017.2771733

I. INTRODUCTION

IN MANY fields of engineering and applied physics, one is
often tasked with reconstructing a signal from the (squared)

modulus of its Fourier (or any linear) transform, which is also
known as phase retrieval (PR). Such a task arises naturally in
applications such as X-ray crystallography, microscopy and pty-
chography, astronomy, optics, as well as array and coherent
diffraction imaging. In these settings, optical sensors and de-
tectors such as charge-coupled device cameras, photosensitive
films, and human eyes record only the intensity (squared mag-
nitude) of a light wave, but not the phase. In particular, solu-
tion to PR has led to significant accomplishments, including
the discovery in 1953 of DNA double helical structure from
diffraction patterns, and the characterization of aberrations in
the Hubble Space Telescope from measured point spread func-
tions [2]. Due to the absence of Fourier phase information,
the one-dimensional (1D) Fourier PR problem is generally ill-
posed. It can be shown that there are in fact exponentially many
non-equivalent solutions beyond trivial ambiguities in the 1D PR
case [3]. A common approach to overcome this ill-posedness is
exploiting additional information on the unknown signal such as
non-negativity, sparsity, or bounded magnitude [4]–[6]. Other
viable solutions consist of introducing redundancy into the mea-
surement transforming system to obtain over-sampled and short-
time Fourier transform measurements [7], random Gaussian
measurements [8]–[10], and coded diffraction patterns using
structured illumination and random masks [8], [11], [12], just
to name a few; see [11] for contemporary reviews on the theory
and practice of PR.

Past PR approaches can be mainly categorized as con-
vex and nonconvex ones. A popular class of nonconvex ap-
proaches is based on alternating projections including the semi-
nal works by Gerchberg-Saxton [13] and Fienup [5], [14], [15],
alternating minimization with re-sampling (AltMinPhase) [6],
(stochastic) truncated amplitude flow (TAF) [10], [16]–[19] and
the Wirtinger flow (WF) variants [8], [9], [20], [21], trust-
region [22], proximal linear algorithms [23]. See also discus-
sion on other approaches in [2], [11], [24], [25]. Specifically, the
WF variants and the trust-region methods minimize the inten-
sity (modulus squared) based empirical risk, while AltMinPhase
and TAF cope with the amplitude-based empirical risk. The con-
vex alternatives either rely on the so-called Shor’s relaxation to
obtain semidefinite programming (SDP) based solvers abbrevi-
ated as PhaseLift [26] and PhaseCut [27], or solve a basis pursuit
problem in the dual domain as in PhaseMax [28], [29], [33].

Nevertheless, in various applications, especially those related
to imaging, the underlying signal is naturally sparse or admits a
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sparse representation after some known and deterministic linear
transformation [30]. For example, astronomical imaging centers
around sparsely distributed stars, while electron microscopy
deals with sparsely distributed atoms or molecules. As PR of
sparse signals is of practical relevance, SDP, AltMinPhase,
and WF recovery methods have been generalized to sparse PR
producing solvers termed compressive phase retrieval via lifting
(CPRL) [31], sparse AltMinPhase [6], thresholded Wirtinger
flow (TWF) [32], SparsePhaseMax [33]. CPRL in particular,
accounts for the sparsity by adding an �1-regularization term
on the wanted signal to the original PhaseLift formulation.
The other two approaches are two-stage iterative counterparts
consisting of a (sparse) initialization, and a series of refinements
of the initialization with gradient-type iterations. The greedy
sparse phase retrieval (GESPAR) algorithm is based on a fast 2-
opt local search [4]. A probabilistic approach is developed based
on the generalized approximate message passing (GAMP) algo-
rithm [34]. Majorization-minimization algorithms are devised
in [35]. Assuming noise-free Gaussian random measurements,
CPRL recovers any k-sparse n-dimensional (k � n) signal
exactly from1 O(k2 log n) measurements at computational
complexity O(n3) [36]. Sparse AltMinPhase and TWF, on the
other hand, require O(k2 log n) measurements [6], [32], and
SparseAltMinPhase incurs complexity O(k2n log n) [6].

Building on TWF and TAF, we propose here a novel sparse
PR algorithm, which we call SPARse Truncated Amplitude flow
(SPARTA). Adopting an amplitude-based nonconvex formula-
tion of the sparse PR, SPARTA emerges as a two-stage iterative
solver: In stage one, the support of the underlying signal is es-
timated first using a well-justified rule, and subsequently power
iterations are employed to obtain an initialization restricted on
the recovered support; while the second stage successively re-
fines the initialization with a series of hard thresholding based
truncated gradient iterations. Both stages are conceptually sim-
ple, scalable, and fast. Moreover, we demonstrate that SPARTA
recovers any k-sparse n-dimensional real-/complex-valued sig-
nalx (k � n) with minimum nonzero entries (in modulus) on
the order of (1/

√
k)‖x‖2 from O(k2 log n) measurements. Fur-

ther, to reach any given solution accuracy ε > 0, SPARTA in-
curs total computational cost of O(k2n log n log(1/ε)), which
improves upon the state-of-the-art by at least a factor of k. This
computational advantage is paramount in large-scale imaging
applications, where the basis factor n log n is large, typically on
the order of millions. In addition, SPARTA can be shown robust
to additive noise of bounded support. Extensive simulated tests
demonstrate markedly improved exact recovery performance (in
the absence of noise), robustness to noise, and runtime speedups
relative to the state-of-the-art algorithms.

The remainder of this paper is organized as follows. Sec-
tion II reviews the sparse PR problem, and also presents known
necessary and sufficient conditions for uniqueness. Section III
details the two stages of the proposed algorithm, whose analytic
performance analysis is the subject of Section IV. Finally, nu-
merical tests are reported in Section V, proof details are given in

1The notation φ(n) = O(g(n)) means that there is a constant c > 0 such
that |φ(n)| ≤ c|g(n)|.

Section VI, and conclusions are drawn in Section VII. Support-
ing lemmas are presented in the Appendix.

Regarding common notation used throughout the paper,
lower- (upper-) case boldface letters denote column vectors (ma-
trices) of suitable dimensions, and symbol T (H) as superscript
stands for matrix/vector transposition (conjugate transposition).
Calligraphic letters are reserved for sets, e.g., S. For vectors,
‖·‖2 represents the Euclidean norm, while ‖·‖0 denotes the �0
pseudo-norm counting the number of nonzero entries. Finally,
the ceiling operation �·� returns the smallest integer greater than
or equal to the given number, and the cardinality |S| reports the
number of elements in the set S.

II. SPARSE PHASE RETRIEVAL

Succinctly stated, the sparse PR task amounts to reconstruct-
ing a sparse x ∈ Rn (or Cn ) given a system of phaseless
quadratic equations taking the form [37]

ψi = |〈ai ,x〉|, 1 ≤ i ≤ m, subject to ‖x‖0 ≤ k (1)

where {ψi}mi=1 are the observed modulus data, and {ai}mi=1
are known sensing (feature) vectors. The sparsity level k � n
is assumed known a priori for theoretical analysis purposes,
while numerical implementations with unknown k values will
be tested as well. Alternatively, the data can be given in modu-
lus squared (i.e., intensity) form as {yi = |〈ai ,x〉|2}mi=1 . It has
been established that m = 2k generic2 (e.g., random Gaussian)
measurements as in (1) are necessary and sufficient for uniquely
determining a k-sparse solution in the real case, andm ≥ 4k − 2
are sufficient in the complex case [39]. In the noisy scenario,
stable compressive PR requires at least as many measurements
as the corresponding compressive sensing problem since one
is tasked with even less (no phase) information. Hence, stable
sparse PR requires at least O(k log(n/k)) measurements as in
compressive sensing [40]. Indeed, it has been recently demon-
strated that O(k log(n/k)) generic measurements also suffice
for stable PR of a real-valued sparse signal [41].

For concreteness of our analytical results, the present
paper focuses on the real-valued Gaussian model, which as-
sumes independently and identically distributed (i.i.d.) stan-
dard Gaussian sensing vectors ai ∼ N (0, In ), i = 1, . . . , m,
and x ∈ Rn . Nevertheless, our proposed algorithm works also
for the complex-valued Gaussian model with x ∈ Cn and
i.i.d. ai ∼ CN (0, In ) := N (0, In/2) + jN (0, In/2). Given
{(ai , ψi)}mi=1 and assuming also the existence of a unique k-
sparse solution (up to a global sign), our objective is to develop
simple yet effective algorithms to provably reconstruct any k-
sparse n-dimensional signal x from a small number (far less
than n) of phaseless quadratic equations as in (1).

Adopting the least-squares criterion (which coincides with
the maximum likelihood one when assuming additive white
Gaussian noise in (1)), the problem of recovering a k-sparse so-
lution from phaseless quadratic equations naturally boils down
to that of minimizing the ensuing amplitude-based empirical

2It is not within the scope of this paper to explain the meaning of generic
vectors. Interested readers are referred to [38].
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loss function

minimize
‖z‖0 =k

�(z) :=
1

2m

m∑

i=1

(
ψi − |aT

i z|
)2
. (2)

Clearly, both the objective function and the �0-norm con-
straint in (2) are nonconvex, which render the optimization
problem NP-hard in general [42], and thus computationally in-
tractable. Besides nonconvexity, another notable challenge here
involves the non-smoothness of the cost function. It is worth em-
phasizing that (thresholded) Wirtinger alternatives dealt with
the smooth counterpart of (2) based on squared magnitudes
{yi = |aT

i z|2}mi=1 , which was numerically and experimentally
shown to be less effective than the amplitude-based one even
when no sparsity is exploited [10], [43]. Although focusing on
a formulation similar to (but different than) (2), sparse AltMin-
Phase first estimates the support of the underlying signal, and
performs standard PR of signals with dimension k. More impor-
tantly, sparse AltMinPhase relying on alternating minimization
with re-sampling entails solving a series of least-squares prob-
lems, and performs matrix inversion at every iteration. Numer-
ical tests suggest that a very large number of measurements are
required to estimate the support exactly. Once wrong, sparse Alt-
MinPhase confining the PR task on the estimated support would
be impossible to recover the underlying sparse signal. On the
other hand, motivated by the iterative hard thresholding (IHT)
algorithms for compressive sensing [44], [45], an adaptive hard
thresholding procedure that maintains only certain largest en-
tries per iteration during the gradient refinement stage turns out
to be effective [32]. Yet both sparse AltMinPhase and TWF were
based on the simple spectral initialization, which was recently
shown to be less accurate and robust than the orthogonality-
promoting initialization [10].

Broadening the TAF approach and the sparse PR solver TWF,
the present paper puts forth a novel iterative solver for (2) that
proceeds in two stages: S1) a sparse orthogonality-promoting
initialization is obtained by solving a PCA-type problem with
a few simple power iterations on an estimated support of the
underlying sparse signal; and, S2) successive refinements of
the initialization are effected by means of a series of truncated
gradient iterations along with a hard thresholding per iteration to
set all entries to zero, except for the k ones of largest magnitudes.
The two stages are presented in order next.

III. ALGORITHM: SPARSE TRUNCATED AMPLITUDE FLOW

In this section, the initialization stage and the gradient refine-
ment stage of SPARTA will be described in detail. To begin, let
us introduce the distance from any estimate z ∈ Rn to the solu-
tion set {±x} ⊆ Rn to be dist(z,x) := min{‖z + x‖2 , ‖z −
x‖2}. Define also the indistinguishable global phase constant in
the real case as

φ(z) :=

{
0, ‖z − x‖2 ≤ ‖z + x‖2 ,

π, otherwise.
(3)

Hereafter, assume x to be the fixed solution to problem (1) with
φ(z) = 0; otherwise, one can replace z by zeiφ , but the constant
phase shift shall be dropped for notational brevity. Assume also

without loss of generality that ‖x‖2 = 1, which will be justified
and generalized shortly.

A. Sparse Orthogonality-Promoting Initialization

When no sparsity is exploited, the orthogonality-promoting
initialization proposed in [10] starts with a popular folklore
in stochastic geometry: High-dimensional random vectors are
almost always nearly orthogonal to each other [46]. The key
idea is approximating the unknown x by another vector that is
most orthogonal to a carefully chosen subset of sensing vectors
{ai}i ∈I0 , where I0 ⊆ [m] := {1, 2, . . . , m} is some index
set to be designed next. It is well known that the orthogonality
between two vectors can be interpreted by their squared nor-
malized inner-product (aT

i x)2/(‖ai‖2
2‖x‖2

2). Intuitively, the
smaller the squared normalized inner-product between two vec-
tors ai and x is, the more orthogonal they are to each other. Upon
evaluating the inner-product between each ai and x for all pairs
{(ai ,x)}mi=1 , one can construct I0 to include the indices of
{ai}’s corresponding to the |I0 |-smallest squared normalized
inner-products with x. Therefore, it is natural to approximate x
by computing a vector z0 most orthogonal to the set I0 of sens-
ing vectors [10]. Mathematically, this is equivalent to solving a
smallest eigenvector (defined to be the eigenvector associated
with the smallest eigenvalue of a symmetric positive definite
matrix) problem

minimize
‖z‖2 =1

zT Y z := zT

(
1

|I0 |
∑

i ∈I0

aia
T
i

‖ai‖2
2

)
z. (4)

The smallest eigenvalue (eigenvector) problem can be solved

by fully eigen-decomposing 1
|I0 |

∑
i ∈I0

ai a
T
i

‖ai ‖2
2

at computational

complexity O(n3) (assuming |I0 | to be on the order of n).
Upon defining Ī0 to be the complement of the set I0 in [m],
one can rewrite

∑
i ∈I0

ai a
T
i

‖ai ‖2
2

=
∑

i ∈ [m ]
ai a

T
i

‖ai ‖2
2
−

∑
i ∈ Ī0

ai a
T
i

‖ai ‖2
2
.

Recall that for i.i.d. standard Gaussian sensing vectors {ai ∼
N (0, In )}mi=1 , the following concentration result holds [47]

1
m

m∑

i=1

aia
T
i

‖ai‖2
2
≈ E

[
aia

T
i

‖ai‖2
2

]
=

1
n

In (5)

where E[·] denotes the expected value. It follows from (5) that
the smallest eigenvector problem in (4) can be approximated by
the largest (principal) eigenvector

z̃0 := arg max
‖z‖2 =1

zT Ȳ z := zT

⎛

⎝ 1
|Ī0 |

∑

i ∈ Ī0

aia
T
i

‖ai‖2
2

⎞

⎠ z (6)

whose solution can be well approximated with a few (e.g.,
100) power iterations at a much cheaper computational com-
plexity O(n|Ī0 |) [than O(n3) required for solving (4)]. When
‖x‖2 �= 1 is unknown, z̃0 from (6) can be scaled by the norm
estimate of x to obtain z0 =

√∑m
i=1 yi/m z̃0 [8], [10]. If

m/n is large enough, it has been shown that the orthogonality-
promoting initialization can produce an estimate of any given
constant relative error [10].

When x is a priori known to be k-sparse with k � n, one
may expect to recover x from a significantly smaller number
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(� n) of measurements. The orthogonality-promoting initial-
ization (and spectral based alternatives) requiringm to be on the
order of nwould fail in the case of PR for sparse signals given a
small number of measurements [6], [8]–[10], [20]. By account-
ing for the sparsity prior information with the �0 regularization,
the same rationale as the orthogonality-promoting initialization
in (4) would lead to

minimize
‖z‖2 =1

zT Y z subject to ‖z‖0 = k. (7)

The problem at hand is NP-hard in general due to the combi-
natorial constraint. Additionally, it can not be readily converted
to a (sparse) PCA problem since the number of data samples
available is much smaller than the signal dimension n, thus
hardly validating the non-asymptotic result in (5). Although at
much higher computational complexity than power iterations,
semidefinite relaxation could be applied [48]. Instead of cop-
ing with (7) directly, we shall take another route and develop
our sparse orthogonality-promoting initialization approach to
obtain a meaningful sparse initialization from the given limited
number of measurements.

1) Exact Support Recovery: Along the lines of sparse Alt-
MinPhase and sparse PCA [49], our approach is to first
estimate the support of the underlying signal based on a
carefully-designed rule; next, we will rely on power iterations
to solve (6) restricted on the estimated support, thus ensuring
a k-sparse estimate z̃0 ∈ Rn ; and, subsequently we will scale
z̃0 by the x norm estimate

√∑m
i=1 yi/m to yield a k-sparse

orthogonality-promoting initialization z0 .
Starting with the support recovery procedure, assume without

loss of generality that x is supported on S ⊆ [n] := {1, . . . , n}
with |S| = k � n. Consider the random variables Zi,j :=
ψ2
i a

2
i,j , j = 1, . . . , n. Recalling that for standardized Gaussian

variables, we have E[a4
i,j ] = 3, E[a2

i,j ] = 1, the rotational in-
variance property of Gaussian distributions confirms for all
1 ≤ j ≤ n that

E[Zi,j ] = E
[
(aT

i x)2a2
i,j

]
= E

[
a4
i,j x

2
j + (aT

i,/jx/j )2a2
i,j

]

= 3x2
j + ‖x/j‖2

2

= 2x2
j + ‖x‖2

2 (8)

where x/j ∈ Rn−1 is obtained by deleting the j-th entry from
x ∈ Rn ; and likewise for ai,/j ∈ Rn−1 . If j ∈ S, then xj �= 0
yielding E[Zi,j ] = ‖x‖2

2 + 2x2
j in (8). If on the other hand

j /∈ S, it holds that xj = 0, which leads to E[Zi,j ] = ‖x/j‖2
2 =

‖x‖2
2 . It is now clear that there is a separation of 2x2

j in the ex-
pected values of Zi,j for j ∈ S and j /∈ S. As long as the
gap 2x2

j is sufficiently large, the support set S can be recov-
ered exactly in this way. Specifically, when all E[Zi,j ] values
are available, the set of indices corresponding to the k-largest
E[Zi,j ] values recover exactly the support of x. In practice,
{E[Zi,j ]} are not available. One has solely access to a num-
ber of their independent realizations. Appealing to the strong
law of large numbers, the sample average approaches the en-
semble one, namely, Ẑi,j := (1/m)

∑m
i=1 Zi,j → E[Zi,j ] as m

increases. Hence, the support can be estimated as

Ŝ :=
{
1 ≤ j ≤ n

∣∣indices of top-k instances in {Ẑi,j}nj=1
}

(9)
which will be shown to recover S exactly with high proba-
bility provided that O(k2 log n) measurements are taken and
the minimum nonzero entry xmin := minj∈S |xj | is on the or-
der of (1/

√
k)‖x‖2 . The latter is postulated to guarantee such

a separation between quantities having their indices belong-
ing or not belonging to the support set. It is worth stressing that
k2 log n� nwhen k � n, hence largely reducing the sampling
size and also the computational complexity.

2) Orthogonality-Promoting Intialization: When the esti-
mated support in (9) turns out to be exact, i.e., Ŝ = S, one can
rewrite ψi = |aT

i x|= |aT
i,ŜxŜ |, i = 1, . . . , m, where ai,Ŝ ∈Rk

includes the j-th entry ai,j of ai if and only if j ∈ Ŝ; and like-
wise for xŜ ∈ Rk . Instead of seeking directly an n-dimensional
initialization as in (7), one can apply the orthogonality-
promoting initialization steps in (4)–(6) on the dimensionality
reduced data {(ai,Ŝ , ψi)}mi=1 to produce a k-dimensional vector

z̃0
Ŝ := arg max

‖zŜ ‖2 =1

1
|Ī0 |z

T
Ŝ

⎛

⎝
∑

i ∈ Ī0

ai,ŜaT
i,Ŝ

‖ai,Ŝ‖2
2

⎞

⎠ zŜ (10)

and subsequently reconstruct a k-sparse n-dimensional initial-
ization z̃0 by zero-padding z̃0

Ŝ at entries with indices not belong-

ing to Ŝ . Similarly, in the case of ‖x‖2 �= 1, z̃0 in (10) is rescaled
by the norm estimate of x to obtain z0 =

√∑m
i=1 yi/m z̃0 . We

also note that our proposed algorithm can recover the underlying
sparse signal when Ŝ �= S, as long as z0 is sufficiently close to
x regardless of support mismatch, which is described further in
Lemma 3.

B. Thresholded Truncated Gradient Stage

Upon obtaining a sparse orthogonality-promoting initializa-
tion z0 , our approach to solving (2) boils down to iteratively
refining z0 by means of a series of k-sparse hard thresholding
based truncated gradient iterations, namely,

zt+1 := Hk

(
zt − μ∇�tr(zt)

)
, t = 0, 1, . . . (11)

where t is the iteration index, μ > 0 a constant step size, and
Hk (u) : Rn → Rn denotes a k-sparse hard thresholding oper-
ation that sets all entries in u to zero except for the k entries
of largest magnitudes. If there are multiple such sets compris-
ing the k-largest entries, a set can be chosen either randomly
or according to a predefined ordering of the elements. Similar
to [10], the truncated (generalized) gradient ∇�tr(zt) is

∇�tr(zt) :=
1
m

∑

i ∈It+ 1

(
aT
i zt − ψi

aT
i zt

|aT
i zt |

)
ai (12)

where the index set is defined to be

It+1 :=
{

1 ≤ i ≤ m
∣∣∣
|aT
i zt |

|aT
i x| ≥ 1

1 + γ

}
(13)

for some γ > 0 to be determined shortly, where {|aT
i x| = ψi}

are the given modulus data.
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Algorithm 1: SPARse Truncated Amplitude flow
(SPARTA).

1: Input: Data {(ai ;ψi)}mi=1 and sparsity level k;
maximum number of iterations T = 1, 000; step size
μ = 1, truncation thresholds |Ī0 | = � 1

6m�, and γ = 1.
2: Set Ŝ to include indices corresponding to the k-largest

instances in
{∑m

i=1 ψ
2
i |ai,j |2/m

}n
j=1 .

3: Evaluate Ī0 to consist of indices of the top-|Ī0 | values
in {ψi/‖ai,Ŝ‖2}mi=1 with ai,Ŝ ∈ Rk removing entries of

ai ∈ Rn not belonging to Ŝ; and compute the principal
eigenvector z̃0

Ŝ ∈ Rk of matrix

Y :=
1

|Ī0 |
∑

i ∈ Ī0

ai,ŜaT
i,Ŝ

‖ai,Ŝ‖2
2

based on 100 power iterations.
4: Initialize z0 as

√∑m
i=1 ψ

2
i /m z̃0 , where z̃0 ∈ Rn is

obtained by augmenting z̃0
Ŝ in Step 3 with zeros at

entries with their indices not in Ŝ .
5: Loop: For t = 0 to T − 1

zt+1 = Hk

(
zt − μ

m

∑

i ∈It+ 1

(
aT
i zt − ψi

aT
i zt

|aT
i zt |

)
ai

)

where It+1 =
{
1 ≤ i ≤ m

∣∣|aT
i zt | ≥ ψi

/
(1 + γ)

}
, and

Hk (u) : Rn → Rn sets all entries of u to zero except
for the k-ones of largest magnitudes.

6: Output: zT .

It is clear now that the difficulty of minimizing our noncon-
vex objective function reduces to that of correctly estimating the
signs of aT

i x by aT
i zt/|aT

i zt | at each iteration. The truncation
rule in (13) was shown capable of eliminating most “bad” gra-
dient components involving erroneously estimated signs, i.e.,
aT
i zt/|aT

i zt | �= aT
i x/|aT

i x|. This rule improved performance
of TAF [10] considerably. Recall that our objective function
in (2) is also non-smooth at points z ∈ Rn obeying aT

i z = 0.
Evidently, the gradient regularization rule in (13) keeps only the
gradients of component functions (i.e., the summands in (2))
that bear large enough |aT

i zt | values; this rule thus maintains
aT
i zt away from 0 and protects the cost function in (2) from

being non-smooth at points satisfying aT
i z = 0. As a conse-

quence, the (truncated) generalized gradient employed in (12)
reduces to the (truncated) gradient at such points, which also
simplifies theoretical convergence analysis.

IV. MAIN RESULTS

The proposed sparse phase retrieval solver is summarized
in Algorithm 1 along with default parameter values. Given
data samples {(ai ;ψi)}mi=1 generated from i.i.d. {ai}mi=1 ∼
N (0, In ) sensing vectors, the following result establishes the
statistical convergence rate for the proposed SPARTA algorithm
in the case of γ = +∞.

Theorem 1 (Exact recovery): Fix x ∈ Rn to be any k-sparse
(k � n) vector of the minimum nonzero entry on the order of
(1/

√
k)‖x‖2 , namely, x2

min = (C1/k)‖x‖2
2 for some number

C1 > 0. Consider the m noiseless measurements ψi = |aT
i x|

from i.i.d. ai ∼ N (0, In ), 1 ≤ i ≤ m. If m ≥ C0k
2 log(mn),

Step 3 of SPARTA (tabulated in Algorithm 1) recovers the sup-
port of x exactly with probability at least 1 − 6/m. Further-
more, there exist numerical constants μ, μ̄ > 0 such that with a
fixed step size μ ∈ [μ, μ̄], and a truncation threshold γ = +∞,
successive estimates of SPARTA obey

dist(zt ,x) ≤ 1
10

(1 − ν)t ‖x‖2 , t = 0, 1, . . . (14)

which holds with probability exceeding 1 − c1me−c0 k − 7/m
provided that m ≥ C2 |Ī0 | ≥ C0k

2 log(mn). Here, c0 , c1 ,
C0 , C2 , and 0 < ν < 1 are some numerical constants.

Proof of Theorem 1 is deferred to Section VI with supporting
lemmas presented in the Appendix. We typically take parameters
|Ī0 | = � 1

6m�, and μ = 1, which will also be validated by our
analytical results on the feasible region of the step size. The
constant C0 depends on C1 , ν on μ and C1 , and μ and μ̄ rely
on both C1 and C0 . In the case of PR of unstructured signals,
existing algorithms such as TAF ensures exact recovery when the
number of measurements m is about the number of unknowns
n, i.e.,m � n. Hence, it would be more meaningful to study the
sample complexity bound for PR of sparse signals whenm � n.
To this end, the sample complexity bound m ≥ C0k

2 log(mn)
in Theorem 1 can often be rewritten asm ≥ C ′

0k
2 log n for some

constant C ′
0 > C0 and large enough n. Regarding Theorem 1,

three observations are in order.
Remark 1: SPARTA recovers exactly any k-sparse signal x

of minimum nonzero entries on the order of (1/
√
k)‖x‖2 when

there are about k2 log n magnitude-only measurements, which
coincides with the number of measurements required by the
state-of-the-art algorithms such as CPRL [31], sparse AltMin-
Phase [6], and TWF [32].

Remark 2: SPARTA converges at a linear rate to the glob-
ally optimal solution x with convergence rate independent of
the signal dimension n. In other words, for any given solution
accuracy ε > 0, after running at most T = log(1/ε) SPARTA
iterations (11), the returned estimate zT is at most ε‖x‖2 away
from the global solution x.

Remark 3: SPARTA enjoys a low computational complex-
ity of O(k2n log n), and incurs a total runtime of O(k2n log
n log(1/ε)) to produce an ε-accurate solution. The runtime is
proportional to the time O(k2n log n) taken to read the data
{(ai , ψi)}mi=1 . To see this, recall that the support recovery in-
curs computational complexity O(k2n log n+ n log n), power
iterations incur complexity O(k2n log n), and thresholded trun-
cated gradient iterations have complexity O(k2n log n); hence,
leading to a total complexity on the order of k2n log n. Given
the linear convergence rate, SPARTA takes a total runtime of
O(k2n log n log(1/ε)) to achieve any fixed solution accuracy
ε > 0.

Besides exact recovery guarantees in the case of noiseless
measurements, it is worth mentioning that SPARTA exhibits
robustness to additive noise, especially when the noise has
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Fig. 1. Empirical success rate versus m/n for x ∈ Rn with n = 1, 000
and k = 10 nonzero entries using: i) TAF without exploiting sparsity [10]; ii)
TWF [32]; iii) SPARTA0 with the exact number of nonzeros unknown, and k
taken as an upper limit �√n� = 32; and iv) SPARTA with k = 10.

bounded values. Numerical results using SPARTA for noisy
sparse PR will be presented in the ensuing section.

V. NUMERICAL EXPERIMENTS

Simulated tests evaluating performance of SPARTA relative
to truncated amplitude flow (TAF) [10] (which does not exploit
the sparsity) and thresholded Wirtinger flow (TWF) [32] are
presented in this section. For fair comparisons, the algorithmic
parameters involved in all schemes were set to their suggested
values. The initialization in each scheme was obtained based
upon 100 power iterations, and was subsequently refined by
T = 1, 000 gradient iterations. In all reported experiments, the
true k-sparse signal vector x ∈ Rn or Cn was generated first
using x ∼ N (0, In ) or CN (0, In ), followed by setting (n− k)
of its n entries to zero uniformly at random. For reproducibility,
the Matlab implementation of SPARTA is publicly available at
https://gangwg.github.io/SPARTA/.

The first experiment evaluates the exact recovery performance
of various approaches in terms of the empirical success rate over
100 independent Monte Carlo trials, where the true signals are
real-valued. A success is declared for a trial provided that the
returned estimate incurs a relative mean-square error defined as

Relative MSE :=
dist(zT ,x)

‖x‖2

less than 10−5 . We fixed the signal dimension to n = 1, 000, and
the sparsity level at k = 10, while the number of measurements
m/n increases from 0.1 to 3 by 0.1. Curves in Fig. 1 clearly
demonstrate markedly improved performance of SPARTA over
state-of-the-art alternatives. Even when the exact number of
nonzero elements in x, namely, k is unknown, setting k in
Algorithm 1 as an upper limit on the theoretically affordable
sparsity level (e.g., �√n � when m is about n according to
Theorem 1) works well too (see the magenta curve, denoted

Fig. 2. Empirical success rate versus sparsity level k for x ∈ Rn with m =
n = 1, 000 fixed using: i) TAF; ii) TWF, and iii) SPARTA.

SPARTA0). Comparison between TAF and SPARTA shows the
advantage of exploiting sparsity in sparse PR settings.

The second experiment examines how SPARTA recovers real-
valued signals of various sparsity levels given a fixed number of
measurements. Fig. 2 depicts the empirical success rate versus
the sparsity level k, where k equals the exact number of nonzero
entries in x. The results suggest that with a total ofm = n phase-
less quadratic equations, TAF representing the state-of-the-art
for PR of unstructured signals fails, as shown by the blue curve.
Although TWF works in some cases, SPARTA significantly
outperforms TWF, and it ensures exact recovery of sparse sig-
nals with up to about 25 <

√
n ≈ 32 nonzero entries (due to

existence of polylog factors in the sample complexity), hence
justifying our analytical results.

The next experiment validates the robustness of SPARTA
against additive noise present in the data. Postulating the noisy
Gaussian data model ψi = |aT

i x| + ηi [6], we generated i.i.d.
Gaussian noise according to ηi ∼ N (0, 0.12), i = 1, . . . , m.
From Fig. 1, it is clear that to achieve exact recovery, SPARTA
requires aboutm = 6k2 = 600 measurements, TAF about 3n =
3, 000 measurements, and TWF much more than 3,000. In this
case, parameters were taken as n = 1, 000, m = 3, 000, and
k = 10, with the number of measurements large enough to guar-
antee that TWF and TAF also work. It is worth mentioning that
SPARTA can work with a far smaller number of measurements
thanm = 3, 000. As seen from the plots in Fig. 3, SPARTA per-
forms only a few gradient iterations to achieve the most accurate
solution among the three approaches, while its competing TAF
and TWF require nearly an order more number of iterations to
converge to less accurate estimates.

To demonstrate the stability of SPARTA in the presence of
additive noise, the relative MSE is plotted as a function of the
signal-to-noise (SNR) values in dB. Our experiments are based
on the additive Gaussian noise model ψi = |aT

i x| + ηi with a
10-sparse signal x ∈ R1,000 and the noise η := [η1 · · · ηm ]T ∼
N (0, σ2Im ), where the variance σ2 is chosen such that cer-
tain SNR := 10 log10

∑m
i=1

|〈ai ,x〉|2/σ 2 values are achieved. The
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Fig. 3. Convergence behavior in the case of noisy data with n = 1, 000,
m = 3, 000, and k = 10 using: i) TAF; ii) TWF; and iii) SPARTA.

Fig. 4. Relative MSE versus SNR for SPARTA with the AWGN model.

ratio m/n takes values {1, 2, 3}, and the SNR in dB is varied
from 5 dB to 55 dB. Averaging over 100 Monte Carlo realiza-
tions, Fig. 4 demonstrates that the relative MSE for all m/n
values scales inversely proportional to SNR, hence corroborat-
ing the stability of SPARTA in the presence of additive noise.

The last experiment tested the efficacy of SPARTA in the
complex-valued setting, where the underlying 10-sparse sig-
nal x ∈ C20,000 was generated using x ∼ CN (0, I20,000) :=
N (0, I20,000/2) + jN (0, I20,000/2), and the design vectors
ai ∼ CN (0, I20,000) for 1 ≤ i ≤ 1, 000. The relative MSE ver-
sus iteration count was plotted in Fig. 5, which validates the
scalability and effectiveness of SPARTA in recovering complex
signals. In terms of runtime, SPARTA recovers exactly a 20,000-
dimensional complex-valued signal from 1,000 magnitude-only
measurements in a few seconds.

SPARTA converges much faster (both in time and in the num-
ber of iterations required to achieve certain solution accuracy)
than TWF and TAF in all reported experiments. Moreover,
all numerical experiments were implemented with MATLAB
R2016a on an Intel CPU @ 3.4 GHz (32 GB RAM) computer.

Fig. 5. Relative MSE versus iteration count for SPARTA in the complex-
valued setting.

VI. PROOF OF THEOREM 1

The proof of Theorem 1 will be provided in this section.
To that end, we will first evaluate the performance of our
sparse orthogonality-promoting initialization. The following re-
sult demonstrates that if the number of measurements is suffi-
ciently large (on the order of k2 within polylog factors), Step 1
of the SPARTA algorithm 1 reconstructs the support of x exactly
with high probability.

Lemma 1: Consider any k-sparse signal x ∈ Rn with sup-
port S and minimum nonzero entries xmin := minj∈S |xj | on
the order of (1/

√
k)‖x‖2 . For any δ > 0, if {ai}mi=1 are i.i.d

standard Gaussian, i.e., ai ∼ N (0, In ), Step 3 in Algorithm 1
recovers S exactly with probability at least 1 − 6/m provided
m ≥ C0k

2 log(mn) for some absolute constant C0 > 0.
Proof of Lemma 1: As elaborated in Section III-A, there is a

clear separation in the expected values E[Zi,j ] = E[ψ2
i a

2
i,j ] for

j ∈ S and j /∈ S; that is,

E[Zi,j ] = E
[
(aT

i x)2a2
i,j

]
= E

[
a4
i,j x

2
j + (aT

i,/jx/j )2a2
i,j

]

=

{
‖x‖2

2 , j /∈ S,
‖x‖2

2 + 2x2
j , j ∈ S.

(15)

Consider the case of j ∈ S first. Based on E[a2p
i,j ] = (2p− 1)!!

with p being a positive integer and the symbol !! denoting the
double factorial, Zi,j has second-order moment

E[Z2
i,j ] = E

[
(aT

i x)4a4
i,j

]

= E
[
a8
i,j x

4
j + a4

i,j a
4
i,� �=j‖x/j‖4

2 + 6a6
i,j x

2
j a

2
i,� �=j‖x/j‖2

2
]

= 105x4
j + 9‖x/j‖4

2 + 90x2
j ‖x/j‖2

2

= 9‖x‖4
2 + 24x4

j + 72x2
j ‖x‖2

2 (16)

where � ∈ {1, 2, . . . , n} is some index from different than j.
Letting Z̃j := ‖x‖2

2 + 2x2
j − Zi,j for all j ∈ S, it holds that

Z̃j ≤ ‖x‖2
2 + 2x2

j ≤ 3‖x‖2
2 . Furthermore, one has E[Z̃j ] = 0,



486 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 66, NO. 2, JANUARY 15, 2018

and

E[Z̃2
j ] = ‖x‖4

2 + 4x4
j + 4x2

j ‖x‖2
2 + E[Z2

i,j ]

−
(
2‖x‖2

2 + 4x2
j

)
E[Zi,j ]

= 8‖x‖4
2 + 68x2

j ‖x‖2
2 + 20x4

j

≤ 96‖x‖4
2 .

Appealing to Lemma 4, one establishes for all j ∈ S that

Pr

(
1
m

m∑

i=1

ψ2
i a

2
i,j − (‖x‖2

2 + 2x2
j ) ≤ −ε

)

≤ exp
(
− mε2

192‖x‖4
2

)
.

Taking ε = x2
min := minj∈S x2

j ≤ x2
j leads to

Pr

(
1
m

m∑

i=1

ψ2
i a

2
i,j ≤ ‖x‖2

2 + x2
min

)
≤ exp

(
− mx4

min

192‖x‖4
2

)
.

Recalling our assumption thatx2
min is on the order of (1/k)‖x‖2

2 ,
i.e., x2

min = (C1/k)‖x‖2
2 for certain constant C1 > 0, the fol-

lowing holds with probability at least 1 − 1/m for all j ∈ S

min
j∈S

1
m

m∑

i=1

ψ2
i a

2
i,j ≥ ‖x‖2

2 + x2
min =

(
1 +

C1

k

)
‖x‖2

2 (17)

provided that m ≥ C0k
2 log(mn) for some absolute constant

C0 > 0.
Now let us turn to the case of j /∈ S, in which

∑m
i=1 Zi,j =∑m

i=1 ψ
2
i a

2
i,j is a weighted sum of χ2

1 random variables. Ac-
cording to Lemma 5, it holds that

Pr

⎛

⎝
m∑

i=1

ψ2
i (a

2
i,j − 1) > 2

√
ε

(
m∑

i=1

ψ4
i

) 1
2

+ 2εmax
i
ψ2
i

⎞

⎠

(18)

≤ exp(−ε). (19)

In addition, for any constants ε′, ε′′ > 0, Chebyshev’s inequality
together with the union bound confirms that

Pr

(
m∑

i=1

ψ4
i >

(
3m+

√
96mε′

)
‖x‖4

2

)
≤ 1/(ε′)2 (19a)

Pr
(

max
1≤i≤m

ψ2
i > ε′′‖x‖2

2

)
≤ 2m exp(−ε′′/2). (19b)

Take ε := log(mn) in (18), ε′ :=
√
m and ε′′ := 4 log(mn)

in (19). Then, with probability at least 1 − 4/m, the next holds
for all j /∈ S and m > C ′

1
m

m∑

i=1

ψ2
i (a

2
i,j − 1) ≤ 2

m

√
log(mn)

√
3m+

√
96m

√
m‖x‖2

2

+
8
m

(
log(mn)

)2‖x‖2
2

≤ 8

√
log(mn)

m
‖x‖2

2 (20)

for some absolute constant C ′ > 0 depending on n.
On the other hand, the rotational invariance property of

Gaussian distributions asserts thatψ2
i = |aT

i x|2 = |aT
i,SxS|2 d=

a2
i,j‖x‖2

2 [26], in which the symbol
d= means that terms involved

on both sides of the equality enjoy the same distribution. Since
theχ2 variables a2

i,j are sub-exponential, an application of Bern-
stein’s inequality produces the tail bound

Pr

(
1
m

m∑

i=1

a2
i,j − 1 ≥ ε

)
≤ exp(−mε2/8) (21)

for any ε ∈ (0, 1), which can also be easily verified with a di-
rect tail probability calculation from the tail probability of stan-
dard Gaussian distribution. Choosing ε :=

√
16 log(m)/mwith

m > C ′ gives rise to

1
m

m∑

i=1

ψ2
i,j ≤

(
1 + 4

√
logm
m

)
‖x‖2

2 (22)

which holds true with probability at least 1 − 1/m for all j ∈
[m]. Putting results in (20) and (22) together leads to

max
j /∈S⊆[m ]

1
m

m∑

i=1

ψ2
i a

2
i,j ≤

(
1 + 12

√
log(mn)

m

)
‖x‖2

2 (23)

which holds with probability exceeding 1 − 5/m for large
enough m.

The last inequality taken collectively with (17) suggests that
there exists an event E0 on which with probability at least 1 −
6/m, the following holds

min
j∈S

1
m

m∑

i=1

ψ2
i a

2
i,j ≥

(
1 +

C1

k

)
‖x‖2

2

>

(
1 + 12

√
log(mn)

m

)
‖x‖2

2

≥ max
j /∈S

1
m

m∑

i=1

ψ2
i a

2
i,j (24)

provided thatm ≥ C0k
2 log(mn) such thatC0 ≥ 144/C2

1 with
x2

min = (C1/k)‖x‖2
2 . �

Upon obtaining the support of the underlying sparse signal,
SPARTA subsequently employs the orthogonality-promoting
initialization on the reduced-dimension data {(ψi,ai,Ŝ )}.
Based on results in [10, Proposition 1], the estimate z0

Ŝ
:=√∑m

i=1 ψ
2
i /mz̃0

Ŝ
obtained from Step 3 in Algorithm 1 sat-

isfies dist(z0
Ŝ
,xŜ ) ≤ (1/10)‖xŜ‖2 with high probability pro-

vided that m/k is sufficiently large and k large enough as well.
Putting together this result, Lemma 1, and Step 4 in Algorithm
1 leads to the following lemma, which formally summarizes the
theoretical performance of our proposed sparse orthogonality-
promoting initialization.

Lemma 2: Let z0 =
√∑m

i=1 ψ
2
i /m z̃0 be given by Step 4,

and z̃0 obtained through the sparse orthogonality-promoting
initialization Step 3 in Algorithm 1. With probability at least
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1 − (m+ 6) exp(−k/2) − 7/m, the following holds

dist(z0 ,x) ≤ (1/10)‖x‖2 (25)

provided that m ≥ C ′
0k for some absolute constant C ′

0 > 0.
The proof can be directly adapted from [10, Proposition 1],

and hence it is omitted.
Lemma 3: Take a constant learning parameter μ ∈ (μ, μ̄).

There exists an event of probability at least 1 − c1m
−c0 k , such

that on this event, starting from an initial estimate z0 satisfying
dist(z0 ,x) ≤ (1/10)‖x‖2 , successive estimates by Step 1 with
γ = +∞ in Algorithm 1 obey

dist(zt ,x) ≤ (1/10)(1 − ν)t‖x‖2 , t = 0, 1, . . . (26)

if m ≥ C ′′
0 (3k) log(n/(3k)). Here, μ, μ̄0 , c0 , c1 , C

′′
0 > 0 are

certain universal constants.
It is worth noting that Step 5 of Algorithm 1 guarantees

linear convergence to the globally optimal solution x as long
as the initial guess z0 lands within a small neighborhood of x,
regardless of whether z0 estimates exactly the support of x or
not.

Proof of Lemma 3 To start, let us establish a bit of notation,
which will be used only in this section. Define for all t ≥ 0

dt+1 := zt − μ

m

m∑

i=1

(
aT
i zt − ψi

aT
i zt

|aT
i zt |

)
ai

which represents the estimate prior to the hard thresholding op-
eration in (11). With S and Ŝt denoting the support set of x and
zt , respectively, the reconstruction error x − zt+1 is therefore
supported on the set Θt+1 := S ∪ Ŝt+1 ; and likewise, x − zt

is supported on Θt := S ∪ Ŝt . In addition, define the difference
between sets Θt and Θt+1 as Θt \ Θt+1 , which consists of all
elements of Θt that are not elements of Θt+1 . It is then clear
that |S| = |Ŝt | = k, |Θt | ≤ 2k, and |Θt \ Θt+1 | ≤ 2k as well
as |Θt ∪ Θt+1 | ≤ 3k for all t ≥ 0. When using these sets as
subscript, for instance, dΘ t , we mean vectors formed by delet-
ing all but those elements from the vector other than those in
the set.

The proof of Lemma 3 will be mainly based on results in [10],
and [44], [45]. The former helps establishing the so-termed local
regularity condition that will be key to proving linear conver-
gence of iterative optimization algorithms to the globally opti-
mal solutions of nonconvex optimization problems [8], while the
latter two offer a standard approach to dealing with the nonlinear
hard thresholding operator involved in our proposed SPARTA
algorithm. Specifically, based on the triangle inequality of the
vector 2-norm, one arrives at
∥∥xΘ t+ 1 − zt+1

Θ t+ 1

∥∥
2 =

∥∥xΘ t+ 1 − dt+1
Θ t+ 1 + dt+1

Θ t+ 1 − zt+1
Θ t+ 1

∥∥
2

≤
∥∥xΘ t+1 − dt+1

Θ t+ 1

∥∥
2 +

∥∥zt+1
Θ t+ 1 − dt+1

Θ t+1

∥∥
2

(27)

where in the last inequality the first term denotes the distance
of xΘ t+ 1 to the estimate dt+1

Θ t+ 1 before hard thresholding, and
the second denotes the distance between dt+1

Θ t+ 1 and its best k-
approximation zt+1

Θ t+ 1 because zt+1
Θ t+ 1 has cardinality equal to k.

The optimality of zt+1
Θ t+ 1 implies ‖zt+1

Θ t+ 1 − dt+1
Θ t+ 1 ‖2 ≤ ‖xΘ t+ 1

− dt+1
Θ t+ 1 ‖2 . Plugging the latter inequality back into (27) yields

∥∥xΘ t+ 1 − zt+1
Θ t+ 1

∥∥
2 ≤ 2

∥∥xΘ t+ 1 − dt+1
Θ t+ 1

∥∥
2 . (28)

Define the estimation error ht := x − zt . Rewriting and sub-
stituting

dt+1 = zt − μ

m

m∑

i=1

(
aT
i zt − aT

i x
)
ai

+
μ

m

m∑

i=1

(
aT
i zt

|aT
i zt | −

aT
i x

|aT
i x|

)
|aT
i x|ai

into (28) leads to

1
2
‖ht+1

Θ t+1 ‖2 ≤
∥∥∥∥∥ht

Θ t+1 −
μ

m

m∑

i=1

aT
i htai,Θ t+1

− μ

m

m∑

i=1

(
aT
i zt

|aT
i zt | −

aT
i x

|aT
i x|

)
|aT
i x|ai,Θ t+1

∥∥∥∥∥
2

=

∥∥∥∥∥ht
Θ t+1 −

μ

m

m∑

i=1

ai,Θ t+1 aT
i,Θ t+1 ht

Θ t+1

− μ

m

m∑

i=1

ai,Θ t+1 aT
i,Θ t \Θ t+1 ht

Θ t \Θ t+1

− μ

m

m∑

i=1

(
aT
i zt

|aT
i zt | −

aT
i x

|aT
i x|

)
|aT
i x|ai,Θ t+1

∥∥∥∥∥
2

≤
∥∥∥∥∥ht

Θ t+1 −
μ

m

m∑

i=1

ai,Θ t+1 aT
i,Θ t+1 ht

Θ t+1

∥∥∥∥∥
2

+

∥∥∥∥∥
μ

m

m∑

i=1

ai,Θ t+1 aT
i,Θ t \Θ t+1 ht

Θ t \Θ t+1

∥∥∥∥∥
2

+

∥∥∥∥∥
μ

m

m∑

i=1

(
aT
i zt

|aT
i zt | −

aT
i x

|aT
i x|

)
|aT
i x|ai,Θ t+1

∥∥∥∥∥
2

(29)

where the equality follows from re-expressing aT
i ht = aT

i,Θ t

ht
Θ t = aT

i,Θ t+1 ht
Θ t+1 + aT

i,Θ t \Θ t+1 ht
Θ t \Θ t+1 since ht =x − zt

is supported on Θt . The last inequality is readily obtained with
triangle inequality of the �2-norm.

The task now remains to establish upper bounds for the three
terms appearing on the right hand side of (29), which will be
the subject for the rest of this section. Toward this end, let us
recall the concept of the so-called restricted isometry property
(RIP) condition in compressive sampling [50]. For each integer
s = 1, 2, . . . , k, define the isometry constant 0 < δs < 1 of a
matrix Φ ∈ Rm×n as the smallest quantity such that the follow-
ing holds for all k-sparse vectors v ∈ Rn [45], [50]:

(1 − δk )‖v‖2
2 ≤ ‖Φv‖2

2 ≤ (1 + δk )‖v‖2
2 . (30)

For Gaussian matrix A ∈ Rm×n whose entries are i.i.d. stan-
dard normal variables, then 1√

m
A satisfies the RIP with con-

stant δ3k ≤ ε with probability at least 1 − e−c
′
0m , provided that

m ≥ C ′
1ε

−2(3k) log(n/(3k)) for certain universal constants
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c′0 , C
′
1 > 0 [50], [45, Eq. (1.2)]. Furthermore, if K � {1, 2,

. . . , n} is a set of 3k indices or fewer, the following proper-
ties of A hold true [45, Prop. 3.1]:

P1) ‖AT
Ku‖2 ≤

√
(1 + δ3k )m‖u‖2 , for all u ∈ Rm ;

P2) (1 − δ3k )m‖v‖2 ≤ ‖AT
KAKv‖2 ≤ (1 + δ3k )m‖v‖2 ,

for all at most 3k-sparse vectors v ∈ Rn ;
P3) ‖AT

BAD‖2 ≤ δ3k , where B and D are disjoint sets of
combined cardinality not exceeding 3k;

P4) ‖AT
B∪DAB∪D − I‖2 ≤ δ3k .

Having elaborated on the properties of RIP matrices, we are
ready to derive bounds for the three terms on the right hand side
of (29). Regarding the first term, it is easy to check that

∥∥∥∥∥ht
Θ t+1 −

μ

m

m∑

i=1

ai,Θ t+1 aT
i,Θ t+1 ht

Θ t+1

∥∥∥∥∥
2

=

∥∥∥∥∥

(
I − μ

m

m∑

i=1

ai,Θ t+1 aT
i,Θ t+1

)
ht

Θ t+1

∥∥∥∥∥
2

≤
∥∥∥∥∥I − μ

m

m∑

i=1

ai,Θ t+1 aT
i,Θ t+1

∥∥∥∥∥
2

∥∥ht
Θ t+1

∥∥
2

≤ max
{
1 − μλ, μλ̄− 1

}∥∥ht
Θ t+1

∥∥
2 (31)

where λ̄, λ > 0 are the largest and smallest eigenvalue of (1/m)∑m
i=1 ai,Θ t+1 aT

i,Θ t+1 , respectively. Specifically, the two in-
equalities in (31) are obtained based on the definition of the
induced 2-norm (i.e., the spectral norm) of matrices.

Next, we estimate the eigenvalues λ̄ andλ. Using P2, it clearly
holds that

λ̄ = λmax

(
1
m

m∑

i=1

ai,Θ t+1 aT
i,Θ t+1

)
≤ 1 + δ2k (32)

due to |Θt+1 | ≤ 2k. For the same reason, it further holds that

λ = λmin

(
1
m

m∑

i=1

ai,Θ t+1 aT
i,Θ t+1

)
≥ 1 − δ2k . (33)

Taking the results in (32) and (33) into (31) yields
∥∥∥∥∥ht

Θ t+1 −
μ

m

m∑

i=1

ai,Θ t+1 aT
i,Θ t+1 ht

Θ t+1

∥∥∥∥∥
2

≤ max
{
1 − μ(1 − δ2k ), μ(1 + δ2k ) − 1

}∥∥ht
Θ t+1

∥∥
2 . (34)

For the second term in (29), since |Θt+1 ∪ Θt | ≤ 3k, the next
holds with high probability

∥∥∥∥∥
1
m

m∑

i=1

ai,Θ t+1 aT
i,Θ t \Θ t+1 ht

Θ t \Θ t+1

∥∥∥∥∥
2

≤
∥∥∥∥∥

1
m

m∑

i=1

ai,Θ t+1 aT
i,Θ t \Θ t+1

∥∥∥∥∥
2

∥∥∥ht
Θ t \Θ t+1

∥∥∥
2

≤
∥∥∥∥∥I − 1

m

m∑

i=1

ai,Θ t+1 ∪Θ t aT
i,Θ t+1 ∪Θ t

∥∥∥∥∥
2

∥∥∥ht
Θ t \Θ t+1

∥∥∥
2

≤ δ3k
∥∥ht

Θ t \Θ t+1

∥∥
2 (35)

in which the first inequality arises again from the definition of
the matrix 2-norm. Deriving the second inequality involves the
approximate orthogonality result, while the last result can be
obtained by appealing to P4.

Consider now the last term in (29). For convenience, de-
fine AT

Θ t+1 := [a1,Θ t+1 · · · am,Θ t+1 ] with |Θt+1 | ≤ 2k, and

also vt := [vt1 · · · !vtm ]T with vti := ( aT
i zt

|aT
i zt | −

aT
i x

|aT
i x| )|a

T
i x| for

i = 1, . . . , m. Upon rearranging terms, the induced matrix 2-
norm definition implies that

∥∥∥∥∥
1
m

m∑

i=1

(
aT
i zt

|aT
i zt | −

aT
i x

|aT
i x|

)
|aT
i x|ai,Θ t+1

∥∥∥∥∥
2

=
1
m

∥∥AT
Θ t+1 vt

∥∥
2 ≤

∥∥∥
1√
m

AT
Θ t+1

∥∥∥
2

∥∥∥
1√
m

vt
∥∥∥

2
. (36)

Property P1 confirms that the largest singular value of AT
Θ t+1 ∈

Rm×2k satisfies smax(AT
Θ t+1 ) ≤ (1 + δ2k )

√
m with high prob-

ability. Therefore, the following holds with high probability
∥∥∥∥∥

1
m

m∑

i=1

(
aT
i zt

|aT
i zt | −

aT
i x

|aT
i x|

)
|aT
i x|ai,Θ t+1

∥∥∥∥∥
2

≤ (1 + δ2k )
1√
m

∥∥vt
∥∥

2 . (37)

For convenience, define the event

Ki :=
{

aT
i z

|aT
i z| �=

aT
i x

|aT
i x|

}
. (38)

Then, it follows that

1
m

∥∥vt
∥∥2

2 =
1
m

m∑

i=1

(
aT
i zt

|aT
i zt | −

aT
i x

|aT
i x|

)2

|aT
i x|2

≤ 4 · 1
m

m∑

i=1

|aT
i x| · |aT

i ht | · 1Ki

≤ 40
9
√

1 + ε1 ·
(
ε1 +

1
10

√
21
20

)
∥∥ht

∥∥2
2 (39)

where the first inequality follows upon substituting |aT
i x| ≤

|aT
i ht | on the event Ki , and using

( aT
i zt

|aT
i zt | −

aT
i x

|aT
i x|

)2 ≤ 4. The
last inequality can be obtained by appealing to Lemma 6 in
the Appendix adapted from [51, Lemma 7.17], which holds
for all (2k)-sparse vectors h ∈ Rn . This result has also been
employed in the recent sparse phase retrieval approach reported
in [52]. Here, we set ε0 = 1/10 in (44), and ε1 > 0 can take any
sufficiently small values.

Plugging the inequality in (39) into (37) leads to
∥∥∥∥∥

1
m

m∑

i=1

(
aT
i zt

|aT
i zt | −

aT
i x

|aT
i x|

)
|aT
i x|ai,Θ t+1

∥∥∥∥∥
2

≤ (1 + δ2k ) ·

√
40
9
√

1 + ε1 ·
(
ε1 +

1
10

√
21
20

)∥∥ht
∥∥

2

:= (1 + δ2k )ζ
∥∥ht

∥∥
2 (40)
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where the constant is defined as

ζ :=

√
40
9
√

1 + ε1 ·
(
ε1 +

1
10

√
21
20

)
.

Substituting the three bounds in (34), (35), and (40) into (29),
we obtain
∥∥ht+1

∥∥
2 ≤ 2max {1 − μ(1 − δ2k), μ(1+ δ2k) − 1}

∥∥ht
Θ t+1

∥∥
2

+ 2μδ3k
∥∥ht

Θ t \Θ t+1

∥∥
2 + 2μ(1 + δ2k )ζ

∥∥ht
∥∥

2

≤ 2
√

2 max
{

max {1 − μ(1 − δ2k ), μ(1 + δ2k ) − 1} ,

μδ3k
}
‖ht‖2 + 2μ(1 + δ2k )ζ

∥∥ht
∥∥

2

≤ 2
[√

2 max
{

max {1 − μ(1 − δ2k), μ(1 + δ2k) − 1} ,

μδ3k
}

+ μ(1 + δ2k )ζ
]∥∥ht

∥∥
2

:= ρ
∥∥ht

∥∥
2 (41)

where the second inequality follows from
∥∥ht

Θ t+1

∥∥
2 +

∥∥ht
Θ t \Θ t+1

∥∥
2 ≤

√
2
∥∥ht

∥∥
2

over disjoint sets Θt+1 and Θt \ Θt+1 . To ensure linear con-
vergence, it suffices to choose a constant step size μ > 0 such
that

ρ = 2
[√

2 max
{

max {1 − μ(1 − δ2k ), μ(1 + δ2k ) − 1} ,

μδ3k
}

+ μ(1 + δ2k )ζ
]
< 1.

For sufficiently small δ3k > 0 and ε1 > 0, one has ν :=
1 − ρ ∈ (0, 1), which justifies the linear convergence result
in (14). �

Theorem 1 can be directly deduced by combining
Lemmas 1, 2, and 3. In fact, Lemma 1 guarantees exact support
recovery so that the orthogonality-promoting initialization can
be effectively performed on the equivalent dimension-reduced
data samples. Lemma 2, on the other hand, guarantees that the
sparse initialization attained based on the dimensional-reduced
data lands within a small neighborhood of the globally opti-
mal solution (this region is also termed basin of attraction; see
e.g., [9], [53] for more discussion) with high probability. Start-
ing from any point within the basin of attraction, Lemma 3
confirms that successive iterates of SPARTA will be dragged
toward the globally optimal solution at a linear rate provided
that the step size and the truncation threshold are appropriately
selected.

VII. CONCLUDING REMARKS

This paper contributed a sparse truncated amplitude flow
(SPARTA) algorithm for solving PR of sparse signals. SPARTA
initially recovers the support of the underlying sparse signal,
which is used to obtain a sparse orthogonality-promoting ini-
tialization using power iterations restricted on the estimated sup-
port; subsequently, SPARTA refines the initialization by means
of hard thresholding based truncated gradient iterations to en-
sure overall simplicity and scalability. SPARTA enjoys provably
exact recovery as soon as the number of noiseless Gaussian

measurements exceeds a certain bound. In contrast to state-of-
the-art algorithms, such as AltMinPhase and TWF, SPARTA re-
quires the same sample size but can afford lower computational
complexity. Simulated tests corroborate markedly improved re-
covery performance and computational efficiency of SPARTA
relative to existing alternatives.

A few timely and pertinent extensions can be listed at this
point. Instead of enforcing the �0-pseudonorm constraint and the
hard thresholding operation in SPARTA, it is worth investigating
sparse PR by minimizing the empirical risk function (2) with
convex or nonconvex sparsity-promoting regularization terms,
e.g., the (reweighted) �1-norm of the optimization variables.
Developing stochastic optimization algorithms for both stages
amenable to large-scale implementations is pertinent. General-
izing SPARTA and our analytical results to robust sparse PR
and symmetric matrix recovery with possibly outliers constitute
worthwhile future directions too [21], [54], [55].

APPENDIX

SUPPORTING LEMMAS

Lemma 4 ([56]): For i.i.d. zero-mean random variables
X1 , X2 , . . . , Xm , if there exists some nonrandom constant
b > 0 such that Xi ≤ b for 1 ≤ i ≤ m, and E[X2

i ] = v2 , then
the following holds

Pr(X1 + · · · +Xm ≥ y)≤ min
(
exp

(
− y2

2σ2

)
, c0 − c0Φ

( y
σ

))

(42)
for σ2 := mmax(b2 , v2), and the cumulative distribution func-
tion of the standard normal distribution Φ(·), where one can take
c0 = 25.

Lemma 5 ([57]): Let X1 , X2 , . . . , Xm be i.i.d. Gaussian
random variables with zero mean and variance 1, and b1 , b2 ,
. . . , bm be nonnegative. The following inequality holds for any
ε > 0

Pr

⎛

⎝
m∑

i=1

bi(X2
i − 1) ≥ 2

(
m∑

i=1

b2i

) 1
2 √

ε+ 2
(

max
1≤i≤m

bi

)
ε

⎞

⎠

≤ exp(−ε). (43)

Lemma 6 [51, Lemma 7.17]: For any k-sparse x ∈ Rn sup-
ported on S, assume noise-free measurements ψi = |aT

i x| gen-
erated from i.i.d. Gaussian sampling vectors ai ∼ N (0, In ),
i = 1, 2, . . . , m. Fixing any ε1 > 0, and for all (2k)-sparse h ∈
Rn , the following holds with probability at least 1 − 3e−c5m

1
m

m∑

i=1

(
aT
i z

|aT
i z| −

aT
i x

|aT
i x|

)
|aT
i x|(aT

i h)

≤ 2
√

1 + ε1
1 − ρ0

(
ε1 +

√
21
20
ρ0

)
‖h‖2

2 (44)

for all z ∈ Rn obeying ‖z − x‖2 ≤ ρ0‖x‖2 , provided thatm >
c6(2s) log(n/(2s)) for some fixed numerical constants c5 , c6>
0. Here, ρ0 = 1/10.

The proof of Lemma 6 can be found in [51, Page 30].
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phase retrieval via truncated amplitude flow,” in Proc. IEEE Int. Conf.
Acoust. Speech Signal Process., New Orleans, LA, USA, Mar. 5–9 2017,
pp. 3974–3978.

[2] Y. C. Eldar, N. Hammen, and D. G. Mixon, “Recent advances in phase
retrieval [lecture notes],” IEEE Signal Process. Mag., vol. 33, no. 5,
pp. 158–162, Sep. 2016.

[3] E. Hofstetter, “Construction of time-limited functions with specified au-
tocorrelation functions,” IEEE Trans. Inf. Theory, vol. IT-10, no. 2,
pp. 119–126, Apr. 1964.

[4] Y. Shechtman, A. Beck, and Y. C. Eldar, “GESPAR: Efficient phase re-
trieval of sparse signals,” IEEE Trans. Signal Process., vol. 62, no. 4,
pp. 928–938, Feb. 2014.

[5] J. R. Fienup, “Phase retrieval algorithms: A comparison,” Appl. Opt.,
vol. 21, no. 15, pp. 2758–2769, Aug. 1982.

[6] P. Netrapalli, P. Jain, and S. Sanghavi, “Phase retrieval using alternating
minimization,” IEEE Trans. Signal Process., vol. 63, no. 18, pp. 4814–
4826, Sep. 2015.

[7] T. Bendory, Y. C. Eldar, and N. Boumal, “Non-convex phase retrieval
from STFT measurements,” IEEE Trans. Inf. Theory, vol. 63, no. 12, pp.
1–18, Dec. 2017.

[8] E. J. Candès, X. Li, and M. Soltanolkotabi, “Phase retrieval via Wirtinger
flow: Theory and algorithms,” IEEE Trans. Inf. Theory, vol. 61, no. 4,
pp. 1985–2007, Apr. 2015.

[9] Y. Chen and E. J. Candès, “Solving random quadratic systems of equations
is nearly as easy as solving linear systems,” Commun. Pure Appl. Math.,
vol. 70, no. 5, pp. 822–883, Dec. 2017.

[10] G. Wang, G. B. Giannakis, and Y. C. Eldar, “Solving systems of ran-
dom quadratic equations via truncated amplitude flow,” IEEE Trans. Inf.
Theory, vol. 63, no. 12, pp. 1–22, Dec. 2017.

[11] E. J. Candès, Y. C. Eldar, T. Strohmer, and V. Voroninski, “Phase retrieval
via matrix completion,” SIAM Rev., vol. 57, no. 2, pp. 225–251, May 2015.

[12] E. J. Candès, X. Li, and M. Soltanolkotabi, “Phase retrieval from coded
diffraction patterns,” Appl. Comput. Harmon. Anal., vol. 39, no. 2,
pp. 277–299, Sep. 2015.

[13] R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determi-
nation of phase from image and diffraction,” Optik, vol. 35, pp. 237–246,
Nov. 1972.

[14] P. Chen, A. Fannjiang, and G.-R. Liu, “Phase retrieval with one or two
diffraction patterns by alternating projection with null initialization,” J.
Fourier Anal. Appl., pp. 1–40, Mar. 2017.

[15] I. Waldspurger, “Phase retrieval with random Gaussian sensing vectors by
alternating projections,” arXiv:1609.03088, 2016.

[16] G. Wang and G. B. Giannakis, “Solving random systems of quadratic
equations via truncated generalized gradient flow,” in Proc. Adv. Neural
Inf. Process. Syst., Barcelona, Spain, 2016, pp. 568–576.

[17] G. Wang, G. B. Giannakis, and J. Chen, “Scalable solvers of random
quadratic equations via stochastic truncated amplitude flow,” IEEE Trans.
Signal Process., vol. 65, no. 8, pp. 1961–1974, Apr. 2017.

[18] Y. Chi and Y. M. Lu, “Kaczmarz method for solving quadratic equations,”
IEEE Signal Process. Lett., vol. 23, no. 9, pp. 1183–1187, Sep. 2016.

[19] G. Wang, G. B. Giannakis, Y. Saad, and J. Chen, “Solving most high-
dimensional systems of random quadratic equations,” arXiv:1705.10407,
2017.

[20] H. Zhang, Y. Zhou, Y. Liang, and Y. Chi, “Reshaped Wirtinger flow and
incremental algorithm for solving quadratic system of equations,” J. Mach.
Learn. Res., to be published, 2018.

[21] Y. Li, Y. Sun, and Y. Chi, “Low-rank positive semidefinite matrix recovery
from corrupted rank-one measurements,” IEEE Trans. Signal Process.,
vol. 65, no. 2, pp. 397–408, Jan. 2017.

[22] J. Sun, Q. Qu, and J. Wright, “A geometric analysis of phase retrieval,” in
Proc. Int. Symp. Inf. Theory, Barcelona, Spain, Jul. 2016, pp. 2379–2383.

[23] J. C. Duchi and F. Ruan, “Solving (most) of a set of quadratic equalities:
Composite optimization for robust phase retrieval,” arXiv:1705.02356,
2017.

[24] H. Chang, S. Marchesini, Y. Lou, and T. Zeng, “Variational phase retrieval
with globally convergent preconditioned proximal algorithm,” 2017.

[25] C. Qian, N. D. Sidiropoulos, K. Huang, L. Huang, and H. C. So, “Phase
retrieval using feasible point pursuit: Algorithms and Cramer-Rao bound,”
IEEE Trans. Signal Process., vol. 64, no. 20, pp. 5282–5296, Oct. 2016.

[26] E. J. Candès, T. Strohmer, and V. Voroninski, “PhaseLift: Exact and stable
signal recovery from magnitude measurements via convex programming,”
Appl. Comput. Harmon. Anal., vol. 66, no. 8, pp. 1241–1274, Nov. 2013.

[27] I. Waldspurger, A. d’Aspremont, and S. Mallat, “Phase recovery, maxcut
and complex semidefinite programming,” Math. Program., vol. 149, no. 1,
pp. 47–81, 2015.

[28] T. Goldstein and S. Studer, “PhaseMax: Convex phase retrieval via basis
pursuit,” arXiv:1610.07531v1, 2016.

[29] P. Hand and V. Voroninski, “An elementary proof of convex phase re-
trieval in the natural parameter space via the linear program phasemax,”
arXiv:1611.03935, 2016.

[30] K. Jaganathan, Y. C. Eldar, and B. Hassibi, “Phase retrieval: An overview
of recent developments,” Opt. Compressive Sens., arXiv:1510.07713,
2015.

[31] H. Ohlsson, A. Y. Yang, R. Dong, and S. S. Sastry, “CPRL–An extension
of compressive sensing to the phase retrieval problem,” in Proc. Adv.
Neural Inf. Process. Syst., Stateline, NV, USA, 2012, pp. 1367–1375.

[32] T. Cai, X. Li, and Z. Ma, “Optimal rates of convergence for noisy sparse
phase retrieval via thresholded Wirtinger flow,” Ann. Statist., vol. 44, no. 5,
pp. 2221–2251, 2016.

[33] P. Hand and V. Voroninski, “Compressed sensing from phaseless Gaussian
measurements via linear programming in the natural parameter space,”
arXiv:1611.05985, 2016.

[34] P. Schniter and S. Rangan, “Compressive phase retrieval via generalized
approximate message passing,” IEEE Trans. Signal Process., vol. 63, no. 4,
pp. 1043–1055, Feb. 2015.

[35] T. Qiu and D. P. Palomar, “Undersampled sparse phase retrieval via
majorization-minimization,” IEEE Trans. on Signal Process., vol. 65, no.
22, pp. 5957–5969, Nov. 2017.

[36] X. Li and V. Voroninski, “Sparse signal recovery from quadratic mea-
surements via convex programming,” SIAM J. Appl. Math., vol. 45, no. 5,
pp. 3019–3033, Sep. 2013.

[37] M. L. Moravec, J. K. Romberg, and R. G. Baraniuk, “Compressive phase
retrieval,” Proc. SPIE, vol. 6701, 2007, Art. no. 670120.

[38] A. Conca, D. Edidin, M. Hering, and C. Vinzant, “An algebraic charac-
terization of injectivity in phase retrieval,” Appl. Comput. Harmon. Anal.,
vol. 38, no. 2, pp. 346–356, Mar. 2015.

[39] M. Akcakaya and V. Tarokh, “Sparse signal recovery from a mixture of
linear and magnitude-only measurements,” IEEE Signal Process. Lett.,
vol. 22, no. 9, pp. 1220–1223, Sep. 2015.

[40] M. Iwen, A. Viswanathan, and Y. Wang, “Robust sparse phase retrieval
made easy,” Appl. Comput. Harmon. Anal., vol. 42, no. 1, pp. 135–142,
Jan. 2017.

[41] Y. C. Eldar and S. Mendelson, “Phase retrieval: Stability and recovery
guarantees,” Appl. Comput. Harmon. Anal., vol. 36, no. 3, pp. 473–494,
May 2014.

[42] P. M. Pardalos and S. A. Vavasis, “Quadratic programming with one
negative eigenvalue is NP-hard,” J. Global Optim., vol. 1, no. 1,
pp. 15–22, 1991.

[43] L.-H. Yeh et al.,“Experimental robustness of Fourier ptychography phase
retrieval algorithms,” Opt. Express, vol. 23, no. 26, pp. 33214–33240,
Dec. 2015.

[44] T. Blumensath and M. E. Davies, “Iterative hard thresholding for com-
pressed sensing,” Appl. Comput. Harmon. Anal., vol. 27, no. 3, pp. 265–
274, Nov. 2009.

[45] D. Needell and J. A. Tropp, “CoSaMP: Iterative signal recovery from in-
complete and inaccurate samples,” Appl. Comput. Harmon. Anal., vol. 26,
no. 3, pp. 301–321, May 2009.

[46] T. Cai, J. Fan, and T. Jiang, “Distributions of angles in random packing on
spheres,” J. Mach. Learn. Res., vol. 14, no. 1, pp. 1837–1864, Jan. 2013.

[47] R. Vershynin, “Introduction to the non-asymptotic analysis of random
matrices,” arXiv:1011.3027, 2010.

[48] A. d’Aspremont, L. El Ghaoui , M. I. Jordan, and G. R. Lanckriet, “A direct
formulation for sparse PCA using semidefinite programming,” SIAM Rev.,
vol. 49, no. 3, pp. 434–448, Jul. 2007.

[49] A. A. Amini and M. J. Wainwright, “High-dimensional analysis of
semidefinite relaxations for sparse principal components,” Ann. Statist.,
vol. 37, pp. 2877–2921, 2009.



WANG et al.: SPARSE PHASE RETRIEVAL VIA TRUNCATED AMPLITUDE FLOW 491

[50] E. J. Candes and T. Tao, “Decoding by linear programming,” IEEE Trans.
Inf. Theory, vol. 51, no. 12, pp. 4203–4215, Dec. 2005.

[51] M. Soltanolkotabi, “Structured signal recovery from quadratic measure-
ments: Breaking sample complexity barriers via nonconvex optimization,”
arXiv:1702.06175, 2017.

[52] G. Jagatap and C. Hedge, “Phase retrieval using structured sparsity: A
sample efficient algorithmic framework,” arXiv:1705.06412, 2017.

[53] D. Park, A. Kyrillidis, C. Caramanis, and S. Sanghavi, “Finding low-rank
solutions to matrix problems, efficiently and provably,” arXiv:1606.03168,
2016.

[54] H. Zhang, Y. Chi, and Y. Liang, “Provable non-convex phase retrieval with
outliers: Median truncated Wirtinger flow,” Proc. Int. Conf. Mach. Learn.,
New York, NY, USA, vol. 48, 2016.

[55] S. Lu, M. Hong, and Z. Wang, “A nonconvex splitting method for sym-
metric nonnegative matrix factorization: Convergence analysis and op-
timality,” IEEE Trans. Signal Process., vol. 65, no. 12, pp. 3120–3135,
Jun. 2017.

[56] V. Bentkus, “An inequality for tail probabilities of martingales with differ-
ences bounded from one side,” J. Theor. Probab., vol. 16, no. 1, pp. 161–
173, Jan. 2003.

[57] B. Laurent and P. Massart, “Adaptive estimation of a quadratic functional
by model selection,” Ann. Statist., vol. 28, pp. 1302–1338, Oct. 2000.

Gang Wang (S’12) received the B.Eng. degree
in electrical engineering and automation from the
Beijing Institute of Technology, Beijing, China, in
2011. He is currently working toward the Ph.D. de-
gree in the Department of Electrical and Computer
Engineering, University of Minnesota, Minneapolis,
MN, USA.

His research interests include high-dimensional
statistical signal processing, stochastic and noncon-
vex optimization with applications to autonomous en-
ergy grids, and deep learning. Mr. Wang received a

National Scholarship from China in 2014, the Student Travel Awards from the
NSF (2016) and NIPS (2017), and a Best Student Paper Award at the 2017
European Signal Processing Conference.

Liang Zhang (S’14) received the B.Sc., and M.Sc.
degrees in electrical engineering from the Shanghai
Jiao Tong University, Shanghai, China, in 2012 and
2014, respectively. Since 2014, he has been work-
ing toward the Ph.D. degree in the Department of
Electrical and Computer Engineering, University of
Minnesota, Minneapolis, MN, USA. His research in-
terests include algorithm development for large-scale
optimization problems, and optimal control of power
systems.

Georgios B. Giannakis (F’97) received the Diploma
in electrical engineering from the National Techni-
cal University of Athens, Athens, Greece, in 1981,
and the M.Sc. degree in electrical engineering, M.Sc.
degree in mathematics, and Ph.D. degree in elec-
trical engineering from the University of Southern
California, Los Angeles, CA, USA, in 1983, 1986,
and 1986, respectively. From 1987 to 1998, he was
at the University of Virginia, and since 1999, he has
been a Professor at the University of Minnesota, Min-
neapolis, MN, USA, where he holds an Endowed

Chair in Wireless Telecommunications, a University of Minnesota McKnight
Presidential Chair in ECE, and serves as the Director of the Digital Technol-
ogy Center. His research interests include communications, networking, and
statistical signal processing—subjects on which he has published more than
400 journal papers, 700 conference papers, 25 book chapters, two edited books,
and two research monographs (h-index 128). His current research focuses on
learning from big data, wireless cognitive radios, and network science with
applications to social, brain, and power networks with renewables. He is the
(co)inventor of 30 patents issued.

Dr. Giannakis is the (co)recipient of eight best paper awards from the
IEEE Signal Processing (SP) and Communications Societies, including the G.
Marconi Prize Paper Award in Wireless Communications. He also received
Technical Achievement Awards from the SP Society (2000), from EURASIP
(2005), a Young Faculty Teaching Award, the G. W. Taylor Award for Dis-
tinguished Research from the University of Minnesota, and the IEEE Fourier
Technical Field Award (2015). He is a Fellow of EURASIP, and has served the
IEEE in a number of posts, including that of a Distinguished Lecturer for the
IEEE-SP Society.
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