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Abstract—In this paper, we study the number of measurements
required to recover a sparse signal in � with � nonzero coeffi-
cients from compressed samples in the presence of noise. We con-
sider a number of different recovery criteria, including the exact
recovery of the support of the signal, which was previously con-
sidered in the literature, as well as new criteria for the recovery
of a large fraction of the support of the signal, and the recovery
of a large fraction of the energy of the signal. For these recovery
criteria, we prove that ���� (an asymptotically linear multiple of
�) measurements are necessary and sufficient for signal recovery,
whenever � grows linearly as a function of � . This improves on
the existing literature that is mostly focused on variants of a spe-
cific recovery algorithm based on convex programming, for which
��� ����� ���� measurements are required. In contrast, the im-
plementation of our proof method would have a higher complexity.
We also show that��� ��������� measurements are required in
the sublinear regime �� � �����. For our sufficiency proofs, we
introduce a Shannon-theoretic decoder based on joint typicality,
which allows error events to be defined in terms of a single random
variable in contrast to previous information-theoretic work, where
comparison of random variables are required. We also prove con-
centration results for our error bounds implying that a randomly
selected Gaussian matrix will suffice with high probability. For
our necessity proofs, we rely on results from channel coding and
rate–distortion theory.

Index Terms—Compressed sensing, compressive sampling, es-
timation error, Fano’s inequality, joint typicality, linear regime,
Shannon theory, sublinear regime, support recovery.

I. INTRODUCTION

L ET denote the complex field and the -dimen-
sional complex space. It is well-known that can

be reconstructed from samples. However if the number of
nonzero coefficients of , denoted , is then it is
natural to ask if the number of samples could be reduced while
still guaranteeing faithful reconstruction of . The answer to this
question is affirmative. In fact, whenever , one
can measure a linear combination of the components of as

where is a properly designed measurement matrix
with , and use nonlinear techniques to recover .
This data acquisition technique that allows one to sample sparse
signals below the Nyquist rate is referred to as compressive sam-
pling or compressed sensing [5], [12].
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Although the data acquisition stage is straightforward, recon-
struction of from its samples is a nontrivial task. It can be
shown [5], [17] that if every set of columns of are lin-
early independent, then a decoder can recover uniquely from

samples by solving the minimization problem

s.t.

However, solving this minimization problem for recovery
is NP-hard [21]. In this light, alternative solution methods have
been studied in the literature. One such approach is the reg-
ularization approach, where one solves

s.t.

and then establishes criteria under which the solution to this
problem is also that of the minimization problem. In an im-
portant contribution, by considering a class of measurement ma-
trices satisfying an eigenvalue concentration property called the
restricted isometry principle, Candès and Tao showed in [5] that
for with , the solution to this recovery
problem is the sparsest (minimum ) solution as long as the ob-
servations are not contaminated with (additive) noise. They also
showed that matrices from a properly normalized Gaussian en-
semble satisfy this property with high probability. We discuss
current literature on regularization, as well as on other re-
construction approaches in more detail in Section I-B. Another
strand of work considers solving the recovery problem for
a specific class of measurement matrices, such as the Vander-
monde frames [1].

In practice, however, all the measurements are noisy, i.e.,

(1)

for some additive noise . This motivates our work,
where we study Shannon-theoretic limits on the recovery of
sparse signals in the presence of noise. More specifically, we are
interested in the order of the number of measurements required,

in terms of , . We consider two regimes of sparsity: The
linear sparsity regime where for , and the sub-
linear sparsity regime where .

A. Notation and Problem Statement

We consider the noisy compressive sampling of an unknown
vector, . Let have support , where

with . We also define

(2)
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and the total power of the signal

We consider the noisy model given in (1), where is an addi-
tive noise vector with a complex circularly symmetric Gaussian
distribution with zero mean and covariance matrix , i.e.,

. Due to the presence of noise, cannot be
recovered exactly. However, a sparse recovery algorithm out-
puts an estimate . For the purposes of our analysis, we assume
that this estimate is exactly sparse with . We consider
three performance metrics for the estimate

Error Metric 1:

(3)

Error Metric 2:

(4)

Error Metric 3:

(5)

where is the indicator function and . We note
that the error metrics depend on but do not explicitly
depend on the values of . Once is determined, it
is simple to find the estimate by solving the appropriate least
squares problem, , where is the

submatrix of limited to columns specified by .
Error Metric 1 is referred to as the 0–1 loss metric, and it is

the one considered by Wainwright [24]. Error Metric 2 is a sta-
tistical extension of Error Metric 1, and considers the recovery
of most of the subspace information of . Error Metric 3 char-
acterizes the recovery of most of the energy of .

Consider a sequence of vectors, such that
with , where . For
, we will consider random Gaussian measurement

matrices, , where is a function of . Since the depen-
dence of , , and on is implied by the vector

, we will omit the superscript for brevity, and denote the
support of by , its size by , and any measurement ma-
trix from the ensemble by , whenever there is no ambiguity.

A decoder outputs a set of indices . For a specific
decoder, we consider the average probability of error, averaged
over all Gaussian measurement matrices, with the th
term

(6)

where for ,
specifying the appropriate error metric1 and

is the probability measure. We note that is a function of
a matrix, and in (6) it is a function of the random matrix .2

We say a decoder achieves asymptotically reliable sparse re-
covery if as . This implies the exis-
tence of a sequence of measurement matrices such that

1For Error Metric 2 and 3, appropriate values of � and � also need to be
specified. These variables are not included in the definition to ease the notation.

2The dependence on noise ��� is implicit in this notation.

as . Similarly, we say asymptotically
reliable sparse recovery is not possible if stays bounded
away from as .

We also use the notation

for either or for nondecreasing nonnegative
functions and , if such that for all

Similarly, we say if .

B. Previous Work

There is a large body of literature on tractable recovery algo-
rithms for compressive sampling. Most notably, a series of ex-
cellent papers [5], [12] on relaxation showed that recovery is
possible in the noiseless setting for . This
translates to and measure-
ments in the linear and sublinear sparsity regimes, respectively.
The behavior of relaxation in the presence of noise was
studied in [8], [22], and bounds were derived on the distortion
of the estimate . There is also another strand of work that char-
acterizes the performance of various recovery algorithms based
on the matching pursuit algorithm, and offers similar guarantees
to relaxation [11], [17].

relaxation in the presence of Gaussian noise has also
been studied in the literature [6], [25]. In [6], it was shown that
the distortion of the estimate obtained via this method (the
Dantzig selector) is within a factor of the distortion of the
estimate obtained when the locations of the nonzero elements
of are known at the decoder. The problem of support recovery
with respect to Error Metric 1 was first considered in [25] for
this setting. Wainwright showed that the number of measure-
ments required is both in the linear and
sublinear sparsity regimes, when the constrained quadratic
programming algorithm (LASSO) is used for recovery.

Recovery with respect to Error Metric 1 in an information-
theoretic setting was also first studied by Wainwright in another
excellent paper [24]. Using an optimal decoder that decodes to
the closest subspace, it was shown that in the presence of addi-
tive Gaussian noise, and
measurements were necessary and sufficient for the linear and
sublinear sparsity regimes, respectively. For the linear regime, it
was also required that as , leading
to . The reason for this requirement is that at high di-
mensions, Error Metric 1 is too stringent for an average case
analysis. This is one of the reasons why we have considered
other performance metrics.

Since the submission of this work, there has been more work
done on information-theoretic limits of sparse recovery. In
[13], recovery with respect to Error Metric 1 was considered
for the fixed regime. It was shown that in this regime,

measurements are necessary, which
improves on previous results. Error Metric 2 was later consid-
ered independently in [19], where methods developed in [24]
were used. Sparse measurement matrix ensembles instead of
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Gaussian measurement ensembles were considered in [18],
[26]. Necessary conditions for recovery with respect to Error
Metric 1 were derived in [26]. Sufficient conditions for LASSO
to asymptotically recover the whole support were obtained in
[18]. We also note that there is other work that characterizes the
average distortion associated with compressive sampling [20],
as well as that which is associated with the broader problem of
sparsely representing a given vector [1], [14].

C. Main Results

Before we state our results, we briefly talk about our proof
methodology. Our achievability proof technique is largely de-
rived from Shannon theory [10]. We define a decoder that char-
acterizes events based on their typicality. We call such a de-
coder a “joint typicality decoder.” A formal definition is given
in Section II-B. We note that while in Shannon theory most typi-
cality definitions explicitly involve the entropy of a random vari-
able or mutual information between two random variables, our
definition is characterized by the noise variance . This is not
surprising, since for a Gaussian vector , its
entropy is closely related to its variance. Error events are de-
fined based on atypicality, and the probability of these events
are small as a consequence of the law of large numbers. Use of
joint typicality also allows us to extend our results to various
error metrics, which was not previously done in the literature.
To prove the converses, we utilize Fano’s inequality [15], and
the rate–distortion characterization of certain sources [3].

Theorem 1.1: (Achievability for the Linear Regime) Let a
sequence of sparse vectors, with

, where be given. Then asymptotically reli-

able recovery is possible for if

(7)

for different constants , , corresponding to Error
Metric 1, 2, and 3, respectively. Additionally for Error Metric 1,
we require that as . For Error Metric 2,
we only require that and be constants. For Error
Metric 3, we only require that be a constant. Furthermore, the
constant depends only on ; depends only on , , ,
and ; depends only on , , , and .

Proof: The proof is given in Section II-C.

As we noted previously, asymptotically reliable recovery im-
plies the existence of a sequence of measurement matrices
such that as . One can use a concen-
tration result to show that any measurement matrix chosen from
the Gaussian ensemble will have arbitrarily small with
high probability.

Theorem 1.2: (Concentration of Achievability for the Linear
Regime) Let the conditions of Theorem 1.1 be satisfied and con-
sider the decoder used in its proof. Then for any measurement
matrix, , chosen from the Gaussian ensemble,

, decays to zero as a function of for any . For
Error Metric 1, the decay is faster than for any positive

, whereas for Error Metrics 2 and 3 the decay is exponential
in .

Proof: Markov’s Inequality implies

As shown in the proof of Theorem 1.1, for Error Metric 1,
as , and for Error Metrics

2 and 3, decays exponentially fast in , yielding the
desired result for constant . The results can be strengthened by
letting decay as well. For Error Metrics 2 and 3,

for some constant . This implies that for any
measurement matrix from the Gaussian ensemble,

i.e., any matrix from the Gaussian ensemble has
with high probability. Simlarly, for Error

Metric 1, we have for any positive
and . We also note that an exponential decay is possible

for Error Metric 1, if one further assumes that is a
constant, which is a stronger assumption than that required for
Theorem 1.1.

We also derive necessary conditions for asymptotically reli-
able recovery.

Theorem 1.3: (Converse for the Linear Regime) Let a se-
quence of sparse vectors, with

, where be given. Then asymptotically reli-

able recovery is not possible for

(8)

for different constants , , corresponding to Error Metric
1, 2, and 3 respectively. depends only on , , and ;

depends only on , , , and ; depends only
on , , , and . Additionally, for Error Metric 3, we require
that the nonzero terms decay to zero at the same rate.3

Proof: The proof is given in Section III.

A result similar to Corollary 1.2 can be obtained for the con-
verse case. This result states that if is less than a constant
multiple of , then with overwhelming probability
(i.e., the probability goes to exponentially fast as a function of

).

Corollary 1.4: Let a sequence of sparse vectors,
with , where be

given. Then for , for any measurement matrix from the
Gaussian ensemble, goes to exponentially
fast as a function of if , where for

are positive constants for Error Metrics 1, 2, and
3, respectively. depends only on , , , . , and
additionally depend on and , respectively.

Proof: The proof for Error Metric 1 is given in Sec-
tion III-A. The proofs for Error Metrics 2 and 3 are analogous.

Thus, for the linear sparsity regime, Theorems 1.1 and 1.3
show that measurements are necessary and sufficient for

3That is, � � � � for constants � and � .
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asymptotically reliable recovery. For Error Metric 1, Theorem
1.1 shows that there is a clear gap between the measure-
ments required for a joint typicality decoder and

measurements required by constrained quadratic pro-

gramming [25]. In our proof, it is required that
as , which implies that grows without bound as a
function of . We note that a similar result was derived in [24].
For Error Metrics 2 and 3, Theorem 1.1 implies measure-
ments are sufficient and the power of the signal remains a
constant. This is a much less stringent requirement than that for
Error Metric 1, and is due to the more statistical nature of the
error metrics considered.

The converse to this theorem is established in Theorem 1.3,
which demonstrates that measurements are necessary. We
note that although the converse theorem is stated for a Gaussian
measurement matrix , the proof extends to any matrix with the
property that any group of entries in every row has norm
less than or equal to .

Finally, as stated previously, Corollary 1.2 implies that with
overwhelming probability any given Gaussian measure-
ment matrix can be used for asymptotically reliable sparse
recovery for Error Metrics 2 and 3 as long as is greater than
a specified constant times . A weaker concentration result is
readily obtained for Error Metric 1, and this can be strength-
ened if is constant. Corollary 1.4 states that if the number
of measurements is less than specified constant multiples of

, then with overwhelming probability, any matrix from the
Gaussian ensemble will have error probability approaching .

We next state the analogous results for the sublinear sparsity
regime.

Theorem 1.5: (Achievability for the Sublinear Regime) Let a
sequence of sparse vectors, with

be given. Then asymptotically reliable recovery is
possible for if

(9)

for different constants , , corresponding to Error
Metric 1, 2, and 3, respectively. Additionally, for Error Metric 1,
we require that as . For Error Metric
2, we only require that and be constants. For Error
Metric 3, we only require that be a contant. Furthermore, the
constant depends only on ; depends only on , , and

; depends only on , and .
Proof: The proof largely follows that of Theorem 1.1.

An outline of the proof highlighting the differences is given in
Section IV.

Theorem 1.6: (Converse for the Sublinear Regime) Let a se-
quence of sparse vectors, with

be given. Then asymptotically reliable recovery is
not possible for

(10)

for different constants , , corresponding to Error Metric
1, 2, and 3, respectively. depends only on and ;

depends only on , and ; depends only on

, , and . Additionally, for Error Metric 3, we require that the
nonzero terms decay to zero at the same rate.

Proof: The proof largely follows that of Theorem 1.3.
An outline of the proof highlighting the differences is given in
Section IV.

For the sublinear regime, we have that
measurements are necessary and sufficient for asymptotically
reliable recovery. This matches the number of measurements
required by the tractable regularization algorithm [25].

We finish our results with a theorem that shows the impor-
tance of recovery with respect to Error Metric 3 in terms of
the estimation error. We first consider the idealized case when a
genie provides to the decoder. The decoder outputs an
estimate . Let . We will show that
any matrix chosen from the Gaussian ensemble satisfies cer-
tain eigenvalue concentration inequalities with overwhelming
probability and with respect to Error Metric 3 is expo-
nentially small in for a given signal , and that these imply
the mean-square distortion of the estimate is within a constant
factor of for sufficiently large . We next state our re-
sults characterizing the distortion of the estimate in the linear
sparsity regime, when a joint typicality decoder is used for re-
covery with respect to Error Metric 3.

Theorem 1.7: (Average Distortion of The Estimate For Error
Metric 3): Suppose the conditions of Theorem 1.1 are satisfied
for recovery with respect to Error Metric 3. Let be the
mean-square distortion of the estimate when a genie provides

to the decoder. Let for a constant as
specified in Section V-A. Then with overwhelming probability,
for any measurement matrix from the Gaussian ensemble and
for sufficiently large , the joint typicality decoder outputs an
estimate such that

for a constant that depends only on , , , , and .
Proof: The proof is given in Section V-A.

One can compare this result to that of [6], where the estima-
tion error, is within when a tractable

regularization algorithm is used for recovery. Thus, if a joint
typicality decoder (with respect to Error Metric 3) is used, the

factor could be improved in the linear sparsity regime,
while maintaining constant . We also note that if the condi-
tions of Theorem are satisfied for Error Metric 1, it can be
shown that the estimation error of the joint typicality estimate
converges to in the linear sparsity regime, as one would
intuitively expect [2].

D. Paper Organization

The outline of the rest of the paper is given next. In Section II,
we formally define the concept of joint typicality in the setting
of compressive sampling and prove Theorem 1.1. In Section III,
we provide the proofs for Theorem 1.3 and Corollary 1.4. In
Section IV, we prove the analogous theorems for the sublinear
sparsity regime, . Finally, in Section V, we provide
the proof of Theorem 1.7.
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II. ACHIEVABILITY PROOFS FOR THE LINEAR REGIME

A. Notation

Let denote the th column of . For the measurement
matrix , we define to be the matrix whose columns are

. For any given matrix , we define to be the
orthogonal projection matrix onto the subspace spanned by the
columns of , i.e., . Similarly, we define

to be the projection matrix onto the orthogonal complement
of this subspace, i.e., .

B. Joint Typicality

In our analysis, we will use Gaussian measurement matrices
and a suboptimal decoder based on joint typicality, as defined
below.

Definition 2.1: (Joint Typicality) We say an
noisy observation vector and a set of indices

, with are -jointly typical if
and

(11)

where , the th entry of ,
, and .

Lemma 2.2: For an index set with

Lemma 2.3:
• Let and assume (without loss of generality)

that . Then for

(12)

• Let be an index set such that and
, where and assume that

. Then and are -jointly typical with probability

(13)

where

Proof: We first note that for

we have

and

Furthermore , , where is a unitary matrix
that is a function of (and independent of ). is
a diagonal matrix with diagonal entries equal to , and
the rest equal to . It is easy to see that

where has independent and identically distributed (i.i.d.) en-
tries with distribution . Without loss of generality, we
may assume the nonzero entries of are on the first di-
agonals, thus

Similarly, , where is a unitary matrix
that is a function of and independent of and

and is as discussed above. Thus,
has i.i.d. entries with distribution for all .
It is easy to see that also has i.i.d. entries with

. Thus

where are i.i.d. with distribution , where

Let and . We note that both

and are chi-square random variables with degrees
of freedom. Thus, to bound these probabilities, we must bound
the tail of a chi-square random variable. We have

(14)

and

(15)

For a chi-square random variable, with degrees of
freedom [4], [16]

(16)
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and

(17)

By replacing and

in (16) and

in (17), we obtain using (14)

Similarly, by replacing and

in (16), we obtain using (15)

C. Proof of Theorem 1.1

We define the event

and are - jointly typical

for all .
We also define the error event

which results in an order reduction in the model, and implies
that the decoder is looking through subspaces of incorrect di-
mension. By Lemma 2.2, we have .

Since the relationship between and is implicit in the
following proofs, we will suppress the superscript and just write

for brevity.
1) Proof of Achievability for Error Metric 1: Clearly, the

decoder fails if or occur or when one of occurs for
. Thus

We let where is a
constant. Thus, with . Also by
the statement of Theorem 1.1, we have grows faster
than . We note that this requirement is milder than that
of [24], where the growth requirement is on rather than

. Since the decoder needs to distinguish between even the
smallest nonoverlapping coordinates, we let for

. For computational convenience, we will only con-
sider .

By Lemma 2.3

and by the condition on the growth of , the term in the
exponent grows faster than . Thus, goes to faster
than .

Again, by Lemma 2.3, for with

Since , we have

(18)

where is defined in (2).
The condition of Theorem 1.1 on implies that
for all . We note that this condition also implies

as grows without bound. This is due to the stringent require-
ments imposed by Error Metric 1 in high dimensions.

By a simple counting argument, the number of subsets that
overlaps in indices (and such that ) is upper-
bounded by

Thus, we get the equation at the top of the following page.
We will now show that the summation goes to as .

We use the following bound:

(19)

Authorized licensed use limited to: Harvard University SEAS. Downloaded on June 02,2010 at 19:24:51 UTC from IEEE Xplore.  Restrictions apply. 



498 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 1, JANUARY 2010

to upper-bound each term of summation by

We upper-bound the whole summation by maximizing the
function

(20)

for . If attains its maximum at , we then have

For clarity of presentation, we will now state two technical
lemmas.

Lemma 2.4: Let be a twice differentiable function on
that has a continuous second derivative. If ,

; , , and , ,
then is equal to for at least two points in .

Proof: Since and , has to be
increasing in a subset . Then for some

. Since , , and is continuous,
there exists such that . Similarly, since

, there exists such that .

Lemma 2.5: Let be
a polynomial over such that , , . Then can
have at most two positive roots.

Proof: Let , , , be the roots of ,
counting multiplicities. Since

the number of positive roots must be even, and since

not all the roots could be positive. The result follows.

Lemma 2.6: For sufficiently large, (see (20)) is neg-
ative for all . Moreover, the endpoints of the interval

and are its local maxima.
Proof: We first confirm that is negative at the end-

points of the interval. We use the notation for denoting the
behavior of for large , and and for inequialities that
hold asymptotically.

(21)
for sufficiently large , since grows faster than .
Also, for large , we have

(22)

We now examine the derivative of , given by

Also

for sufficiently large , since grows faster than .
Similarly

since grows slower than .

Additionally, we get defined in (23) at the top of the
following page. Thus
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(23)

and

Since is a twice differentiable function on with
a continuous second derivative, Lemma 2.4 implies that
crosses at least twice in this interval. Next we examine the
polynomial (see (23))

Since satisfies the conditions of Lemma 2.5, we conclude
that it has at most two positive roots, and thus at most two roots
of can lie in . In other words, can cross for

at most twice. Combining this with the previous
information, we conclude that crosses exactly twice in
this interval, and that crosses only once, and this point
is a local minima of . Thus, the local maxima of are
the endpoints and .

Thus, we have

From (21) and (22), it is clear that

as . Hence, with the conditions of Theorem 1.1,
as .

2) Proof of Achievability for Error Metric 2: For asymp-
totically reliable recovery with Error Metric 2, we require that

goes to for only with . By a
re-examination of (18), we observe that the right-hand side of

converges to asymptotically, even when converges to
a constant. In this case, does not have to grow with . Since
by the assumption of the theorem, and are both con-
stants, we can write . We let (and hence

) be a constant, and let for

(24)

Given that is arbitrary, we note that this constant only
depends on , , , and . Hence, we define in the
equation at the bottom of the page,where

is the entropy function for . Since
is greater than a linear factor of and since is a constant, and
using (24), we see exponentially fast as .

3) Proof of Achievability for Error Metric 3: An error occurs
for Error Metric 3 if

Thus, we can bound the error event for from Lemma 2.3 as
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Let be a fraction of . We denote the number of index
sets with as and note that

. Thus

For , a similar argument to that of Section II-C.2
proves that exponentially fast as , where

depends only on , , , and .

III. PROOFS OF CONVERSES FOR THE LINEAR REGIME

Throughout this section, we will write for whenever
there is no ambiguity.

Let the support of be with
. We assume a genie provides

to the decoder defined in
Section I-A.

Clearly, we have

A. Proof of Converse for Error Metric 1

We derive a lower bound on the probability of genie-aided
decoding error for any decoder. Consider a multiple-input
single-output (MISO) transmission model given by an
encoder, a decoder, and a channel. The channel is spec-
ified by . The encoder,

, maps one of the possible binary
vectors of (Hamming) weight to a codeword in . This
codeword is then transmitted over the MISO channel in
channel uses. The decoder is a mapping
such that its output has weight .

Let and with
. Let , where

is the th term of . The codebook is specified by

and has size . The output of the channel, is

for

where and are the th coordinates of and , respectively.
The average signal power is , and the noise

variance is . The capacity of this channel in channel
uses (without channel knowledge at the transmitter) is given by
[23]

After channel uses, if .
Using

(25)
we obtain the equivalent condition

where , and is the entropy function.
To prove Corollary 1.4, we first show that with high proba-

bility, all codewords of a Gaussian codebook satisfy a power
constraint. Combining this with the strong converse of the
channel coding theorem will complete the proof [15]. If is
chosen from a Gaussian distribution, then by inequality (17)

for any , , and for .
Let

for

By the union bound over all possible index sets and

If the power constraint is satisfied, then the strong converse of
the channel coding theorem implies that goes to
exponentially fast in if

B. Proof of Converse for Error Metric 2

For any given with , we will prove the contra-
positive. Let denote the probability of error with respect
to Error Metric 2 for . We show that if

.
Consider a single-input single-output system, , whose input

is , and whose output is , such that
, and . The last condition

states that the support of and that of overlap in more than
locations, i.e., . We are interested in the

rates at which one can communicate reliably over .
In our case, , where is i.i.d.

distributed among binary vectors of length and weight
, and is the Hamming distance. Thus, .

We also note that can be viewed as consisting of an encoder
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, a MISO channel and a decoder, as described in Sec-
tion III-A. Since the source is transmitted within distortion
over the MISO channel, we have [3]

In order to bound , we first state a technical lemma.

Lemma 3.1: Let and , and let

where is the entropy function. Then for ,

, and attains its maximum at .

Proof: By definition of , for . By
examining

it is easy to see that for and

otherwise.

Thus we have get the expression shown at the bottom of
the page, where the first inequality follows since given , is
among possible binary vectors within Ham-
ming distance from . The second inequality follows from
inequality (25), and the third inequality follows by Lemma 3.1.

Thus, , where

if

if .
(26)

Therefore, if , then

or, equivalently, for large

The contrapositive statement proves the result.

C. Proof of Converse for Error Metric 3

For Error Metric 3, we assume that and

both decay at rate . Thus, is
constant.4 In the absence of this assumption, some terms of
can be asymptotically dominated by noise. Such terms are unim-
portant for recovery purposes, and therefore could be replaced
by zeros (in the definition of ) with no significant harm.

Let . We note that by the as-

sumption of the theorem, is a constant. Let
denote the probability of error with respect to Error Metric 3 for

. If and if an index set is recovered, then
, where . This implies that

. Thus, implies that
when recovering fraction of the support of . As shown
in Section III-B, reliable recovery of is not possible if

where is a constant (as defined in (26)) that only de-
pends on , , and for a given .

IV. PROOFS FOR THE SUBLINEAR REGIME

The proofs for the sublinear regime follow the same steps as
those in the linear regime. For the proofs of converse results, we
use the bounds from (19) instead of those of (25). We provide
outlines, highlighting any differences.

A. Outline of the Proof of Theorem 1.5

The proof is similar to that of Theorem 1.1, with re-
placed by

The behavior of , , and at the endpoints
is the same as that in the proof of Theorem 1.1 whenever

. The result follows in an analogous way for
Error Metrics 1, 2 and 3.

4Technically, � is bounded above and below by constants, and we note that
this does not affect the proof. Without loss of generality and to ease the notation,
we will take � to be a constant.

if

if
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B. Outline of the Proof of Theorem 1.6

For Error Metric 1, the proof is essentially the same as that of
Theorem 1.3. For Error Metric 2, we have the following tech-
nical lemma.

Lemma 4.1: Let and , and let

Then for , and for sufficiently large , attains
its maximum at .

Proof: By examining

it is easy to see that for sufficiently large .

Thus, we get the expression at the bottom of the page, where
the first inequality follows from inequality (19), and the second
inequality follows by Lemma 4.1 for sufficiently large . The
rest of the proof is analogous to that of Theorem 1.3.

For Error Metric 3, we let , and

conclude that implies that when recov-
ering fraction of the support of . The rest of the proof
is analogous to that of Theorem 1.3.

V. PROOF OF DISTORTION CHARACTERIZATION FOR

ERROR METRIC 3

To prove this result, we use eigenvalue concentration proper-
ties of Gaussian matrices, which is referred to as the restricted
isometry principle (RIP) in the context of compressive sampling
[5]. With our scaling, RIP states that for a given constant ,
with overwhelming probability, a Gaussian matrix satisfies

(27)

for any with , as long as
for some constant that depends on .

is referred to as the restricted isometry constant of .
We first state some implications of RIP. For any index set

with , we have

where and denote the minimum and maximum
eigenvalues of , respectively. It can also be shown [11], that
for any two integers , we have . Also, for two
disjoint index sets , we have

for as long as .
Next, we introduce some more notation for this proof. We

denote the pseudoinverse of by . For
an index set with , we
let (as defined in Section III).
We also let the restriction of to be the vector such
that

if
otherwise.

Finally, for , we define the following assignment
operation:

which results in and for .

A. Proof of Theorem 1.7

Given any matrix from the Gaussian ensemble satisfies
(27) with probability for some constant
if . Similarly, given , from the proof of
Corollary 1.2, we have that with prob-
ability for some constant if
in the linear regime. Let . Then if the
condition in the statement of the theorem is satisfied, with prob-
ability , any matrix from the Gaussian en-
semble will both satisfy (27) and have ,
where with respect to Error Metric 3 for .
We next fix to be a measurement matrix from the Gaussian
ensemble satisfying RIP and .

Next, we characterize . Once is known at the
decoder, the optimal estimate is

Thus

It is easy to show that

It follows from RIP that
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With probability greater than or equal to ,
the joint typicality decoder outputs a set of indices such that

If it fails, it outputs . If recovery is successful, the estimate
is given by . Let be the vector such that

We have that

since .
Since , we can write

Thus, since

(28)

It follows that

(29)

Finally

(30)

For sufficiently large , the first term can be made arbitrarily
small, i.e., smaller than any real number . The sum of the
second and the third terms is a constant that depends only on ,

, , , and .

In the sublinear sparsity regime, we let ,

where , are constant that have been defined previ-
ously. If , then with probability

, any matrix from the Gaussian ensemble
will both satisfy (27) and have , for
some constant with respect to Error Metric 3. We fix
to be a measurement matrix from the Gaussian ensemble,
satisfying RIP and . The condition that

implies that . In
this case, the second term on the right-hand side of inequality
(30) is going to contribute . Thus, for the
sublinear regime, recovery with respect to Error Metric 3
implies that for some
constant .
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